
Function Description 

<text>.GET_SIGNED8(<

n> 

Treats the string of bytes represented by text as a 

sequence of 8-bit signed integers and returns the integer 

at byte offset n. If the offset makes all or part of the 

value outside of the current text, an UNDEFcondition is 

raised. 
 

<text>.GET_UNSIGNED

8(<n>) 

 

Treats the string of bytes represented by text as a 

sequence of 8-bit unsigned integers and returns the 

integer at byte offset n. If the offset makes all or part 

of the value outside of the current text, 

an UNDEFcondition is raised. 

 

<text>.GET_SIGNED16

(<n>, <endianness>) 

 

Treats the text string returned by the prefix as a string 

of bytes, extracts 16 bits starting at byte offset n, and 

converts the extracted bit sequence to a 16-bit signed 

integer. If the offset makes all or part of the value 

outside of the current text, an UNDEF condition is raised. 

The first parameter n is the byte offset from the current 

position in the text string. Providing a byte offset 

enables the function to handle items that are not aligned 

on the boundaries that are required by indexes. The second 

parameter, endianness, takes a mnemonic value 

of LITTLE_ENDIAN or BIG_ENDIAN. Note: In NetScaler 9.2, 

the parameter n was an index into an array of 16-bit 

items. In NetScaler 9.3, the parameter is a byte offset. 

Therefore, if you used this function in NetScaler 9.2, 

after you upgrade to NetScaler 9.3, you must 

change n to 2*n to obtain the same results as you did 

earlier. For example, if the value of n before the upgrade 

was 4, you must change the value of n to 8. The 

parameter endianness also no longer takes the values that 

it did in NetScaler 9.2, which were 0 and 1. 

Instead, endianness accepts the mnemonic values mentioned 

earlier. Example: HTTP.REQ.BODY(100).GET_SIGNED16(8, 

BIG_ENDIAN). 

<text>.GET_UNSIGNED

16(<n>, 

<endianness>) 

Treats the text string returned by the prefix as a string 

of bytes, extracts 16 bits starting at byte offset n, and 

converts the extracted bit sequence to a 16-bit unsigned 

integer. If the offset makes all or part of the value 

outside of the current text, an UNDEF condition is raised. 

The first parameter n is the byte offset from the current 

position in the text string. Providing a byte offset 

enables the function to handle items that are not aligned 

on the boundaries that are required by indexes. The second 



parameter, endianness, takes a mnemonic value 

of LITTLE_ENDIAN or BIG_ENDIAN. Note: In NetScaler 9.2, 

the parameter n was an index into an array of 16-bit 

items. In NetScaler 9.3, the parameter is a byte offset. 

Therefore, if you used this function in NetScaler 9.2, 

after you upgrade to NetScaler 9.3, you must 

change n to 2*n to obtain the same results as you did 

earlier. For example, if the value of n before the upgrade 

was 4, you must change the value of n to 8. The 

parameter endianness also no longer takes the values that 

it did in NetScaler 9.2, which were 0 and 1. 

Instead, endianness accepts the mnemonic values mentioned 

earlier. Example: HTTP.REQ.BODY(100).GET_UNSIGNED16(8, 

LITTLE_ENDIAN) 

<text>.GET_SIGNED32

(<n>, <endianness>) 

 

Treats the text string returned by the prefix as a string 

of bytes, extracts 32 bits starting at byte offset n, and 

converts the extracted bit sequence to a 32-bit signed 

integer. If the offset makes all or part of the value 

outside of the current text, an UNDEF condition is raised. 

The first parameter n is the byte offset from the current 

position in the text string. Providing a byte offset 

enables the function to handle items that are not aligned 

on the boundaries that are required by indexes. The second 

parameter, endianness, takes a mnemonic value 

of LITTLE_ENDIAN or BIG_ENDIAN. Note: In NetScaler 9.2, 

the parameter n was an index into an array of 32-bit 

items. In NetScaler 9.3, the parameter is a byte offset. 

Therefore, if you used this function in NetScaler 9.2, 

after you upgrade to NetScaler 9.3, you must 

change n to 4*n to obtain the same results as you did 

earlier. For example, if the value of n before the upgrade 

was 4, you must change the value of n to 16. The 

parameter endianness also no longer takes the values that 

it did in NetScaler 9.2, which were 0 and 1. 

Instead, endianness accepts the mnemonic values mentioned 

earlier. Example: HTTP.REQ.BODY(1000).GET_SIGNED32(12, 

BIG_ENDIAN) 

<text>.GET_UNSIGNED

32(<n>, 

<endianness>) 

Treats the text string returned by the prefix as a string 

of bytes, extracts 32 bits starting at byte offset n, and 

returns the extracted bit sequence as part of a 64-bit 

unsigned long integer. If the offset makes all or part of 

the value outside of the current text, an UNDEFcondition 

is raised. The first parameter n is the byte offset from 

the current position in the text string. Providing a byte 

offset enables the function to handle items that are not 



aligned on the boundaries that are required by indexes. 

The second parameter, endianness, takes a mnemonic value 

of LITTLE_ENDIAN or BIG_ENDIAN. Example: HTTP.REQ.BODY(100

0).GET_UNSIGNED32(30, LITTLE_ENDIAN 

 


