
NetScaler ingress controller

Product Documentation | https://docs.netscaler.com April 10, 2024

https://docs.netscaler.com

NetScaler ingress controller

Contents

Overview 6

Getting started 8

Deployment topologies 10

Deploy NetScaler Ingress Controller using YAML 17

Deploy the NetScaler Ingress Controller using Helm charts 30

Deploy NetScaler Ingress Controller using kops 33

Deploy the NetScaler Ingress Controller on a Ranchermanaged Kubernetes cluster 34

Deploy the NetScaler Ingress Controller on a PKSmanaged Kubernetes cluster 37

Deploy NetScaler‑Integrated Canary Deployment Solution 38

Deploy NetScaler IPAM controller 62

Deploying NetScaler API Gateway using Rancher 64

Deploy API Gatewaywith GitOps 66

GSLB overview and deployment topologies 76

Deploy NetScaler GSLB controller 83

NetScaler GSLB controller for single site 94

Service Mesh lite 103

Deploy the NetScaler Ingress Controller as an OpenShift router plug‑in 110

Deploy the NetScaler Ingress Controller with OpenShift router sharding support 122

Deploy NetScaler Ingress Controller in OpenShift using NetScaler Operator 126

Deploy NetScaler Observability Exporter using NetScaler Operator 142

Deploy NetScaler CPX as an Ingress device in an Azure Kubernetes Service cluster 144

DeployNetScaler IngressController inanAzureKubernetesService clusterwithNetScaler
VPX 147

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 1

NetScaler ingress controller

Deploy NetScaler CPX as an Ingress device in Google Cloud Platform 151

Deploy the NetScaler Ingress Controller in Anthos 153

Deploy NetScaler VPX in active‑active high availability in EKS environment using Amazon
ELB and NetScaler Ingress Controller 161

Deploy the NetScaler Ingress Controller for NetScaler with admin partitions 174

Deploy Citrix solution for service of type LoadBalancer in AWS 184

Multi‑cloud and GSLB solution with Amazon EKS andMicrosoft AKS clusters 188

Annotations 203

ConfigMap support for the NetScaler Ingress Controller 225

Ingress configurations 229

Ingress class support 234

Service class for services of type LoadBalancer 239

Configure HTTP, TCP, or SSL profiles on NetScaler 241

Log levels 258

TCP profile support for services of type LoadBalancer 260

SSL certificate for services of type LoadBalancer through the Kubernetes secret resource 262

BGP advertisement of external IP addresses for type LoadBalancer services and Ingresses
using NetScaler CPX 265

NetScalerCPX integrationwithMetalLB in layer 2mode for on‑premisesKubernetes clusters278

Advanced content routing for Kubernetes Ingress using the HTTPRoute CRD 282

Profile support for the Listener CRD 285

IP address management using the for Ingress resources 292

Apply CRDs through annotations 297

Listener CRD support for Ingress through annotation 299

Configuring consistent hashing algorithm using NetScaler Ingress Controller 304

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 2

NetScaler ingress controller

Add DNS records using NetScaler Ingress Controller 305

Open policy agent support for Kubernetes with NetScaler 307

Exportingmetrics directly to Prometheus 315

Configure static route on Ingress NetScaler VPX or MPX 318

Establish network between Kubernetes nodes and Ingress NetScaler using node controller 320

Expose Service of type NodePort using Ingress 322

Configure pod to pod communication using Calico 324

Enhancements for Kubernetes service of type LoadBalancer support in the NetScaler
Ingress Controller 330

TLS certificates handling in NetScaler Ingress Controller 336

TLS client authentication support in NetScaler 343

TLS server authentication support in NetScaler using the NetScaler Ingress Controller 345

Install, link, and update certificates on a NetScaler using the NetScaler Ingress Controller 347

Configure SSL passthrough using Kubernetes Ingress 350

Automated certificatemanagement with cert‑manager 352

Deploy HTTPS web application on Kubernetes with the NetScaler Ingress Controller and
Let‘s Encrypt using cert‑manager 353

Deploy an HTTPS web application on Kubernetes with NetScaler Ingress Controller and
HashiCorp Vault using cert‑manager 372

Enable NetScaler certificate validation in the NetScaler Ingress Controller 389

Disable API server certificate verification 392

Create a self‑signed certificate and linking into Kubernetes secret 393

Viewmetrics of NetScalers using Prometheus and Grafana 394

Analytics and observability 404

Analytics configuration support using ConfigMap 407

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 3

NetScaler ingress controller

Troubleshooting 411

Troubleshooting the NetScaler Ingress Controller during runtime 420

Call Home enablement for the NetScaler Ingress Controller in NetScaler 422

Upgrade NetScaler Ingress Controller 422

IP address management using the IPAM controller 425

Securing Ingress 431

TCP use cases 436

HTTP use cases 441

HTTP callout with the rewrite and responder policy 445

Configure session affinity or persistence on the Ingress NetScaler 451

Allowlisting or blocklisting IP addresses 454

Interoperability with ExternalDNS 459

Using NetScaler credentials stored in a Vault server for the NetScaler Ingress Controller 460

How to use Kubernetes secrets for storing NetScaler credentials 467

How to load balance ingress traffic to TCP or UDP based application 470

How to set up dual‑tier deployment 475

Horizontal pod autoscaler for NetScaler CPXwith custommetrics 482

Deploy Direct Server Return 487

Support for admission controller webhooks 491

Enable gRPC support using the NetScaler Ingress Controller 496

Policy based routing support for multiple Kubernetes clusters 502

Single tier NetScaler Ingress solution for MongoDB 510

Canary and blue‑green deployment using NetScaler VPX and Azure pipelines for Kuber‑
netes based applications 519

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 4

NetScaler ingress controller

Traffic management for external services 525

Support for external name service across namespaces 527

Supported platforms and deployments 529

Authentication and authorization policies for Kubernetes with NetScaler 538

Rate limiting in Kubernetes using NetScaler 558

Use Rewrite and Responder policies in Kubernetes 562

Advanced content routing for Kubernetes with NetScaler 583

Configure web application firewall policies with the NetScaler Ingress Controller 590

Configure botmanagement policies with the NetScaler Ingress Controller 605

Configure cross‑origin resource sharing policies with NetScaler Ingress Controller 612

Enable request retry feature using AppQoE for NetScaler Ingress Controller 615

Configuring wildcard DNS domains through NetScaler Ingress Controller 617

Entity name change 619

Licensing 621

Deployment using Helm charts and NetScaler deployment builder 623

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 5

NetScaler ingress controller

Overview

What is an Ingress Controller in Kubernetes

When you are running an application inside a Kubernetes cluster, you need to provide a way for ex‑
ternal users to access the applications from outside the Kubernetes cluster. Kubernetes provides an
object called Ingress which allows you to define the rules for accessing the services with in the Kuber‑
netes cluster. It provides the most effective way to externally access multiple services running inside
the cluster using a stable IP address.

An Ingress Controller is an application deployed inside the cluster that interprets rules defined in the
Ingress. The Ingress Controller converts the Ingress rules into configuration instructions for a load
balancing application integrated with the cluster. The load balancer can be a software application
running inside your Kubernetes cluster or a hardware appliance running outside the cluster.

What is NetScaler Ingress Controller

NetScaler provides an implementation of the Kubernetes Ingress Controller tomanage and route traf‑
fic into your Kubernetes cluster using NetScalers (NetScaler CPX, VPX, or MPX).

Using NetScaler Ingress Controller, you can configure NetScaler CPX, VPX, or MPX according to the
Ingress rules and integrate your NetScalers with the Kubernetes environment.

Why NetScaler Ingress Controller

This topic provides information about some of the key benefits of integrating NetScalers with your
Kubernetes cluster using NetScaler Ingress Controller.

Support for TCP and UDP traffic

Standard Kubernetes Ingress solutions provide load balancing only at layer 7 (HTTP or HTTPS traffic).
Some times, you need to exposemany legacy applicationswhich rely on TCP or UDP applications and
need a way to load balance those applications. NetScaler Ingress Controller solution using NetScaler
Ingress Controller provides TCP, TCP‑SSL, and UDP traffic support apart from the standard HTTP or
HTTPS Ingress. Also, it works seamlessly across multiple clouds or on‑premises data centers.

Advanced traffic management policies

NetScaler provides enterprise‑grade traffic management policies like rewrite and responder policies
for efficiently load balancing traffic at layer 7. However, Kubernetes Ingress lacks such enterprise‑

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 6

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/#ingress-controllers

NetScaler ingress controller

grade traffic management policies. With the Kubernetes Ingress solution from Citrix, you can apply
rewrite and responder policies for application traffic in a Kubernetes environment using CRDs pro‑
vided by NetScaler.

Flexible deployment topologies

NetScaler provides flexible and powerful topologies such as Single‑Tier and Dual‑Tier depending on
how youwant tomanage your NetScalers and Kubernetes environment. Formore information on the
deployment topologies, see the
Deployment topologies page.

Layer 7 load balancing support for East‑West traffic

For traffic between microservices inside the Kubernetes cluster (East‑West traffic), Kubernetes na‑
tively provides only limited layer 4 load balancing. Using NetScaler CPX along with the Ingress con‑
troller, you can achieve advanced layer 7 load balancing for East‑West traffic.

Service of type LoadBalancer on baremetal clusters

There may be several situations where you want to deploy your Kubernetes cluster on bare metal
or on‑premises rather than deploy it on public cloud. When you are running your applications on
bare metal Kubernetes clusters, it is much easier to route TCP or UDP traffic using a service of type
LoadBalancer than using Ingress. Even for HTTP traffic, it is sometimes more convenient than
Ingress. However, there is no load balancer implementation natively available for bare metal Kuber‑
netes clusters. NetScaler provides a way to load balance such services using the Ingress controller
and NetScaler. For more information, see Expose services of type LoadBalancer.

Deploy NetScaler Ingress Controller

You can deploy NetScaler Ingress Controller in the following deployment modes:

1. As a standalone pod: This mode is used when managing ADCs such as NetScaler MPX, or VPX
that is outside the Kubernetes cluster.

2. As a sidecar in a pod along with the NetScaler CPX in the same pod: The controller is only re‑
sponsible for the NetScaler CPX that resides in the same pod.

You can deploy the ingress controller provided by NetScaler using Kubernetes YAML or Helm charts.
Formore information, seeDeployNetScaler IngressController usingYAMLorDeployNetScaler Ingress
Controller using Helm charts.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 7

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html#single-tier-topology
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html#dual-tier-topology
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-helm.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-helm.html

NetScaler ingress controller

Getting started

December 31, 2023

This guide helps you to quickly evaluate NetScaler Ingress Controller for Kubernetes if you are new to
NetScaler Ingress Controller. If you are an advanced user, see What is Next.

Before you begin

Ensure that you have installed and set up a Minikube cluster.

Getting started with NetScaler Ingress Controller

In this procedure you perform the following steps:

• Deploy NetScaler CPX (a containerized version of NetScaler) along with ingress controller
• Deploy Guestbook, a sample application
• Deploy Ingress rules to route traffic to the Guestbook application
• Send some traffic to the application and verify

Deploy NetScaler CPXwith NetScaler Ingress Controller

Perform the following to deploy NetScaler CPX with NetScaler Ingress Controller.

1. Deploy NetScaler CPX as an Ingress proxy in the Minikube cluster.

1 kubectl create -f https://raw.githubusercontent.com/citrix/cloud
-native-getting-started/master/beginners-guide/manifest/cpx.
yaml

2. Verify the installation using the following command.

1 kubectl get pods -l app=cpx-ingress

Deploy a sample application

In this step, you deploy Guestbook which is a multi‑tier PHP‑based web application that uses Re‑
dis.

1. Deploy the Guestbook application in Minikube.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 8

https://minikube.sigs.k8s.io/docs/start/
https://kubernetes.io/docs/tutorials/stateless-application/guestbook/

NetScaler ingress controller

1 kubectl create -f https://raw.githubusercontent.com/citrix/cloud-
native-getting-started/master/beginners-guide/manifest/
guestbook-app.yaml

2. Verify the installation using the following:

1 kubectl get pods -l 'app in (guestbook, redis)'

Deploy an Ingress for the sample application

To deploy ingress rules for the sample application and verify the functionality, perform the following
steps.

1. Deploy an Ingress rule that sends traffic to the Guestbook application(http://www.guestboo
k.com).

1 kubectl create -f https://raw.githubusercontent.com/citrix/cloud-
native-getting-started/master/beginners-guide/manifest/
guestbook-ingress.yaml

2. Verify the Ingress deployment using the following command.

1 kubectl get ingress

3. Display information about the service using the following command.

1 kubectl get svc cpx-service
2
3 # kubectl get service cpx-service
4
5 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE
6
7 cpx-service NodePort 10.106.123.144 <none>

80:30592/TCP,443:31338/TCP 43m

You can get the NodePort information from this example, 30592 and 31338 are NodePorts.

4. Send traffic to the Guestbookmicroservice application and verify that traffic to this URL gets
the Guestbook page:

1 curl -s -H \"Host: www.guestbook.com\" http://<MiniKube-IP-address
>:<NodePort> | grep Guestbook

Expected output:

1 <title>Guestbook</title>
2 <h2>Guestbook</h2>

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 9

http://www.guestbook.com
http://www.guestbook.com

NetScaler ingress controller

Note:

You can get the Minikube IP address using the minikube ip command. You can also use the
minikube service cpx-service --url command to directly get the URL used in the
cURL command.

What is next

The getting started section helps a beginner to evaluate NetScaler Ingress Controller quickly and the
installation covers only the basic functionality.
You can see the following topics for comprehensive information on deploying NetScaler Ingress Con‑
troller and customize your installation accordingly.

• Deployment topologies: Provides information on various topologies supported by NetScaler
Ingress Controller.

• Supported platforms: Provides information about the different platforms supported including
bare metal and cloud platforms.

• Deploy NetScaler Ingress Controller: Provides information on how to deploy NetScaler Ingress
Controller for different flavors of NetScaler like NetScaler CPX, VPX, and MPX.

Deployment topologies

December 31, 2023

NetScalers can be combined in powerful and flexible topologies that complement organizational
boundaries. Dual‑tier deployments employ high‑capacity hardware or virtualized NetScalers
(NetScaler MPX and VPX) in the first tier to offload security functions and implement relatively
static organizational policies while segmenting control between network operators and Kubernetes
operators.

In Dual‑tier deployments, the second tier is within the Kubernetes Cluster (using the NetScaler CPX)
and is under control of the service owners. This setup provides stability for network operators, while
allowing Kubernetes users to implement high‑velocity changes. Single‑tier topologies are suited to
organizations that need to handle high rates of change.

Single‑Tier topology

In a Single‑Tier topology, NetScalerMPXor VPXdevices proxy the (North‑South) traffic from the clients
to microservices inside the cluster. The NetScaler Ingress Controller is deployed as a standalone pod

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 10

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/support-matrix.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html

NetScaler ingress controller

in the Kubernetes cluster. The controller automates the configuration of NetScalers (MPX or VPX)
based on the changes to the microservices or the Ingress resources.

Dual‑Tier topology

In Dual‑Tier topology, NetScaler MPX or VPX devices in Tier‑1 proxy the traffic (North‑South) from the
client toNetScaler CPXs in Tier‑2. The Tier‑2 NetScaler CPX then routes the traffic to themicroservices
in the Kubernetes cluster. The NetScaler Ingress Controller deployed as a standalone pod configures
the Tier‑1 devices. And, the sidecar controller in one ormore NetScaler CPX pods configures the asso‑
ciated NetScaler CPX in the same pod.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 11

NetScaler ingress controller

Cloud topology

Kubernetes clusters inpublic clouds suchasAmazonWebServices (AWS),GoogleCloud, andMicrosoft
Azure can use their native load balancing services such as, AWS Elastic Load Balancing, Google Cloud
LoadBalancing, andMicrosoftAzureNLBas the first (relatively static) tier of loadbalancing toa second
tier of NetScaler CPX. NetScaler CPX operates inside the Kubernetes cluster with the sidecar Ingress
controller. TheKubernetes clusters canbe self‑hostedormanagedby the cloudprovider (for example,
AWS EKS, Google GKE and Azure AKS) while using the NetScaler CPX as the Ingress. If the cloud‑based
Kubernetes cluster is self‑hosted or self‑managed, the NetScaler VPX can be used as the first tier in a
Dual‑tier topology.

Cloud deployment with NetScaler (VPX) in tier‑1:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 12

https://aws.amazon.com
https://cloud.google.com
https://azure.microsoft.com/en-in/
https://azure.microsoft.com/en-in/
https://aws.amazon.com/elasticloadbalancing/
https://cloud.google.com/load-balancing/
https://cloud.google.com/load-balancing/
https://azure.microsoft.com/en-in/services/load-balancer/
https://aws.amazon.com/eks/
https://cloud.google.com/kubernetes-engine/
https://docs.microsoft.com/en-us/azure/aks/

NetScaler ingress controller

Cloud deployment with Cloud LB in tier‑1:

Servicemesh lite

An Ingress solution typically performs layer 7 proxy functions for traffic from client to microservices
inside the Kubernetes cluster (north‑south traffic). The Service mesh lite architecture uses the same

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 13

NetScaler ingress controller

Ingress solution tomanage the traffic across services with in the Kubernetes cluster (east‑west traffic)
as well. Typically, a service mesh solution is used for managing east‑west traffic, but it is heavier and
complex tomanage. Servicemesh lite solution is a simplified version of the servicemesh architecture
and ideal when there is a need to manage both north‑south and east‑west traffic management. In a
service mesh, there are as many sidecar proxies as the number of applications. But, in the service
mesh lite architecture, a proxy is deployed as a standalone proxy managing multiple east‑west con‑
nections. Hence, the Service mesh lite solution is lighter compared to a service mesh
because the number of proxies required are less.

In a standard Kubernetes deployment, east‑west traffic traverses the built‑in kube‑proxy deployed
in each node. Kube‑proxy being a L4 proxy can only do TCP/UDP based load balancing without the
benefits of L7 proxy.

NetScaler (MPX, VPX, or CPX) can provide such benefits for east‑west traffic such as:

• Mutual TLS or SSL offload
• Content based routing, allow, or block traffic based on HTTP or HTTPS header parameters
• Advanced load balancing algorithms (for example, least connections, least response time and
so on.)

• Observability of east‑west traffic through measuring golden signals (errors, latencies, satura‑
tion, or traffic volume).NetScaler ADMService Graph is an observability solution tomonitor and
debugmicroservices.

For more information, see Service mesh lite.

Following are some of the scenarios when service mesh lite topology is recommended:

• When you need both the north‑south and the east‑west traffic management for microservices.
• When you need the east‑west traffic management through a proxy deployed as a standalone
proxy and not as sidecar proxies to microservices.

• When you need the proxy inside the Kubernetes cluster to perform both north‑south and east‑
west traffic management.

• When you need the benefits of service mesh, but wants a lighter and simpler solution.

Services of type LoadBalancer

Services of typeLoadBalancer in Kubernetes enables you todirectly expose services to theoutside
world without using an ingress resource. It is made available only by cloud providers, who spin up
their own native cloud load balancers and assign an external IP address through which the service
is accessed. This helps you to deploy microservices easily and expose them outside the Kubernetes
cluster.

By default, in a bare metal Kubernetes cluster, service of type LoadBalancer simply exposes
NodePorts for the service. And, it does not configure external load balancers.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 14

https://kubernetes.io/docs/concepts/overview/components/#kube-proxy
https://docs.netscaler.com/en-us/citrix-application-delivery-management-service.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/service-mesh-lite.html

NetScaler ingress controller

The NetScaler Ingress Controller supports the services of type LoadBalancer. You can create a ser‑
viceof typeLoadBalancerandexpose it using the ingressNetScaler inTier‑1. The ingressNetScaler
provisions a load balancer for the service and an external IP address is assigned to the service. The
NetScaler Ingress Controller allocates the IP address using the .

For more information, see Expose services of type LoadBalancer.

Services of type NodePort

Bydefault, Kubernetes services are accessible using the cluster IP address. The cluster IP address is an
internal IP address that canbe accessedwithin theKubernetes cluster. Tomake the service accessible
from the outside of the Kubernetes cluster, you can create a service of the type NodePort.

The NetScaler Ingress Controller supports services of type NodePort. Using the Ingress NetScaler
and NetScaler Ingress Controller, you can expose the service of type NodePort to the outside
world.

For more information, see Expose services of type NodePort.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 15

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html
https://kubernetes.io/docs/concepts/services-networking/service/#defining-a-service
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/nodeport.html

NetScaler ingress controller

Guidelines for choosing the topology

The following informationhelps you tochoose the rightdeploymentamong the topologiesSingle‑Tier
and Dual‑tier based on your needs.

Single‑Tier (Unified Ingress)

Following are some of the scenarios when the Single‑Tier (unified ingress) topology is recommended
and the benefits:

• Easy to start and adopt because you can use the existing NetScaler as the ingress proxy in front
of the Kubernetes cluster.

• When the Network teammanages both NetScaler and the Kubernetes deployment.
• Your workload running as microservices is less and a Kubernetes proxy inside the Kubernetes
cluster is not required.

• More suitable for north‑south traffic deployments.

Dual‑Tier

Following are some of the scenarios when the Dual‑Tier ingress topology is preferred and the bene‑
fits:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 16

NetScaler ingress controller

• When you have significant workload running as microservices there is a need for a proxy inside
the Kubernetes cluster.

• When the external proxy (managed by the network team) and Kubernetes proxies (managed by
the platform team) are managed by two different teams.

• You need segregation of functions for proxies external to Kubernetes and for proxies inside Ku‑
bernetes. For example,WAF, and SSL offload on external NetScaler and policy enforcement and
rate limiting on the Kubernetes proxy.

• The proxy inside the Kubernetes cluster performs north‑south traffic management only.

Deployment using Helm charts and the NetScaler deployment builder

For deploying NetScaler cloud native topologies, there are various options available using YAML and
Helm charts. Helm charts are one of the easiest ways for deployment in a Kubernetes environment.
When you deploy using the Helm charts, you can use avalues.yaml file to specify the values of the
configurable parameters instead of providing each parameter as an argument.

You can generate thevalues.yaml file for NetScaler cloud native deployments using the NetScaler
deployment builder, which is a GUI.

The following topologies are supported by the NetScaler deployment builder:

• Single‑Tier

– Ingress

– Service type LoadBalancer

• Dual‑Tier

– NetScaler CPX as NodePort

– NetScaler CPX as service of type LoadBalancer

• GSLB Ingress

• Service mesh

For detailed information on how to use the NetScaler deployment builder, see the NetScaler deploy‑
ment builder blog.

Deploy NetScaler Ingress Controller using YAML

December 31, 2023

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 17

https://netscaler.github.io/netscaler-k8s-ingress-controller/
https://netscaler.github.io/netscaler-k8s-ingress-controller/
https://www.citrix.com/blogs/2021/03/02/citrix-deployment-builder-simplifying-citrix-cloud-native-deployments/
https://www.citrix.com/blogs/2021/03/02/citrix-deployment-builder-simplifying-citrix-cloud-native-deployments/

NetScaler ingress controller

You can deploy NetScaler Ingress Controller in the following modes on your bare metal and cloud
deployments:

• As a standalone pod in the Kubernetes cluster. Use this mode if you are controlling NetScalers
(NetScaler MPX or NetScaler VPX) outside the cluster. For example, with dual‑tier topologies, or
single‑tier topology where the single tier is a NetScaler MPX or VPX.

• As a sidecar (in the same pod) with NetScaler CPX in the Kubernetes cluster. The sidecar con‑
troller is only responsible for the associated NetScaler CPX within the same pod. This mode is
used in dual‑tier or cloud topologies.

Deploy NetScaler Ingress Controller as a standalone pod in the Kubernetes cluster for
NetScaler MPX or VPX appliances

Use the citrix‑k8s‑ingress‑controller.yaml file to run the NetScaler Ingress Controller as a standalone
pod in your Kubernetes cluster.

Note:

The NetScaler MPX or VPX can be deployed in standalone, high‑availability, or clusteredmodes.

Prerequisites

• Determine the NS_IP IP address needed by the controller to communicate with the appliance.
The IP address might be anyone of the following depending on the type of NetScaler deploy‑
ment:

– (Standalone appliances) NSIP ‑ Themanagement IP address of a standalone NetScaler ap‑
pliance. For more information, see IP Addressing in NetScaler

– (Appliances inHigh Availabilitymode) SNIP ‑ The subnet IP address. Formore information,
see IP Addressing in NetScaler

– (Appliances in Clusteredmode) CLIP ‑ The clustermanagement IP (CLIP) address for a clus‑
tered NetScaler deployment. For more information, see IP addressing for a cluster

• The user name and password of the NetScaler VPX or MPX appliance used as the Ingress device.
The NetScaler appliance must have a system user account (non‑default) with certain privileges
so that NetScaler Ingress Controller can configure the NetScaler VPX or MPX appliance. For in‑
structions to create the system user account on NetScaler, see Create System User Account for
NetScaler Ingress Controller in NetScaler

You candirectly pass the user nameandpassword as environment variables to the controller, or
use Kubernetes secrets (recommended). If you want to use Kubernetes secrets, create a secret
for the user name and password using the following command:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 18

https://github.com/citrix/citrix-k8s-ingress-controller/tree/master/deployment/baremetal
https://github.com/citrix/citrix-k8s-ingress-controller/tree/master/deployment
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html#dual-tier-topology
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html#single-tier-topology
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html#dual-tier-topology
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html#cloud-topology
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/citrix-k8s-ingress-controller.yaml
https://docs.citrix.com/en-us/citrix-adc/12-1/getting-started-with-citrix-adc.html
https://docs.citrix.com/en-us/citrix-adc/12-1/getting-started-with-citrix-adc/configure-ha-first-time.html
https://docs.citrix.com/en-us/citrix-adc/12-1/clustering.html
https://docs.citrix.com/en-us/citrix-adc/12-1/networking/ip-addressing.html
https://docs.citrix.com/en-us/citrix-adc/12-1/networking/ip-addressing.html
https://docs.citrix.com/en-us/citrix-adc/12-1/clustering/cluster-overview/ip-addressing.html

NetScaler ingress controller

1 kubectl create secret generic nslogin --from-literal=username=<
username> --from-literal=password=<password>

Create System User Account for NetScaler Ingress Controller in NetScaler NetScaler Ingress
Controller configures the NetScaler appliance (MPX or VPX) using a system user account of the
NetScaler. The system user account should have certain privileges so that the NetScaler Ingress
Controller has permission to configure the following on the NetScaler:

• Add, Delete, or View Content Switching (CS) virtual server
• Configure CS policies and actions
• Configure Load Balancing (LB) virtual server
• Configure Service groups
• Cofigure SSL certkeys
• Configure routes
• Configure user monitors
• Add system file (for uploading SSL certkeys from Kubernetes)
• Configure Virtual IP address (VIP)
• Check the status of the NetScaler appliance

To create the system user account, perform the following:

1. Log on to the NetScaler appliance. Perform the following:

a) Use an SSH client, such as PuTTy, to open an SSH connection to the NetScaler appliance.

b) Log on to the appliance by using the administrator credentials.

2. Create the system user account using the following command:

1 add system user <username> <password>

For example:

1 add system user cic mypassword

3. Create a policy to provide required permissions to the system user account. Use the following
command:

1 add cmdpolicy cic-policy ALLOW '^\(\?!shell)\(\?!sftp)\(\?!scp)
\(\?!batch)\(\?!source)\(\?!.*superuser)\(\?!.*nsroot)\(\?!
install)\(\?!show\s+system\s+\(user|cmdPolicy|file))\(\?!\(set|
add|rm|create|export|kill)\s+system)\(\?!\(unbind|bind)\s+
system\s+\(user|group))\(\?!diff\s+ns\s+config)\(\?!\(set|unset
|add|rm|bind|unbind|switch)\s+ns\s+partition).*|\(^install\s
*\(wi|wf))|\(^\S+\s+system\s+file)^\(\?!shell)\(\?!sftp)\(\?!
scp)\(\?!batch)\(\?!source)\(\?!.*superuser)\(\?!.*nsroot)

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 19

NetScaler ingress controller

\(\?!install)\(\?!show\s+system\s+\(user|cmdPolicy|file))
\(\?!\(set|add|rm|create|export|kill)\s+system)\(\?!\(unbind|
bind)\s+system\s+\(user|group))\(\?!diff\s+ns\s+config)\(\?!\(
set|unset|add|rm|bind|unbind|switch)\s+ns\s+partition).*|\(^
install\s*\(wi|wf))|\(^\S+\s+system\s+file)'

Note:

The system user account would have privileges based on the command policy that you
define.

The command policy mentioned in step 3 is similar to the built‑in sysAdmin command policy
with additional permission to upload files.

In the commandpolicy specification provided, special characterswhich need to be escaped are
already omitted to easily copy‑paste into the NetScaler command line.

For configuring the command policy from the NetScaler configuration wizard (GUI), use the fol‑
lowing command policy specification.

1 ^\(?!shell)\(?!sftp)\(?!scp)\(?!batch)\(?!source)\(?!.*superuser)
\(?!.*nsroot)\(?!install)\(?!show\s+system\s+\(user|cmdPolicy|
file))\(?!\(set|add|rm|create|export|kill)\s+system)\(?!\(
unbind|bind)\s+system\s+\(user|group))\(?!diff\s+ns\s+config)
\(?!\(set|unset|add|rm|bind|unbind|switch)\s+ns\s+partition)
.*|\(^install\s*\(wi|wf))|\(^\S+\s+system\s+file)^\(?!shell)
\(?!sftp)\(?!scp)\(?!batch)\(?!source)\(?!.*superuser)\(?!.*
nsroot)\(?!install)\(?!show\s+system\s+\(user|cmdPolicy|file))
\(?!\(set|add|rm|create|export|kill)\s+system)\(?!\(unbind|bind
)\s+system\s+\(user|group))\(?!diff\s+ns\s+config)\(?!\(set|
unset|add|rm|bind|unbind|switch)\s+ns\s+partition).*|\(^
install\s*\(wi|wf))|\(^\S+\s+system\s+file)

4. Bind the policy to the system user account using the following command:

1 bind system user cic cic-policy 0

Deploy NetScaler Ingress Controller as a pod

Perform the following:

1. Download the citrix‑k8s‑ingress‑controller.yaml using the following command:

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-
controller/master/deployment/baremetal/citrix-k8s-ingress-
controller.yaml

2. Edit thecitrix‑k8s‑ingress‑controller.yaml file andenter thevalues for the followingenvironmen‑
tal variables:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 20

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/citrix-k8s-ingress-controller.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/citrix-k8s-ingress-controller.yaml

NetScaler ingress controller

Environment Variable Mandatory or Optional Description

NS_IP Mandatory The IP address of the NetScaler
appliance. For more details,
see Prerequisites.

NS_USER and NS_PASSWORD Mandatory The user name and password
of the NetScaler VPX or MPX
appliance used as the Ingress
device. For more details, see
Prerequisites.

EULA Mandatory The End User License
Agreement. Specify the value
as Yes.

Kubernetes_url Optional The kube‑apiserver url that
NetScaler Ingress Controller
uses to register the events. If
the value is not specified,
NetScaler Ingress Controller
uses the internal
kube‑apiserver IP address.

LOGLEVEL Optional The log levels to control the
logs generated by NetScaler
Ingress Controller. By default,
the value is set to DEBUG. The
supported values are:
CRITICAL, ERROR, WARNING,
INFO, and DEBUG. For more
information, see Log Levels

NS_PROTOCOL and NS_PORT Optional Defines the protocol and port
that is used by the NetScaler
Ingress Controller to
communicate with NetScaler.
By default, NetScaler Ingress
Controller uses HTTP on port
80. You can also use HTTPS on
port 443.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 21

https://kubernetes.io/docs/tasks/access-application-cluster/access-cluster/#accessing-the-api-from-a-pod
https://kubernetes.io/docs/tasks/access-application-cluster/access-cluster/#accessing-the-api-from-a-pod
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/log-levels.html

NetScaler ingress controller

Environment Variable Mandatory or Optional Description

ingress‑classes Optional If multiple ingress load
balancers are used to load
balance different ingress
resources. You can use this
environment variable to specify
the NetScaler Ingress
Controller to configure
NetScaler associated with
specific ingress class. For
information on Ingress classes,
see Ingress class support

NS_VIP Optional NetScaler Ingress Controller
uses the IP address provided in
this environment variable to
configure a virtual IP address to
the NetScaler that receives
Ingress traffic. Note: NS_VIP
acts as a fallback when the
frontend‑ip annotation is not
provided in Ingress yaml. Not
supported for Type
Loadbalancer service.

NS_APPS_NAME_PREFIX Optional By default, the NetScaler
Ingress Controller adds “k8s”
as prefix to the NetScaler
entities such as, content
switching (CS) virtual server,
load balancing (LB) virtual
server and so on. You can now
customize the prefix using the
NS_APPS_NAME_PREFIX
environment variable in the
NetScaler Ingress Controller
deployment YAML file. You can
use alphanumeric characters
for the prefix and the prefix
length should not exceed 8
characters.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 22

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/ingress-classes.html
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/configure/annotations.md

NetScaler ingress controller

Environment Variable Mandatory or Optional Description

NAMESPACE Optional While running a NetScaler
Ingress Controller with Role
based RBAC, youmust provide
the namespace which you want
to listen or get events. This
namespace must be same as
the one used for creating the
service account. Using the
service account, the NetScaler
Ingress Controller can listen on
a namespace. You can use the
NAMESPACE environment
variable to specify the
namespace. For more
information, see [Deploy the
NetScaler Ingress Controller for
a namespace(#deploy‑the‑
citrix‑ingress‑controller‑for‑a‑
namespace).

POD_IPS_FOR_SERVICEGROUP_MEMBERSOptional By default, while configuring
services of type LoadBalancer
and NodePort on an external
tier‑1 NetScaler the NetScaler
Ingress Controller adds NodeIP
and NodePort as service group
members. If this variable is set
as True, pod IP address and
port are added instead of
NodeIP and NodePort as
service groupmembers.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 23

NetScaler ingress controller

Environment Variable Mandatory or Optional Description

IGNORE_NODE_EXTERNAL_IP Optional While adding NodeIP for
services of type LoadBalancer
or NodePort on an external
tier‑1 NetScaler, the NetScaler
Ingress Controller prioritizes an
external IP address over an
internal IP address. When you
want to prefer an internal IP
address over an external IP
address for NodeIP, you can set
this variable to True.

NS_DNS_NAMESERVER Optional Enables adding DNS
nameservers on NetScaler VPX.

NS_CONFIG_DNS_REC Optional Enables adding DNS records on
NetScaler for Ingress resources.
This variable is configured at
the boot time and cannot be
changed at runtime. Possible
values are true or false. The
default value is false and you
need to set it as true to enable
the DNS server configuration.
When you set the value as ‘true’
, the corresponding command
add dns addrec <abc.
com 1.1.1.1> is executed
on NetScaler and an address
record (mapping of the domain
name to IP address) is created.
For more information, see
Create address records for a
domain name.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 24

https://docs.citrix.com/en-us/citrix-adc/current-release/dns/configure-dns-resource-records/create-address-records.html#:~:text=Add%20an%20Address%20record%20by%20using%20the%20GUI,and%20create%20an%20Address%20record
https://docs.citrix.com/en-us/citrix-adc/current-release/dns/configure-dns-resource-records/create-address-records.html#:~:text=Add%20an%20Address%20record%20by%20using%20the%20GUI,and%20create%20an%20Address%20record

NetScaler ingress controller

Environment Variable Mandatory or Optional Description

NS_SVC_LB_DNS_REC Optional Enables adding DNS records on
NetScaler for services of type
LoadBalancer. This variable is
configured at the boot time
and cannot be changed at
runtime. Possible values are
true or false. The default value
is false and you need to set it
as true to enable the DNS
server configuration.

SCOPE Optional Enables configuring the scope
of NetScaler Ingress Controller
as Role or ClusterRole
binding. You can set the value
of the SCOPE environment
variable as local or
cluster. When you set this
variable as local, NetScaler
Ingress Controller is deployed
with Role binding that has
limited privileges. You can use
this option when you want to
deploy NetScaler Ingress
Controller with minimal
privileges for a particular
namespace with Role binding.
By default, the value of SCOPE
is set as cluster and
NetScaler Ingress Controller is
deployed with ClusterRole
binding.

3. Once youupdate the environment variables, save the YAML file anddeploy it using the following
command:

1 kubectl create -f citrix-k8s-ingress-controller.yaml

4. Verify if NetScaler Ingress Controller is deployed successfully using the following command:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 25

NetScaler ingress controller

1 kubectl get pods --all-namespaces

Deploy NetScaler Ingress Controller as a sidecar with NetScaler CPX

Use the citrix‑k8s‑cpx‑ingress.yaml file to deploy a NetScaler CPXwith NetScaler Ingress Controller as
a sidecar. The YAML file deploys a NetScaler CPX instance that is used for load balancing the North‑
South traffic to the microservices in your Kubernetes cluster.

Perform the following:

1. Download the citrix‑k8s‑cpx‑ingress.yaml using the following command:

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-
controller/master/deployment/baremetal/citrix-k8s-cpx-ingress.
yml

2. Deploy the citrix-k8s-cpx-ingress.yaml file using the following command:

1 kubectl create -f citrix-k8s-cpx-ingress.yaml

3. Verify if NetScaler Ingress Controller is deployed successfully using the following command:

1 kubectl get pods --all-namespaces

Deploy NetScaler CPXwith the NetScaler Ingress Controller as sidecar without the default
credentials

Earlier, when you deploy NetScaler CPX with the NetScaler Ingress Controller as a sidecar without
specifying the login credentials, the NetScaler Ingress Controller considers nsroot/nsroot as the
default credentials.

With the latest NetScaler CPX versions (NetScaler CPX 13.0.64.35 and later), the default credentials are
removed. So, when you deploy the NetScaler Ingress Controller as a sidecar with the latest versions
of NetScaler CPX, theNetScaler Ingress Controller can get the credentials fromNetScaler CPX through
the /var/deviceinfo/random_id file in the NetScaler CPX. This file can be shared between the
NetScaler CPX and the NetScaler Ingress Controller through the volumemount.

Depending on whether you are using the latest NetScaler CPX version or an older version, you need
to choose one of the following deployment YAML files. For older versions of NetScaler CPX, you need
to specify the credentials in the YAML file.

• For NetScaler CPX 13.0.64.35 and later versions, use the following YAML:

citrix‑k8s‑cpx‑ingress.yml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 26

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/citrix-k8s-cpx-ingress.yml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/citrix-k8s-cpx-ingress.yml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/citrix-k8s-cpx-ingress.yml

NetScaler ingress controller

As provided in the YAML, the following is a snippet of the volumemount configuration required in the
YAML file both for the NetScaler Ingress Controller and NetScaler CPX:

1 volumeMounts:
2 - mountPath: /var/deviceinfo
3 name: shared-data

Following is a snippet of the shared volume configuration common for the NetScaler CPX and the
NetScaler Ingress Controller.

1 volumes:
2 - name: shared-data
3 emptyDir: {
4 }

• For earlier NetScaler CPX versions (versions earlier than 13.0.64.35), use the following YAML:

cpx‑ingress‑previous.yaml

Following is a snippet of the credential section in the NetScaler Ingress Controller:

1 - name: "NS_USER"
2 valueFrom:
3 secretKeyRef:
4 name: nslogin
5 key: username
6 - name: "NS_PASSWORD"
7 valueFrom:
8 secretKeyRef:
9 name: nslogin

10 key: password

Deploy the NetScaler Ingress Controller for a namespace

In Kubernetes, a role consists of rules that define a set of permissions that can be performed on a set
of resources. In an RBAC enabled Kubernetes environment, you can create two kinds of roles based
on the scope you need:

• Role
• ClusterRole

A role can be defined within a namespace with a Role, or cluster‑wide with a ClusterRole. You
can create a Role to grant access to resources within a single namespace.

In Kubernetes, you can create multiple virtual clusters on the same physical cluster. Namespaces
provides a way to divide cluster resources between multiple users and useful in environments with
many users spread across multiple teams, or projects.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 27

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/yaml-cpx-crediential-changes/cpx-cic-previous.yaml

NetScaler ingress controller

By default, the NetScaler Ingress Controller monitors Ingress resources across all namespaces in the
Kubernetes cluster. If multiple teams want to manage the same NetScaler, they can deploy a Role
basedNetScaler Ingress Controller tomonitor only ingress resources belongs to a specific namespace.
This namespacemust be same as the namespace you have provided for creating the service account.
You need to create a Role and bind the role to the service account for the NetScaler Ingress Controller.
In this case, theNetScaler Ingress Controller listens only for events from the specified namespace and
then configure the NetScaler accordingly.

You can use the SCOPE environment variable to configure the scope of NetScaler Ingress Controller
as Role or ClusterRole binding. You can set the value of the SCOPE environment variable as
local or cluster. When you set this variable as local, NetScaler Ingress Controller is deployed
withminimal privileges for aparticular namespacewithRolebinding. Bydefault, the valueofSCOPE
is set as cluster and NetScaler Ingress Controller is deployed with the ClusterRole binding.

The following example shows a sample YAML file which defines a Role and RoleBinding for deploying
a NetScaler Ingress Controller for a specific namespace.

1 kind: Role
2 apiVersion: rbac.authorization.k8s.io/v1
3 metadata:
4 name: citrix
5 rules:
6 - apiGroups: [""]
7 resources:
8 [
9 "endpoints",

10 "pods",
11 "secrets",
12 "nodes",
13 "routes",
14 "namespaces",
15 "configmaps",
16 "services",
17]
18 verbs: ["get", "list", "watch"]
19 - apiGroups: [""]
20 resources: ["services/status"]
21 verbs: ["patch"]
22 - apiGroups: [""]
23 resources: ["events"]
24 verbs: ["create"]
25 - apiGroups: ["extensions"]
26 resources: ["ingresses", "ingresses/status"]
27 verbs: ["get", "list", "watch", "patch"]
28 - apiGroups: ["networking.k8s.io"]
29 resources: ["ingresses", "ingresses/status", "ingressclasses"]
30 verbs: ["get", "list", "watch", "patch"]
31 - apiGroups: ["apiextensions.k8s.io"]
32 resources: ["customresourcedefinitions"]
33 verbs: ["get", "list", "watch"]

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 28

NetScaler ingress controller

34 - apiGroups: ["apps"]
35 resources: ["deployments"]
36 verbs: ["get", "list", "watch"]
37 - apiGroups: ["citrix.com"]
38 resources:
39 [
40 "rewritepolicies",
41 "authpolicies",
42 "ratelimits",
43 "listeners",
44 "httproutes",
45 "continuousdeployments",
46 "apigatewaypolicies",
47 "wafs",
48 "bots",
49 "corspolicies",
50 "appqoepolicies",
51]
52 verbs: ["get", "list", "watch", "create", "delete", "patch"]
53 - apiGroups: ["citrix.com"]
54 resources:
55 [
56 "rewritepolicies/status",
57 "continuousdeployments/status",
58 "authpolicies/status",
59 "ratelimits/status",
60 "listeners/status",
61 "httproutes/status",
62 "wafs/status",
63 "apigatewaypolicies/status",
64 "bots/status",
65 "corspolicies/status",
66 "appqoepolicies/status",
67]
68 verbs: ["patch"]
69 - apiGroups: ["citrix.com"]
70 resources: ["vips"]
71 verbs: ["get", "list", "watch", "create", "delete"]
72 - apiGroups: ["route.openshift.io"]
73 resources: ["routes"]
74 verbs: ["get", "list", "watch"]
75 - apiGroups: ["crd.projectcalico.org"]
76 resources: ["ipamblocks"]
77 verbs: ["get", "list", "watch"]
78 ---
79 kind: RoleBinding
80 apiVersion: rbac.authorization.k8s.io/v1
81 metadata:
82 name: citrix
83 roleRef:
84 apiGroup: rbac.authorization.k8s.io
85 kind: Role
86 name: citrix

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 29

NetScaler ingress controller

87 subjects:
88 - kind: ServiceAccount
89 name: citrix
90 namespace: test
91 <!--NeedCopy-->

Restrictions

When the NetScaler Ingress Controller runs with a Role (scope with in a namespace), the following
functionalities are not supported as they require global scope.

• configuring static routes
• watching on all namespaces
• CRDs

Deploy the NetScaler Ingress Controller using Helm charts

December 31, 2023

You can deploy the NetScaler Ingress Controller in the followingmodes on your baremetal and cloud
deployments:

• As a standalone pod in the Kubernetes cluster. Use this mode if you are controlling NetScalers
(NetScaler MPX or NetScaler VPX) outside the cluster. For example, with dual‑tier topologies, or
single‑tier topology where the single tier is a NetScaler MPX or VPX.

• As a sidecar (in the same pod) with NetScaler CPX in the Kubernetes cluster. The sidecar con‑
troller is only responsible for the associated NetScaler CPX within the same pod. This mode is
used in dual‑tier or cloud topologies.

The helm charts for the NetScaler Ingress Controller are available on Artifact Hub.

When you deploy using the Helm charts, you can use a values.yaml file to specify the values of
the configurable parameters instead of providing each parameter as an argument. For ease of use,
NetScaler provides the NetScaler deployment builder which is a GUI for generating the values.
yaml file for NetScaler cloud native deployments.

Deploy the NetScaler Ingress Controller as a standalone pod in the Kubernetes cluster

Use the netscaler‑ingress‑controller chart to run the NetScaler Ingress Controller as a pod in your Ku‑
bernetes cluster. The chart deploys the NetScaler Ingress Controller as a pod in your Kubernetes clus‑
ter and configures the NetScaler VPX or MPX ingress device.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 30

https://github.com/citrix/citrix-k8s-ingress-controller/tree/master/deployment/baremetal
https://github.com/citrix/citrix-k8s-ingress-controller/tree/master/deployment
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html#dual-tier-topology
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html#single-tier-topology
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html#dual-tier-topology
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html#cloud-topology
https://artifacthub.io/
https://netscaler.github.io/netscaler-k8s-ingress-controller/
https://artifacthub.io/packages/helm/netscaler/netscaler-ingress-controller

NetScaler ingress controller

Prerequisites

• Determine theNS_IP address neededby the controller to communicatewith the appliance. The
IP address might be anyone of the following depending on the type of NetScaler deployment:

– (Standalone appliances) NSIP ‑ Themanagement IP address of a standalone NetScaler ap‑
pliance. For more information, see IP Addressing in NetScaler.

– (Appliances inHigh Availabilitymode) SNIP ‑ The subnet IP address. Formore information,
see IP Addressing in NetScaler.

– (Appliances in Clusteredmode) CLIP ‑ The clustermanagement IP (CLIP) address for a clus‑
tered NetScaler deployment. For more information, see IP addressing for a cluster.

• The user name and password of the NetScaler VPX or MPX appliance used as the Ingress de‑
vice. The NetScaler appliance needs to have a system user account (non‑default) with certain
privileges so that theNetScaler Ingress Controller can configure theNetScaler VPX orMPX appli‑
ance. For instructions to create the system user account on NetScaler, see Create System User
Account for NetScaler Ingress Controller in NetScaler.

You can directly pass the user name and password or use Kubernetes secrets. If you want to
use Kubernetes secrets, create a secret for the user name and password using the following
command:

1 kubectl create secret generic nslogin --from-literal=username=<
username> --from-literal=password=<password>

Create a system user account for the NetScaler Ingress Controller in NetScaler The NetScaler
Ingress Controller configures the NetScaler using a system user account of the NetScaler. The system
user account should have certain privileges so that the NetScaler Ingress Controller has permission
to configure the following on the NetScaler:

• Add, delete, or view content switching (CS) virtual server
• Configure CS policies and actions
• Configure Load Balancing (LB) virtual server
• Configure service groups
• Cofigure SSL certkeys
• Configure routes
• Configure user monitors
• Add system file (for uploading SSL certkeys from Kubernetes)
• Configure Virtual IP address (VIP)
• Check the status of the NetScaler appliance

To create the system user account, perform the following:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 31

https://docs.citrix.com/en-us/citrix-adc/12-1/networking/ip-addressing.html
https://docs.citrix.com/en-us/citrix-adc/12-1/networking/ip-addressing.html
https://docs.citrix.com/en-us/citrix-adc/12-1/clustering/cluster-overview/ip-addressing.html

NetScaler ingress controller

1. Log on to the NetScaler appliance. Perform the following:

a) Use an SSH client, such as PuTTy, to open an SSH connection to the NetScaler appliance.

b) Log on to the appliance by using the administrator credentials.

2. Create the system user account using the following command:

1 add system user <username> <password>

For example:

1 add system user cic mypassword

3. Create a policy to provide required permissions to the system user account. Use the following
command:

1 add cmdpolicy cic-policy ALLOW '^\(\?!shell)\(\?!sftp)\(\?!scp)
\(\?!batch)\(\?!source)\(\?!.*superuser)\(\?!.*nsroot)\(\?!
install)\(\?!show\s+system\s+\(user|cmdPolicy|file))\(\?!\(set|
add|rm|create|export|kill)\s+system)\(\?!\(unbind|bind)\s+
system\s+\(user|group))\(\?!diff\s+ns\s+config)\(\?!\(set|unset
|add|rm|bind|unbind|switch)\s+ns\s+partition).*|\(^install\s
*\(wi|wf))|\(^\S+\s+system\s+file)^\(\?!shell)\(\?!sftp)\(\?!
scp)\(\?!batch)\(\?!source)\(\?!.*superuser)\(\?!.*nsroot)
\(\?!install)\(\?!show\s+system\s+\(user|cmdPolicy|file))
\(\?!\(set|add|rm|create|export|kill)\s+system)\(\?!\(unbind|
bind)\s+system\s+\(user|group))\(\?!diff\s+ns\s+config)\(\?!\(
set|unset|add|rm|bind|unbind|switch)\s+ns\s+partition).*|\(^
install\s*\(wi|wf))|\(^\S+\s+system\s+file)'

Note: The system user account would have privileges based on the command policy that you
define.

The command policy mentioned in step 3 is similar to the built‑in sysAdmin command policy
with additional permission to upload files.

In the commandpolicy specification provided, special characterswhich need to be escaped are
already omitted to easily copy‑paste into the NetScaler command line.

For configuring the command policy from NetScaler configuration wizard (GUI), use the follow‑
ing command policy specification.

1 ^\(?!shell)\(?!sftp)\(?!scp)\(?!batch)\(?!source)\(?!.*superuser)
\(?!.*nsroot)\(?!install)\(?!show\s+system\s+\(user|cmdPolicy|
file))\(?!\(set|add|rm|create|export|kill)\s+system)\(?!\(
unbind|bind)\s+system\s+\(user|group))\(?!diff\s+ns\s+config)
\(?!\(set|unset|add|rm|bind|unbind|switch)\s+ns\s+partition)
.*|\(^install\s*\(wi|wf))|\(^\S+\s+system\s+file)^\(?!shell)
\(?!sftp)\(?!scp)\(?!batch)\(?!source)\(?!.*superuser)\(?!.*
nsroot)\(?!install)\(?!show\s+system\s+\(user|cmdPolicy|file))
\(?!\(set|add|rm|create|export|kill)\s+system)\(?!\(unbind|bind

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 32

NetScaler ingress controller

)\s+system\s+\(user|group))\(?!diff\s+ns\s+config)\(?!\(set|
unset|add|rm|bind|unbind|switch)\s+ns\s+partition).*|\(^
install\s*\(wi|wf))|\(^\S+\s+system\s+file)

4. Bind the policy to the system user account using the following command:

1 bind system user cic cic-policy 0

To deploy the NetScaler Ingress Controller as a standalone pod:

To deploy the NetScaler Ingress Controller as standalone pod, follow the instructions provided in the
NetScaler Ingress Controller Artifact Hub.

Deploy the NetScaler Ingress Controller as a sidecar with NetScaler CPX in the
Kubernetes cluster

Use the citrix‑cpx‑with‑ingress‑controller chart to deploy a NetScaler CPXwith NetScaler Ingress Con‑
troller as a sidecar. The chart deploys a NetScaler CPX instance that is used for load balancing the
North‑South traffic to the microservices in your Kubernetes cluster. The sidecar NetScaler Ingress
Controller configures the NetScaler CPX.

To deploy NetScaler CPXwith the NetScaler Ingress Controller as a sidecar, follow the instruction pro‑
vided in the NetScaler Ingress Controller Helm Hub.

Deploy NetScaler Ingress Controller using kops

December 31, 2023

Kops (Kubernetes Operations) is a set of tools for creating andmaintaining Kubernetes clusters in the
cloud. Using kops, you can also deploy and manage cluster add‑ons which extend the functionality
of Kubernetes. NetScaler provides a kops add‑on for deploying NetScaler Ingress Controller.

Deploy NetScaler Ingress Controller using kops during cluster creation

Perform the following steps to deploy NetScaler Ingress Controller using kops while creating a clus‑
ter.

1. Edit the cluster YAMLmanifest before creating the cluster.

1 kops edit cluster <cluster-name>

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 33

https://artifacthub.io/packages/helm/netscaler/netscaler-ingress-controller
https://artifacthub.io/packages/helm/netscaler/netscaler-cpx-with-ingress-controller
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://artifacthub.io/packages/helm/netscaler/netscaler-cpx-with-ingress-controller
https://github.com/kubernetes/kops
https://github.com/kubernetes/kops/tree/master/addons/ingress-citrix

NetScaler ingress controller

2. Add the NetScaler Ingress Controller add‑on specification to the cluster YAML manifest in the
section - spec.addons.

1 addons:
2 - manifest: ingress-citrix

For more information on how to enable an add‑on during Kubernetes cluster creation, see kops ad‑
don.

Deploy NetScaler Ingress Controller using kops after cluster creation

Youcanuse thekubectl command todeploy theNetScaler IngressController add‑onwithkopsafter
creating the cluster.

1 kubectl create secret generic nslogin --from-literal=username='
nsroot' --from-literal=password=nsroot

2 kubectl create -f https://raw.githubusercontent.com/kubernetes/kops
/master/addons/ingress-citrix/v1.1.1.yaml

Deploy the NetScaler Ingress Controller on a Ranchermanaged
Kubernetes cluster

December 31, 2023

Rancher is anopen‑sourceplatformwith an intuitive user interface that helps you to easily deploy and
manageKubernetes clusters. Rancher supports Kubernetes clusters on any infrastructure beon cloud
or on‑premises deployment. Rancher also allows you to centrally manage multiple clusters running
across your organization.

The NetScaler Ingress Controller is built around the Kubernetes Ingress and it can automatically
configure one or more NetScalers based on the Ingress resource configuration. You can deploy the
NetScaler Ingress Controller in a Rancher managed Kubernetes cluster to extend the advanced load
balancing and traffic management capabilities of NetScaler to your cluster.

Prerequisites

Youmust create a Kubernetes cluster and import the cluster on the Rancher platform.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 34

https://github.com/kubernetes/kops/blob/master/docs/addons.md#installing-kubernetes-addons
https://github.com/kubernetes/kops/blob/master/docs/addons.md#installing-kubernetes-addons
https://rancher.com/
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/index.html
https://kubernetes.io/docs/concepts/services-networking/ingress/

NetScaler ingress controller

Deployment options

You can either deploy NetScaler CPXs as pods inside the cluster or deploy a NetScaler MPX or VPX
appliance outside the Kubernetes cluster.

Basedonhowyouwant touseNetScaler, thereare twoways todeploy theNetScaler IngressController
in a Kubernetes cluster on the Rancher platform:

• As a sidecar container alongsideNetScaler CPX in the samepod: In thismode, NetScaler Ingress
Controller configures the NetScaler CPX.

• As a standalone pod in the Kubernetes cluster: In thismode, you can control the NetScaler MPX
or VPX appliance deployed outside the cluster.

Deploy the NetScaler Ingress Controller as a sidecar with NetScaler CPX

In this deployment, you can use the NetScaler CPX instance for load balancing the North‑South traf‑
fic to microservices in your Kubernetes cluster. NetScaler Ingress Controller is deployed as a sidecar
alongside the NetScaler CPX container in the same pod using the citrix-k8s-cpx-ingress.
yaml file.

Perform the following steps to deploy theNetScaler Ingress Controller as a sidecarwithNetScaler CPX
on the Rancher platform.

1. Download the citrix-k8s-cpx-ingress.yaml file using the following command.

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-
controller/master/deployment/baremetal/citrix-k8s-cpx-ingress.
yml

2. On the Rancher GUI cluster page, select Clusters from Global view.

3. From the Clusters page, open the cluster that you want to access.

4. Click Launch kubectl to open a terminal for interacting with your Kubernetes cluster.

5. Create a file named cpx.yaml in the launched terminal and then copy the contents of the
modified citrix-k8s-cpx-ingress.yaml file to the cpx.yaml file.

6. Deploy the newly created YAML file using the following command.

1 kubectl create -f cpx.yaml

7. Verify if NetScaler Ingress Controller is deployed successfully using the following command.

1 kubectl get pods --all-namespaces

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 35

NetScaler ingress controller

Deploy the NetScaler Ingress Controller as a standalone pod

In thisdeployment, NetScaler IngressControllerwhich runsasa stand‑alonepodallowsyou tocontrol
the NetScaler MPX, or VPX appliance from the Kubernetes cluster. You can use the citrix-k8s-
ingress-controller.yaml file for this deployment.

Before you begin: Ensure that you complete all the prerequisites required for deploying the
NetScaler Ingress Controller.

To deploy the NetScaler Ingress Controller as a standalone pod on the Rancher platform:**

1. Download the citrix-k8s-ingress-controller.yaml file using the following com‑
mand:

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-
controller/master/deployment/baremetal/citrix-k8s-ingress-
controller.yaml

2. Edit the citrix-k8s-ingress-controller.yaml file and enter the values of the envi‑
ronment variable using the information in Deploy NetScaler Ingress Controller as a pod.

Note: To update the Status.LoadBalancer.Ingress field of the Ingress resources man‑
aged by the NetScaler Ingress Controller with the allocated IP addresses, you must specify the
command line argument --update-ingress-status yes when you start the NetScaler
Ingress Controller. For more information, see Updating the Ingress status for the Ingress re‑
sources with the specified IP address.

3. On the Rancher GUI cluster page, select Clusters from Global view.

4. From the Clusters page, open the cluster that you want to access.

5. Click Launch kubectl to open a terminal for interacting with your Kubernetes cluster.

6. Create a file namedcic.yaml in the launched terminal and then copy the content of themod‑
ified citrix-k8s-ingress-controller.yaml file to cic.yaml.

7. Deploy the cic.yaml file using the following command.

1 kubectl create -f cic.yaml

8. Verify if the NetScaler Ingress Controller is deployed successfully using the following command.

1 kubectl get pods --all-namespaces

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 36

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#prerequisites
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#deploy-citrix-ingress-controller-as-a-pod
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/ingress-classes.html#updating-the-ingress-status-for-the-ingress-resources-with-the-specified-ip-address
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/ingress-classes.html#updating-the-ingress-status-for-the-ingress-resources-with-the-specified-ip-address

NetScaler ingress controller

Deploy the NetScaler Ingress Controller on a PKSmanaged Kubernetes
cluster

December 31, 2023

Pivotal Container Service (PKS) enables operators to provision, operate, and manage enterprise‑
grade Kubernetes clusters using BOSH and Pivotal Ops Manager.

The NetScaler Ingress Controller is built around the Kubernetes Ingress and it can automatically
configure one or more NetScalers based on the Ingress resource configuration. You can deploy the
NetScaler Ingress Controller in a PKS managed Kubernetes cluster to extend the advanced load
balancing and traffic management capabilities of NetScaler to your cluster.

Prerequisites

Before creating the Kubernetes cluster using PKS. Make sure that for all the plans available on the
Pivotal Ops Manager, the following options are set:

• Enable Privileged Containers
• Disable DenyEscalatingExec

For detailed information on PKS Framework and other documentation, see Pivotal Container Service
documentation.

After you have set the required options, create a Kubernetes cluster using the PKS CLI framework and
set the context for the created cluster.

Deployment options

You can either deploy NetScaler CPXs as pods inside the cluster or deploy a NetScaler MPX or VPX
appliance outside the Kubernetes cluster.

Basedonhowyouwant touseNetScaler, thereare twoways todeploy theNetScaler IngressController
in a Kubernetes cluster on the PKS:

• As a sidecar container alongsideNetScaler CPX in the samepod: In thismode, NetScaler Ingress
Controller configures the NetScaler CPX.

• As a standalone pod in the Kubernetes cluster: In thismode, you can control the NetScaler MPX
or VPX appliance deployed outside the cluster.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 37

https://pivotal.io/platform/pivotal-container-service
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/index.html
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://docs.pivotal.io/pks/1-3/index.html
https://docs.pivotal.io/pks/1-3/index.html

NetScaler ingress controller

Deploy NetScaler Ingress Controller as a pod

Follow the instruction provided in topic: Deploy NetScaler Ingress Controller as a standalone pod in
the Kubernetes cluster for NetScaler MPX or VPX appliances.

Deploy NetScaler Ingress Controller as a sidecar with NetScaler CPX

Follow the instruction provided in topic: Deploy NetScaler Ingress Controller as a sidecar with
NetScaler CPX.

Network Configuration

For seamless functioning of the services deployed in the Kubernetes cluster, it is essential that Ingress
NetScaler device should be able to reach the underlying overlay network overwhichPods are running.
TheNetScaler Ingress Controller allows you to configure network connectivity between the NetScaler
device and service using Static Routing, node controller, services of typeNodePort, or services of type
LoadBalancer.

Deploy NetScaler‑Integrated Canary Deployment Solution

December 31, 2023

Canary release is a technique to reduce the risk of introducing a new software version in production
by first rolling out the change to a small subset of users. After the user validation, the application is
rolled out to the larger set of users.

NetScaler provides the following options for canary deployment using the NetScaler Ingress Con‑
troller.

• Deploy canary using the Canary CRD
• Deploy canary using Ingress annotations

In a deployment using the Canary CRD, canary configuration is applied using a Kubernetes CRD. Citrix
also supports a much simpler option for canary deployment using Ingress annotations.

Deploy canary using the Canary CRD

This section provides information about how to performCanary deployment using the Canary CRD.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 38

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#deploy-citrix-ingress-controller-as-a-standalone-pod-in-the-kubernetes-cluster-for-citrix-adc-mpx-or-vpx-appliances
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#deploy-citrix-ingress-controller-as-a-standalone-pod-in-the-kubernetes-cluster-for-citrix-adc-mpx-or-vpx-appliances
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#deploy-citrix-ingress-controller-as-a-sidecar-with-citrix-adc-cpx
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#deploy-citrix-ingress-controller-as-a-sidecar-with-citrix-adc-cpx
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/staticrouting.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/node-controller.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/nodeport.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html

NetScaler ingress controller

NetScaler‑IntegratedCanaryDeployment solution stitches together all components of continuous de‑
livery (CD) and makes canary deployment easier for the application developers. This solution uses
Spinnaker as the continuous delivery platformandKayenta as the Spinnaker plug‑in for canary analy‑
sis. Kayenta is an open‑source canary analysis service that fetches user‑configuredmetrics from their
sources, runs statistical tests, and provides an aggregate score for the canary. The score from statisti‑
cal tests and counters along with the success criteria is used to promote or fail the canary.

NetScaler comeswitha richapplication‑centric configurationmoduleandprovides completevisibility
to application traffic and health of application instances. The capabilities of NetScaler to generate
accurate performance statistics can be leveraged for Canary analysis to take better decisions about
the Canary deployment. In this solution, NetScaler is integratedwith the Spinnaker platformand acts
as a source for providing accurate metrics for analyzing Canary deployment using Kayenta.

NetScaler Metrics Exporter exports the application performance metrics to the open‑source monitor‑
ing system Prometheus and you can configure Kayenta to fetch the metrics for canary deployment.
Traffic distribution to the canary version can be regulated using the NetScaler policy infrastructure. If
youwant to divert a specific kind of traffic fromproduction to baseline and canary, you can usematch
expressions to redirect traffic to baseline and canary leveraging the rich NetScaler policy infrastruc‑
ture.

For example, you can divert traffic from production to canary and baseline using the match expres‑
sion HTTP.REQ.URL.CONTAINS(“citrix india”). The traffic whichmatches the expression is diverted to
canary and baseline and the remaining traffic goes to production.

The components which are part of the Citrix‑Integrated Canary Deployment Solution and their func‑
tionalities are explained as follows:

• GitHub: GitHub offers all the distributed version control and source code management func‑
tionalities provided by Git and has extra features.
GitHub has many utilities available for integrating with other tools that form part of your CI/CD
pipeline like Docker Hub and Spinnaker.

• Docker Hub: Docker Hub is a cloud‑based repository service provided by Docker for sharing
and finding Docker images. You can integrate GitHub with Docker Hub to automatically build
images from the source code in GitHub and push the built image to Docker Hub.

• Spinnaker: Spinnaker is an open source,multi‑cloud continuous delivery platform for releasing
software changes with high velocity and reliance. You can use Spinnaker’s application deploy‑
ment features to construct and manage continuous delivery workflows. The key deployment
management construct in Spinnaker is known as a pipeline. Pipelines in Spinnaker consist of
a sequence of actions, known as stages. Spinnaker provides various stages for deploying an
application, running a script, performing canary analysis, removing the deployment, and so on.
You can integrate Spinnaker with many third‑party tools to support many extra functionalities.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 39

https://www.spinnaker.io/
https://github.com/spinnaker/kayenta
https://github.com/citrix/citrix-adc-metrics-exporter
https://github.com/
https://hub.docker.com/
https://www.spinnaker.io/

NetScaler ingress controller

• Prometheus: Prometheus is an open‑source systems monitoring and alerting toolkit.
Prometheus is a monitoring system which can maintain a huge amount of data in a time
series database. NetScaler Metrics exposes the performance metrics to Spinnaker through
Prometheus.

• Jenkins: Jenkins is an open source automation serverwhich helps to automate all sorts of tasks
related tobuilding, testing, anddeliveringordeploying software. Jenkinsalso supports running
custom scripts as part of your deployment cycle.

• NetScaler Ingress Controller NetScaler provides an Ingress Controller for NetScaler MPX (hard‑
ware), NetScaler VPX (virtualized), and NetScaler CPX (containerized) for bare metal and cloud
deployments. TheNetScaler Ingress Controller is built aroundKubernetes Ingress andautomat‑
ically configures one or more NetScalers based on the Ingress resource configuration.

Following NetScaler software versions are required for Citrix‑Integrated Canary Deployment
Solution:

• NetScaler Ingress Controller build/version: quay.io/citrix/citrix-k8s-ingress-
controller:1.29.5.

• NetScaler CPX version: quay.io/citrix/citrix-k8s-cpx-ingress:13.0-83.27.
• NetScalerMetricsExporter version: quay.io/citrix/netscaler-metrics-exporter
:1.4.0.

Workflow of a Spinnaker pipeline for NetScaler‑Integrated Canary Deployment Solution

The following diagram explains the workflow of a Spinnaker pipeline for NetScaler‑Integrated Canary
Deployment Solution.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 40

https://prometheus.io/
https://jenkins.io/
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/index.html

NetScaler ingress controller

The following steps explain the workflow specified in the diagram.

1. Developersmaintain the source code inGitHub,make changeswhenever required, and commit
the changes to GitHub.

2. A webhook is configured in GitHub to listen for the source code changes. Whenever the source
code is checked in to GitHub, the webhook is triggered and informs Docker Hub to build the
imagewith the new source code. Once the docker image is created, a separate webhook config‑
ured in Docker Hub triggers a Spinnaker pipeline.

3. Once the Spinnaker pipeline is triggered, canary and baseline versions of the image are de‑
ployed.

4. Once the canary and baseline versions are deployed, some percentage of traffic from produc‑
tion is diverted to the canary and baseline versions. NetScaler collects the performance sta‑
tistics and exports the statistics to Prometheus with the help of NetScaler Metrics Exporter.
Prometheus feeds these statistics to Kayenta for canary analysis.

5. Kayenta performs a canary analysis based on the performance statistics and generates a score.
Based on the score, the canary deployment is termed as success or failure and the image is
rolled out or rolled back.

Deploy the NetScaler‑Integrated Canary Deployment Solution in Google Cloud Platform

This section contains information on setting up Spinnaker, how to create a Spinnaker pipeline, and a
sample canary deployment.

Deploy Spinnaker in Google Cloud Platform This topic contains information about deploying
Spinnaker and how to integrate plug‑ins with Spinnaker for canary deployment on Google Cloud
Platform(GCP).

Perform the following steps to deploy Spinnaker and integrate plug‑ins in GCP.

1. Set up the environment and create a GKE cluster using the following commands.

1 export GOOGLE_CLOUD_PROJECT=[PROJECT_ID]
2 gcloud config set project $GOOGLE_CLOUD_PROJECT
3 gcloud config set compute/zone us-central1-f
4 gcloud services enable container.googleapis.com
5 gcloud beta container clusters create kayenta-tutorial
6 --machine-type=n1-standard-2 --enable-stackdriver-kubernetes

2. Install the plug‑in for integrating Prometheus with Stackdriver using the following command.

1 kubectl apply --as=admin --as-group=system:masters -f \
2 https://storage.googleapis.com/stackdriver-prometheus-

documentation/rbac-setup.yml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 41

NetScaler ingress controller

3 curl -sS \"https://storage.googleapis.com/stackdriver-prometheus-
documentation/prometheus-service.yml\" |

4 \sed \"s/_stackdriver_project_id:.*/_stackdriver_project_id
: \$GOOGLE_CLOUD_PROJECT/\" |

5 \sed \"s/_kubernetes_cluster_name:.*/_kubernetes_cluster\
_name: kayenta-tutorial/\" |

6 \sed \"s/_kubernetes_location:.*/_kubernetes_location: us-
central1-f/\" |

7 \kubectl apply -f -

3. Deploy Spinnaker in the GKE cluster using the following steps.

a) Download the quick-install.yml file for Spinnaker from Spinnaker website.

b) Update the quick-install.yml file to integrate different components starting with
Docker Hub. To integrate Spinnaker with Docker Hub, update the values of address, user
name, password, email, and repository under ConfigMap in quick-install.yml file.

1 dockerRegistry:
2 enabled: true
3 accounts:
4 - name: my-docker-registry
5 requiredGroupMembership: []
6 providerVersion: V1
7 permissions: {
8 }
9

10 address: https://index.docker.io
11 username: <username>
12 password: <password>
13 email: <mail-id>
14 cacheIntervalSeconds: 30
15 clientTimeoutMillis: 60000
16 cacheThreads: 1
17 paginateSize: 100
18 sortTagsByDate: false
19 trackDigests: false
20 insecureRegistry: false
21 repositories:- <repository-name>
22 primaryAccount: my-docker-registry

c) (Optional) Perform the following steps to set up Jenkins.

1 sudo apt-get update
2 sudo apt-get upgrade
3 sudo apt-get install openjdk-8-jdk
4 wget -q -O - https://jenkins-ci.org/debian/jenkins-ci.org.key

|
5 sudo apt-key add -
6 sudo sh -c 'echo deb http://pkg.jenkins-ci.org/debian binary/

> /etc/apt/sources.list.d/jenkins.list'
7 sudo apt-get update
8 sudo apt-get install jenkins git

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 42

https://www.spinnaker.io/downloads/kubernetes/quick-install.yml

NetScaler ingress controller

9 sudo apt-get install software-properties-common python-
software-properties apt-transport-https

10 sudo add-apt-repository https://dl.bintray.com/spinnaker-
releases/debians

Note:

If Jenkins is installed in one of the nodes of Kubernetes, youmust update the firewall
rules for that node for public access.

d) Update the following values in the quick-install.yml file for integrating Jenkins
with Spinnaker.

1 data:igor.yml: |
2 enabled: true
3 skipLifeCycleManagement: false
4 ci:jenkins:
5 enabled: true
6 masters:
7 - name: master
8 address: <endpoint>
9 username: <username>

10 password: <password>

e) To set up Prometheus and Grafana, see the Prometheus and Grafana Integration section
in NetScaler Metrics Exporter and perform the steps.

f) To integrate Prometheus with Spinnaker, update the following values in the quick-
install.yml file.

1 data:
2 config: |
3 deploymentConfigurations:
4 canary:
5 enabled: true
6 serviceIntegrations:
7 - name: prometheus
8 enabled: true
9 accounts:

10 - name: my-prometheus
11 endpoint:
12 baseUrl: prometheus-endpoint
13 supportedTypes:
14 - METRICS_STORE
15 data:
16 config: |
17 deploymentConfigurations:
18 metricStores:
19 prometheus:
20 enabled: true
21 add_source_metalabels: true
22 stackdriver:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 43

https://grafana.com/
https://github.com/citrix/citrix-adc-metrics-exporter

NetScaler ingress controller

23 enabled: true
24 period: 30
25 enabled: true

g) To integrate Slack for notification with Spinnaker, update the following values in the
quick-install.yml file.

1 data:
2 config: |
3 deploymentConfigurations:
4 notifications:
5 slack:
6 enabled: true
7 botName: <BotName>
8 token: <token>

h) Once all the required components are integrated, deploy Spinnaker by performing the fol‑
lowing step.

1 kubectl apply -f quick-install.yaml

i) Verify the progress of the deployment using the following command. Once the deploy‑
ment is complete, this command outputs all the pods as Ready x/x.

1 watch kubectl -n spinnaker get pods

4. Once you deploy Spinnaker, you can test the deployment using the following steps:

a) Enable Spinnaker access by forwarding a local port to the deck component of Spinnaker
using the following command:

1 DECK_POD=$(kubectl -n spinnaker get pods -l \
2 cluster=spin-deck,app=spin \
3 -o=jsonpath='{
4 .items[0].metadata.name }
5 ')
6 kubectl -n spinnaker port-forward $DECK_POD 8080:9000 >/dev/

null &

b) To access Spinnaker, in the Cloud Shell, click theWeb Preview icon and select Preview
on port 8080.

Note:

You can access Spinnaker securely or viaHTTP. To expose Spinnaker securely, use the
spin‑ingress‑ssl.yaml file to deploy the Ingress.
Once theSpinnaker application ispublicly exposed, youcanuse thedomainassigned
for Spinnaker or the IP address of the Ingress to access it.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 44

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/canary/manifest/spin-ingress-ssl.yaml

NetScaler ingress controller

Create a Spinnaker pipeline and configure automated canary deployment Once you deploy
Spinnaker, create a Spinnaker pipeline for an application and configure the automated canary
deployment.

1. Create an application in Spinnaker.
2. Create a Spinnaker pipeline. You can edit the pipeline as a JSON file using the sample file pro‑

vided in Sample JSON files.
3. Create an automated canary configuration in Spinnaker for automated canary analysis. You can

use the configuration provided in the JSON file as a sample for automated canary configuration
Sample JSON files.

Deploy a sample application for canary This example shows how to run the canary deployment
of a sample application using NetScaler‑Integrated Canary Deployment Solution. In this example,
NetScaler CPX, MPX, or VPX is deployed as an Ingress device for a GKE cluster. NetScaler generates
the performancemetrics required for canary analysis.

As a prerequisite, youmust complete the following step before deploying the sample application.

• Install Spinnaker and the required plug‑ins in Google cloud platform using Deploy Spinnaker in
Google Cloud Platform.

Deploy the sample application Perform the following steps to deploy a sample application as a
canary release.

1. Create the necessary RBAC rules for NetScaler by deploying the rbac.yaml file.

1 kubectl apply -f rbac.yaml

2. You can either deploy the NetScaler Ingress Controller as a sidecar with NetScaler CPX or as a
standalone pod which controls NetScaler VPX or MPX.

Use the cpx‑with‑cic‑sidecar.yml file to deploy theNetScaler Ingress Controller as a sidecarwith
NetScaler CPX. It also deploys NetScaler Metrics Exporter on the same pod.

1 kubectl apply -f cpx-with-cic-sidecar.yml

Todeploy theNetScaler IngressController asa stand‑alonepod forNetScaler VPXorMPXuse the
cic‑vpx.yaml file. In this deployment, you should use the exporter.yaml file to deploy NetScaler
Metrics Exporter.

1 kubectl apply -f cic-vpx.yaml
2 kubectl apply -f exporter.yaml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 45

https://www.spinnaker.io/guides/user/applications/create/
https://www.spinnaker.io/guides/user/pipeline/managing-pipelines/#create-a-pipeline
https://www.spinnaker.io/guides/user/canary/
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/canary/manifest/rbac.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/canary/manifest/cpx-with-cic-sidecar.yml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/canary/manifest/cic-vpx.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/canary/manifest/exporter.yaml

NetScaler ingress controller

Note:

Depending on how you are deploying the NetScaler Ingress Controller, you must edit the
YAML file for NetScaler Ingress Controller deployment and modify values for the environ‑
mental variables as provided in deploying NetScaler Ingress Controller.

3. Deploy the Ingress for securely exposing Spinnaker using the spin‑ingress‑ssl.yaml file.

1 kubectl apply -f spin-ingress-ssl.yaml

Note:

For more information on creating a TLS certificate for Ingress, see TLS certificates in
NetScaler Ingress Controller.

4. Once Spinnaker is exposed using NetScaler, access Spinnaker and perform the steps in Create
a Spinnaker pipeline and configure automated canary deployment if the steps are not already
done.

5. Deploy the production version of the application using the production.yaml file.

1 kubectl apply -f production.yaml

6. Create the Ingress resource rule to expose traffic from outside the cluster to services inside the
cluster using the ingress.yaml file.

1 kubectl apply -f ingress.yaml

7. Create a Kubernetes service for the application that needs canary deployment using the ser‑
vice.yaml file.

1 kubectl apply -f service.yaml

8. Deploy the canary CRD that defines the canary configuration using the canary‑crd‑class.yaml
file.

1 kubectl apply -f canary-crd-class.yaml

Note:

Once you create the CRD, wait for 10 seconds before you apply the CRD object.

9. CreateaCRDobject canary‑crd‑object.yamlbasedon thecanaryCRD for customizing thecanary
configuration.

1 kubectl apply -f canary-crd-object.yaml

The following table explains the fields in the canary CRD object.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 46

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#deploy-citrix-ingress-controller-as-a-pod
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/canary/manifest/spin-ingress-ssl.yaml
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/certificate-management/tls-certificates.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/certificate-management/tls-certificates.html
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/canary/manifest/production.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/canary/manifest/ingress.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/canary/manifest/service.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/canary/manifest/service.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/canary/manifest/canary-crd-class.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/canary/manifest/canary-crd-object.yaml

NetScaler ingress controller

Field Description

serviceNames List of services on which this CRD has to be
applied

deployment Specifies the deployment strategy as Kayenta.

percentage Specifies the percentage of traffic to be diverted
from production to baseline and canary.

matchExpression (optional) Any NetScaler supported policy that can be used
to define the subset of users to be directed to
canary and baseline versions. If x percentage of
traffic is configured, then fromwithin subset of
users whichmatches the matchExpression only x
percentage of users are diverted to baseline and
canary. Remaining users are diverted to
production.

Spinnaker Specifies the Spinnaker pipeline configurations
you want to apply for your services.

domain IP address or domain name of the Spinnaker
gate.

port Port number of the Spinnaker gate.

applicationName The name of the application in Spinnaker.

pipelineName The name of the pipeline under the Spinnaker
application.

serviceName Specifies the name of the service to which you
want to apply the Spinnaker configuration.

10. Deploy canary and baseline versions of the application.

Note:

If you are fully automating the canary deployment, deploy canary and baseline versions
using the Deploy (Manifest) stage in Spinnaker pipeline and there is no need to perform
this step.

For manually deploying canary and baseline versions, use canary.yaml and baseline.yaml files.

1 kubectl apply -f canary.yaml
2 kubectl apply -f baseline.yaml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 47

https://www.spinnaker.io/guides/user/kubernetes-v2/deploy-manifest/
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/canary/manifest/canary.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/canary/manifest/baseline.yaml

NetScaler ingress controller

Troubleshooting

For troubleshooting the deployment, perform the following steps.

1. Check the pod logs for the respective components like Spinnaker, Prometheus, Kayenta,
NetScaler CPX, NetScaler Metrics Exporter, NetScaler Ingress Controller.

2. Check thepod logs of theNetScaler Ingress Controller for any configuration‑related errorswhile
configuring the NetScaler proxy.

3. Search for theexception/Exception keyword in theNetScaler Ingress Controller pod logs
to narrow down the issues.

4. Check for the logs preceding the search. Check for the configuration that failed and caused the
issue.

5. Check for the reason of failures during configuration.
6. If the failure happened because of incorrect configuration, correct the configuration.

Sample JSON files

This topic contains sample JSON files for Spinnaker pipeline configurationandautomated canary con‑
figuration. These files can be used as a reference while creating Spinnaker pipeline and automated
canary configuration.

A sample JSON file for Spinnaker pipeline configuration**
1 {
2
3 "appConfig": {
4 }
5 ,
6 "description": "This pipeline deploys a canary version of the

application, and a baseline (identical to production) version.\nIt
compares them, and if the canary is OK, it triggers the

production deployment pipeline.",
7 "executionEngine": "v2",
8 "expectedArtifacts": [
9 {

10
11 "defaultArtifact": {
12
13 "kind": "custom"
14 }
15 ,
16 "id": "ac842617-988f-48dc-a7a4-7f020d93cc42",
17 "matchArtifact": {
18
19 "kind": "docker",
20 "name": "index.docker.io/sample/demo",
21 "type": "docker/image"
22 }

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 48

NetScaler ingress controller

23 ,
24 "useDefaultArtifact": false,
25 "usePriorExecution": false
26 }
27
28],
29 "keepWaitingPipelines": false,
30 "lastModifiedBy": "anonymous",
31 "limitConcurrent": true,
32 "parallel": true,
33 "parameterConfig": [],
34 "stages": [
35 {
36
37 "account": "my-kubernetes-account",
38 "cloudProvider": "kubernetes",
39 "kinds": [
40 "Deployment",
41 "ConfigMap"
42],
43 "labelSelectors": {
44
45 "selectors": [
46 {
47
48 "key": "version",
49 "kind": "EQUALS",
50 "values": [
51 "canary"
52]
53 }
54
55]
56 }
57 ,
58 "location": "default",
59 "name": "Delete Canary",
60 "options": {
61
62 "cascading": true
63 }
64 ,
65 "refId": "12",
66 "requisiteStageRefIds": [
67 "19",
68 "26"
69],
70 "type": "deleteManifest"
71 }
72 ,
73 {
74
75 "account": "my-kubernetes-account",

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 49

NetScaler ingress controller

76 "cloudProvider": "kubernetes",
77 "kinds": [
78 "Deployment"
79],
80 "labelSelectors": {
81
82 "selectors": [
83 {
84
85 "key": "version",
86 "kind": "EQUALS",
87 "values": [
88 "baseline"
89]
90 }
91
92]
93 }
94 ,
95 "location": "default",
96 "name": "Delete Baseline",
97 "options": {
98
99 "cascading": true

100 }
101 ,
102 "refId": "13",
103 "requisiteStageRefIds": [
104 "19",
105 "26"
106],
107 "type": "deleteManifest"
108 }
109 ,
110 {
111
112 "name": "Successful deployment",
113 "preconditions": [],
114 "refId": "14",
115 "requisiteStageRefIds": [
116 "12",
117 "13"
118],
119 "type": "checkPreconditions"
120 }
121 ,
122 {
123
124 "application": "sampleapplicaion",
125 "expectedArtifacts": [
126 {
127
128 "defaultArtifact": {

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 50

NetScaler ingress controller

129
130 "kind": "custom"
131 }
132 ,
133 "id": "9185c756-c6cd-49bc-beee-e3f7118f3412",
134 "matchArtifact": {
135
136 "kind": "docker",
137 "name": "index.docker.io/sample/demo",
138 "type": "docker/image"
139 }
140 ,
141 "useDefaultArtifact": false,
142 "usePriorExecution": false
143 }
144
145],
146 "failPipeline": true,
147 "name": "Deploy to Production",
148 "pipeline": "7048e5ac-2464-4557-a05a-bec8bdf868fc",
149 "refId": "19",
150 "requisiteStageRefIds": [
151 "25"
152],
153 "stageEnabled": {
154
155 "expression": "\"${
156 #stage('Canary Analysis')['status'].toString() == 'SUCCEEDED' }
157 \"",
158 "type": "expression"
159 }
160 ,
161 "type": "pipeline",
162 "waitForCompletion": true
163 }
164 ,
165 {
166
167 "account": "my-kubernetes-account",
168 "cloudProvider": "kubernetes",
169 "manifestArtifactAccount": "embedded-artifact",
170 "manifests": [
171 {
172
173 "apiVersion": "apps/v1",
174 "kind": "Deployment",
175 "metadata": {
176
177 "labels": {
178
179 "name": "sampleapplicaion-prod",
180 "version": "baseline"
181 }

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 51

NetScaler ingress controller

182 ,
183 "name": "sampleapplicaion-baseline-deployment",
184 "namespace": "default"
185 }
186 ,
187 "spec": {
188
189 "replicas": 4,
190 "strategy": {
191
192 "rollingUpdate": {
193
194 "maxSurge": 10,
195 "maxUnavailable": 10
196 }
197 ,
198 "type": "RollingUpdate"
199 }
200 ,
201 "template": {
202
203 "metadata": {
204
205 "labels": {
206
207 "name": "sampleapplicaion-prod"
208 }
209
210 }
211 ,
212 "spec": {
213
214 "containers": [
215 {
216
217 "image": "index.docker.io/sample/demo:v1",
218 "imagePullPolicy": "Always",
219 "name": "sampleapplicaion-prod",
220 "ports": [
221 {
222
223 "containerPort": 8080,
224 "name": "port-8080"
225 }
226
227]
228 }
229
230]
231 }
232
233 }
234

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 52

NetScaler ingress controller

235 }
236
237 }
238
239],
240 "moniker": {
241
242 "app": "sampleapplicaion"
243 }
244 ,
245 "name": "Deploy Baseline",
246 "refId": "20",
247 "relationships": {
248
249 "loadBalancers": [],
250 "securityGroups": []
251 }
252 ,
253 "requisiteStageRefIds": [],
254 "source": "text",
255 "type": "deployManifest"
256 }
257 ,
258 {
259
260 "account": "my-kubernetes-account",
261 "cloudProvider": "kubernetes",
262 "manifestArtifactAccount": "embedded-artifact",
263 "manifests": [
264 {
265
266 "apiVersion": "apps/v1",
267 "kind": "Deployment",
268 "metadata": {
269
270 "labels": {
271
272 "name": "sampleapplicaion-prod",
273 "version": "canary"
274 }
275 ,
276 "name": "sampleapplicaion-canary-deployment",
277 "namespace": "default"
278 }
279 ,
280 "spec": {
281
282 "replicas": 4,
283 "strategy": {
284
285 "rollingUpdate": {
286
287 "maxSurge": 10,

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 53

NetScaler ingress controller

288 "maxUnavailable": 10
289 }
290 ,
291 "type": "RollingUpdate"
292 }
293 ,
294 "template": {
295
296 "metadata": {
297
298 "labels": {
299
300 "name": "sampleapplicaion-prod"
301 }
302
303 }
304 ,
305 "spec": {
306
307 "containers": [
308 {
309
310 "image": "index.docker.io/sample/demo",
311 "imagePullPolicy": "Always",
312 "name": "sampleapplicaion-prod",
313 "ports": [
314 {
315
316 "containerPort": 8080,
317 "name": "port-8080"
318 }
319
320]
321 }
322
323]
324 }
325
326 }
327
328 }
329
330 }
331
332],
333 "moniker": {
334
335 "app": "sampleapplicaion"
336 }
337 ,
338 "name": "Deploy Canary",
339 "refId": "21",
340 "relationships": {

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 54

NetScaler ingress controller

341
342 "loadBalancers": [],
343 "securityGroups": []
344 }
345 ,
346 "requiredArtifactIds": [
347 "ac842617-988f-48dc-a7a4-7f020d93cc42"
348],
349 "requisiteStageRefIds": [],
350 "source": "text",
351 "type": "deployManifest"
352 }
353 ,
354 {
355
356 "analysisType": "realTime",
357 "canaryConfig": {
358
359 "beginCanaryAnalysisAfterMins": "2",
360 "canaryAnalysisIntervalMins": "",
361 "canaryConfigId": "7bdb4ab4-f933-4a41-865f-6d3e9c786351",
362 "combinedCanaryResultStrategy": "LOWEST",
363 "lifetimeDuration": "PT0H5M",
364 "metricsAccountName": "my-prometheus",
365 "scopes": [
366 {
367
368 "controlLocation": "default",
369 "controlScope": "k8s-sampleapplicaion.default.80.k8s-

sampleapplicaion.default.8080.svc-baseline",
370 "experimentLocation": "default",
371 "experimentScope": "k8s-sampleapplicaion.default.80.k8s-

sampleapplicaion.default.8080.svc-canary",
372 "extendedScopeParams": {
373 }
374 ,
375 "scopeName": "default"
376 }
377
378],
379 "scoreThresholds": {
380
381 "marginal": "0",
382 "pass": "70"
383 }
384 ,
385 "storageAccountName": "kayenta-minio"
386 }
387 ,
388 "name": "Canary Analysis",
389 "refId": "25",
390 "requisiteStageRefIds": [
391 "20",

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 55

NetScaler ingress controller

392 "21"
393],
394 "type": "kayentaCanary"
395 }
396 ,
397 {
398
399 "continuePipeline": false,
400 "failPipeline": true,
401 "job": "NJob",
402 "master": "master",
403 "name": "Auto Cleanup: GCR Image and code revert",
404 "parameters": {
405 }
406 ,
407 "refId": "26",
408 "requisiteStageRefIds": [
409 "25"
410],
411 "stageEnabled": {
412
413 "type": "expression"
414 }
415 ,
416 "type": "jenkins"
417 }
418
419],
420 "triggers": [
421 {
422
423 "account": "my-docker-registry",
424 "enabled": true,
425 "expectedArtifactIds": [
426 "ac842617-988f-48dc-a7a4-7f020d93cc42"
427],
428 "organization": "sample",
429 "payloadConstraints": {
430 }
431 ,
432 "registry": "index.docker.io",
433 "repository": "sample/demo",
434 "source": "dockerhub",
435 "type": "webhook"
436 }
437
438],
439 "updateTs": "1553144362000"
440 }
441
442 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 56

NetScaler ingress controller

A sample JSON file for automated canary configuration

Following is a sample JSON file for automated canary configuration.

1 {
2
3 "applications": [
4 "sampleapplicaion"
5],
6 "classifier": {
7
8 "groupWeights": {
9

10 "Group 1": 70,
11 "Group 2": 30
12 }
13 ,
14 "scoreThresholds": {
15
16 "marginal": 75,
17 "pass": 95
18 }
19
20 }
21 ,
22 "configVersion": "1",
23 "createdTimestamp": 1552650414234,
24 "createdTimestampIso": "2019-03-15T11:46:54.234Z",
25 "description": "Canary Config",
26 "judge": {
27
28 "judgeConfigurations": {
29 }
30 ,
31 "name": "NetflixACAJudge-v1.0"
32 }
33 ,
34 "metrics": [
35 {
36
37 "analysisConfigurations": {
38
39 "canary": {
40
41 "direction": "increase"
42 }
43
44 }
45 ,
46 "groups": [
47 "Group 1"
48],
49 "name": "Server Response Errors - 5XX",

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 57

NetScaler ingress controller

50 "query": {
51
52 "customFilterTemplate": "tot_requests",
53 "metricName": "netscaler_lb_vserver_svr_busy_err_rate",
54 "serviceType": "prometheus",
55 "type": "prometheus"
56 }
57 ,
58 "scopeName": "default"
59 }
60 ,
61 {
62
63 "analysisConfigurations": {
64
65 "canary": {
66
67 "direction": "either",
68 "nanStrategy": "replace"
69 }
70
71 }
72 ,
73 "groups": [
74 "Group 2"
75],
76 "name": "Server Response Latency - TTFB",
77 "query": {
78
79 "customFilterTemplate": "ttfb",
80 "metricName": "netscaler_lb_vserver_hits_total",
81 "serviceType": "prometheus",
82 "type": "prometheus"
83 }
84 ,
85 "scopeName": "default"
86 }
87
88],
89 "name": "canary-config",
90 "templates": {
91
92 "tot_requests": "lb_vserver_name = \"${
93 scope }
94 \"",
95 "ttfb": "lb_vserver_name = \"${
96 scope }
97 \""
98 }
99 ,

100 "updatedTimestamp": 1553098513495,
101 "updatedTimestampIso": "2019-03-20T16:15:13.495Z"
102 }

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 58

NetScaler ingress controller

103
104 <!--NeedCopy-->

Simplified canary deployment using Ingress annotations

This topic provides information about the simplified Canary deployment using Ingress annotations.
While NetScaler provides multiple options to support canary deployment, this is a simpler type of
Canary deployment.

Canary using Ingress annotations is a rule based canary deployment. In this approach, you need to
define an additional Ingress object with specific annotations to indicate that the application request
needs to be served based on the rule based canary deployment strategy. In the Citrix solution, Canary
based traffic routing at the Ingress level can be achieved by defining various sets of rules as follows:

• Applying the canary rules based on weight
• Applying the canary rules based on the HTTP request header
• Applying the canary rules based on the HTTP header value

The order of precedence of the canary rules is as follows:

Canary by HTTP request header value –> canary by HTTP request header –> canary by weight

Canary deployment based onweight

Weight based canary deployment is a widely used canary deployment approach. In this approach,
you can set the weight as a range from 0 to 100 which decides the percentage of traffic to be directed
to the canary version and the production version of an application.

Following is the workflow for the weight based canary deployment:

• Initially the weight can be set to zero which indicates that the traffic is not forwarded to the
canary version.

• Once you decide to start canary deployment, change the weight to the required percentage to
make sure the traffic is directed to canary version as well.

• Finally, when you determine that the canary version is ready to be released, change the weight
to 100 to ensure that all the traffic is being directed to the canary version.

For deploying weight based canary using the NetScaler Ingress Controller, create a new Ingress with
a canary annotation ingress.citrix.com/canary-weight: and specify the percentage of
traffic to be directed to the canary version.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 59

NetScaler ingress controller

Canary deployment based on the HTTP request header

Youcanconfigurecanarydeploymentbasedon theHTTPrequestheaderwhich is controlledbyclients.
The request header notifies the Ingress to route the request to the service specified in the canary
Ingress. When the request header contains the value mentioned in the Ingress annotation ingress
.citrix.com/canary-by-header:, the request is routed to the service specified in the canary
Ingress.

Canary deployment based on the HTTP request header value

You can also configure canary deployment based on values of theHTTP request headerwhich is an ex‑
tension of canary by header. In this deployment, along with the ingress.citrix.com/canary
-by-header: annotation, you also specify the ingress.citrix.com/canary-by-header
-value: annotation. When the request header valuematcheswith the value specified in the Ingress
annotation ingress.citrix.com/canary-by-header-value: the request is routed to the
service specified in the canary Ingress. You can specify multiple header values as a list of strings.

Following is a sample annotation for canary deployment based on the HTTP request header values:

ingress.citrix.com/canary‑by‑header‑value: ‘[“value1”,”value2”,”value3”,”value4”]’

Configure canary deployment using Ingress annotations

Perform the following steps to deploy a sample application as a canary release.

1. Deploy the NetScaler Ingress Controller using the steps in deploy the NetScaler Ingress Con‑
troller. You can either deploy the NetScaler Ingress Controller as a sidecar with NetScaler CPX
or as a standalone pod which controls NetScaler VPX or MPX.

2. Deploy the Guestbook application using the guestbook‑deploy.yaml file.

1 kubectl apply -f guestbook-deploy.yaml

3. Deploy a service to expose the Guestbook application using the guestbook‑service.yaml file.

1 kubectl apply -f guestbook-service.yaml

4. Deploy the Ingress object for the Guestbook application using the guestbook‑ingress.yaml
file.

1 kubectl apply -f guestbook-ingress.yaml

5. Deploy a canary version of theGuestbook application using the canary‑deployment.yaml file.

1 kubectl apply – f canary-deployment.yaml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 60

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/example/simple-canary/guestbook-deploy.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/example/simple-canary/guestbook-service.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/example/simple-canary/guestbook-ingress.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/example/simple-canary/canary-deployment.yaml

NetScaler ingress controller

6. Deploy a service to expose the canary version of the Guestbook application using the canary‑
service.yaml file.

1 kubectl apply – f canary-service.yaml

7. Deployan Ingressobjectwithannotations for the canary versionof theGuestbookapplication
using the canary‑ingress.yaml file.

1 kubectl apply – f canary-ingress.yaml
2
3
4
5 apiVersion: networking.k8s.io/v1
6 kind: Ingress
7 metadata:
8 annotations:
9 ingress.citrix.com/canary-weight: "10"

10 kubernetes.io/ingress.class: citrix
11 name: canary-by-weight
12 spec:
13 rules:
14 - host: webapp.com
15 http:
16 paths:
17 - backend:
18 service:
19 name: guestbook-canary
20 port:
21 number: 80
22 path: /
23 pathType: Prefix

Here, the annotation ingress.citrix.com/canary-weight: “10” is the annotation
for the weight based canary. This annotation specifies the NetScaler Ingress Controller to con‑
figure the NetScaler in such a way that 10 percent of the total requests destined to webapp.
com is sent to the guestbook-canary service. This is the service for the canary version of
the Guestbook application.

For deploying the HTTP header based canary using the NetScaler Ingress Controller, replace the ca‑
nary annotation ingress.citrix.com/canary-weight: with the ingress.citrix.com
/canary-by-header: annotation in the canary-ingress.yaml file.

For deploying the HTTP header value based canary using the NetScaler Ingress Controller, replace
the ingress.citrix.com/canary-weight: annotation with the ingress.citrix.
com/canary-by-header: and ingress.citrix.com/canary-by-header-value:
annotations in the canary-ingress.yaml file.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 61

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/example/simple-canary/canary-service.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/example/simple-canary/canary-service.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/example/simple-canary/canary-ingress.yaml

NetScaler ingress controller

Note:

You can see the Canary example YAMLs for achieving canary based on header and canary based
on header value.

Deploy NetScaler IPAM controller

April 2, 2024

NetScaler provides an IPAM controller for IP address management. NetScaler IPAM controller runs
in parallel to NetScaler Ingress Controller in the Kubernetes cluster. NetScaler IPAM controller allo‑
cates IP addresses to services of type LoadBalancer and ingress resources from a specified IP address
range.

NetScaler IPAM controller requires NetScaler’s VIP custom resource definition (CRD). The VIP CRD
is used for internal communication between NetScaler Ingress Controller and NetScaler IPAM con‑
troller.

Prerequisites

• Kubernetes cluster and a kubectl command‑line tool to communicate with the cluster.

• Create a namespace called netscaler to isolate resources. Run the following command to
create a namespace:

1 kubectl create namespace netscaler

• Install NetScaler Ingress Controller for your NetScaler VPX or NetScaler MPX using the following
Helm commands.

Note:

Ensure to create a secret using NetScaler VPX or NetScaler MPX credentials before running the
following commands.

1 helm repo add netscaler https://netscaler.github.io/netscaler-helm-
charts/

2
3 helm install NetScaler-ingress-controller netscaler/NetScaler-ingress-

controller --set nsIP=<NSIP of MPX/VPX>,license.accept=yes,
adcCredentialSecret=<Secret-for-ADC-credentials>,ingressClass[0]=
netscaler,serviceClass[0]=netscaler,ipam=true,crds.install=true -n
netscaler

4 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 62

https://github.com/citrix/citrix-k8s-ingress-controller/tree/master/example/simple-canary
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/vip.html

NetScaler ingress controller

For detailed information about deploying and configuring NetScaler Ingress Controller using Helm
charts, see the Helm chart repository.

Deploy IPAM controller

1. Add the NetScaler Helm chart repository to your local registry using the following command.

1 helm repo add netscaler https://netscaler.github.io/netscaler-
helm-charts/

2 <!--NeedCopy-->

2. Install NetScaler IPAM controller using the following command.

1 helm install netscaler-ipam-controller netscaler/netscaler-ipam-
controller --set vipRange='[{

2 "<VIP-range-key>": ["<ip-range>"] }
3]' -n netscaler
4 <!--NeedCopy-->

For information about all the configurable parameters while installing the IPAM controller using Helm
charts, see the Helm chart repository.

IP address allocations

• For services of type LoadBalancer, a unique IP address is allocated to each service from the VIP
range.

• For an ingress resource, an IP address in the specified IP range is allocated. Whenmore ingress
resources refer to the same VIP range, the IP address allocated to the first ingress resource is
allocated to all the other ingress resources.

• Both services of type LoadBalancer and ingress resources can use NetScaler IPAM controller for
IP address allocations at the same time. If an IP address is allocated to any one resource type, it
is not available for another resource type. But, the same IP address can be allocated tomultiple
ingress resources.

Environment variables in IPAM controller

This section provides information about the environment variables in NetScaler IPAM controller.

VIP_RANGE The VIP_RANGE environment variable allows you to define the IP address range. You
can either define an IP address range or an IP address range associated with a unique name.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 63

https://github.com/netscaler/citrix-helm-charts/tree/master/netscaler-ingress-controller
https://github.com/netscaler/netscaler-helm-charts/tree/master/netscaler-ipam-controller

NetScaler ingress controller

IP address range You can define the IP address range from a subnet or multiple subnets. Also, you
can use the - character to define the IP address range. The IPAM controller assigns the IP address
from this IP address range to the service.

IP address range associatedwith a unique name You can assign a unique name to the IP address
range and define the range in the VIP_RANGE environment variable. This way of assigning the IP
address range enables you to differentiate between the IP address ranges. When you create the ser‑
vices of typeLoadBalancer, you can use theservice.citrix.com/ipam-range annotation
in the service definition to specify the IP address range to use for IP address allocation.

Reference

• For information about exposing services of type LoadBalancer with IP addresses assigned by
the IPAM controller, see this section.

Deploying NetScaler API Gateway using Rancher

December 31, 2023

NetScaler API Gateway provides a single entry point for APIs by ensuring secure and reliable access
to APIs and microservices on your system. NetScaler provides an enterprise‑grade API gateway for
North‑South API traffic for Kubernetes clusters.
NetScaler API Gateway integrates with Kubernetes through the NetScaler Ingress Controller and the
NetScaler (NetScaler MPX, VPX, or CPX) deployed as the Ingress Gateway for on‑premises and cloud
deployments.

You can use the Rancher platform to deploy NetScaler API Gateway. Rancher provides a catalog of
application templates that help you to deploy NetScaler API Gateway.

Prerequisites

Youmust import the cluster, in which youwant to deploy the API gateway, to the Rancher platform.

Import the cluster to the Rancher platform

Perform the following steps to import your cluster to the Rancher platform:

1. Log in to the Rancher platform.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 64

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html#expose-services-of-type-loadbalancer-with-ip-addresses-assigned-by-the-ipam-controller

NetScaler ingress controller

2. In the Clusters page, click Add Cluster.

3. In the Add Cluster ‑ Select Cluster Type page, choose the Import an existing cluster option.

4. Specify the Cluster Name.

5. SpecifyMember Roles, Labels, and Annotations.

6. Click Create.

Deploy NetScaler API Gateway using the Rancher platform

Perform the following steps to deploy the API gateway on the cluster using the Rancher platform:

1. Log in to the Rancher platform.

2. From the Global drop‑down list, select the cluster that you have imported.

3. Select the Apps tab and click Launch.

4. From the Catalog page, choose the citrix‑api‑gateway template.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 65

NetScaler ingress controller

5. Specify themandatory and required fields underConfigurationOptions (includes deployment
settings, ADC settings, the NetScaler Ingress Controller image settings, and exporter settings).

The mandatory fields include:

• Namespace: Specify the namespace where you want to create the NetScaler Ingress Con‑
troller. You can also use the Edit as YAML option to specify the same in the YAML file.

• Accept License: Select Yes to accept the terms and conditions of the NetScaler license.
• Login File Name: Specify the name of the Kubernetes secret. The secret file is used for
the NetScaler login.

• NetScaler IP: It is the NSIP or SNIP of the NetScaler device. For high availability, specify
the SNIP as the IP address.

6. Click Preview to verify the information and click Launch.

Deploy API Gatewaywith GitOps

December 31, 2023

Custom Resource Definitions (CRDs) are the primary way of configuring API gateway policies in cloud
native deployments. Operations teams create the configuration policies (routing, authentication,
rewrite, Web Application Firewall (WAF), and so on) and apply them in the form of CRDs. In an API
Gateway context, these policies are applied on the specific APIs and upstream hosting these APIs.

API developers document the API details in an Open API specification format for the client software
developers and peer service implementation teams for using the API details. API documents contain
information such as base path, path, method, authentication, and authorization.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 66

NetScaler ingress controller

Operation teams can use the information in an API specification document to configure the API Gate‑
way. Git, a source control solution, is used extensively by developers and operations teams. The Gi‑
tOps solutionmakes the collaborationandcommunication that takeplacebetweendevelopmentand
operations teams easier. GitOps helps to create a faster, more streamlined, and continuous delivery
for Kubernetes without losing stability.

The API Gateway deployment with the GitOps solution enables operations teams to use the API spec‑
ification document created by software developers in the API gateway configuration. This solution
automates the tasks and information exchange between API development and operations teams.

About the GitOps solution for API Gateway

The GitOps solution is constitutedmainly by three entities:

• Open API specification document
• Policy template CRDs
• API Gateway deployment CRD

Open API Specification document

Created by API developers or API designers, the document provides an API information. The GitOps
solution uses the following details from an Open API specification document:

• Base path
• Path
• Method
• Tags
• Authentication
• Authorization

The following is a sample Open API specification file with the details (in red) that are used to automat‑
ically create policies.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 67

NetScaler ingress controller

Policy template CRDs

CRDs are the primary way of configuring an API gateway instance. The operations team creates and
manages the CRD implementations. In the traditional workflow, as part of creating the policies, the
operations teammanually fills the target details such as upstream and API path in the CRD instances.
In the GitOps solution, the API path and upstreamdetails are derived automatically. Operations team
creates the CRDs without any target details and the solution refer to such CRD instances as policy
templates.

The GitOps solution supports the following policy templates:

• Rewrite policy
• Rate limit policy
• Authentication policy
• WAF

The following is a sample rewrite policy template:

Note: For information on how to create a CRD instance, see the individual CRDs.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 68

NetScaler ingress controller

API Gateway deployment CRD

API Gateway deployment CRD binds the API specification document with policy templates. This CRD
enablesmapping of API resources with upstream services and API gateway policies related to routing
and security. The API Gateway deployment CRD is maintained by the operations team with the data
received from the development team.

The API Gateway deployment CRD configures the following:

• Git repository details
• Endpoint listener
• API to upstreammapping
• API to policy mapping
• Open API authentication policy references to authentication policy template mapping

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 69

NetScaler ingress controller

Alternatively, APIGatewayCRDsupportsnon‑Git sources for fetchingOpenAPISpecification (OAS)doc‑
uments. Currently, both HTTP and HTTPS URL sources are supported. These URLs can be password
protected and basic HTTP authentication is supported. Credentials can be configured using the same
fields as that of Git based OAS file sources.

The following image shows theAPIGatewaydeploymentCRDbinding theAPI specificationwithpolicy
templates using the API selectors and policy mappings.

APIs that start with the /pet regular expression is selected with the path regexp pattern and APIs with
/play is selectedwith the play tag. Security definitions in the API specification document aremapped
with the available authentication, authorization, and auditing configurations in the authentication
CRD template.

Configure API Gateway CRD

The API Gateway CRD binds the API resources defined in the Swagger specification with policies de‑
fined in the other CRDs.

Prerequisites

Apply CRD definitions for the following CRD objects:

• Listener

• HTTP route

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 70

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/listener.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/content-routing.html

NetScaler ingress controller

• Rate limit

• Rewrite

• Authentication

• WAF

The following sections provide information about the various elements in the API Gateway CRD
configuration file:

API definition

It provides information about the Git repository in which the Git watcher monitors for the Open API
specification files.

API defenition: Git repository access details

Field Description

Repository Specifies the Git repository URL.

Branch Specifies the Git branch name (By default,
master).

oas_secret_ref Specifies the Git access secret reference as a
Kubernetes secret object name. Note: When
creating a secret, keep the username and
password as the secret field names for Git
access credentials.

Files The credentials for these OAS URLs can be
accessed from the oas_secret_ref field or
user_name and password field combinations.

API proxy

It provides information about the endpoint (VIP) configuration that is used to expose the APIs on the
API Gateway front end.

api_proxy: VIP details

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 71

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/rate-limit.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/rewrite-responder.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/auth.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/waf.html

NetScaler ingress controller

Field Description

ip_address Specifies the IP address of the end point (VIP).

port Specifies the endpoint port.

protocol Specifies the protocol (HTTP/HTTPs).

secret Specifies the SSL certificate secret for the
endpoint configuration.

Policymappings

It maps the API resources with the upstream services and policy templates. Some information in this
section is collected from the developers when the operations team creating the CRD.

Section Sub section Field Sub field Description

Policies Specifies the
policy and
upstream
mapping.

Name Specifies the
name of the
policy. It is
unique in a CRD
instance.

Selector A list of filters for
selecting the API
resources.

API Specifies the
Regexp pattern
for the API
selection. All the
APIs that match
with this pattern
are selected for
applying policies
from this block.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 72

NetScaler ingress controller

Section Sub section Field Sub field Description

method A list of HTTP
verbs, if the API
resource verb
matches with ANY
in the list, it is
selected.

Tags A list of tags to
match with an
API. These tags
are matched with
tags in the API
specification
document. You
can use either
ragexp based
path patterns or
tags to match a
policy.

Upstream. Specifies the
upstream for the
selected policy.

Service Specifies the
back‑end service
name.

Port Specifies the
back‑end service
port.

Policy‑binding Specifies the
policy list to be
applied on the
selected API.

Type of the policy
template

Specifies the
exact type of
policy.
Supported types
are WAF, rewrite
policy, and rate
limit.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 73

NetScaler ingress controller

Section Sub section Field Sub field Description

Name Specifies the
name of the
policy template.

AAAmappings

It maps the authentication references in the API specification document with the available policy de‑
finition sections in the authentication CRD template.

Section Sub section Field Sub field Description

aaa Authentication,
authorization,
and auditing
policy section
mappings.

Crd_name Specifies the
name of the
authentication
CRD template.

Mappings Mapping API
specification
security policy
references with
the appropriate
sections in the
authentication
CRD template.
Note: If the API
specification
refer to string
matches with the
policy section
name in the CRD
template, explicit
mapping is not
required.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 74

NetScaler ingress controller

Perform the following steps to deploy the API Gateway CRD:

1. Download the API Gateway CRD.

2. Deploy the API Gateway CRD using the following command:

1 kubectl create -f apigateway-crd.yaml`

The following is an example API Gateway CRD configuration:

1 apiVersion: citrix.com/v1beta1
2 kind: apigatewaypolicy
3 metadata:
4 name: apigatewaypolicyinstance
5 spec:
6 api_definition:
7 repository: "https://code.citrite.net/scm/cnn/cic-gitops.

git"
8 branch: "modify-test-branch"
9 oas_secret_ref: "mysecret"

10 files:
11 - "test_gitwatcher/petstore.yaml"
12 - "test_gitwatcher/playstore.yaml"
13 api_proxy:
14 ipaddress: "10.106.172.83"
15 port: 80
16 protocol: "http"
17 secret: "listner-secret"
18 policies:
19 - name: "p1"
20 selector:
21 - api: "/pet.*"
22 method: ["GET", "POST"]
23 upstream:
24 service: "pet-service"
25 port: 80
26 policy_bindings:
27 ratelimit:
28 name: "ratelimit-gitops-slow"
29 - name: "p2"
30 selector:
31 - api: "/user.*"
32 method: ["GET", "POST"]
33 upstream:
34 service: "user-service"
35 port: 80
36 policy_bindings:
37 ratelimit:
38 name: "ratelimit-gitops-slow"
39 - name: "p3"
40 selector:
41 - tags: ["play"]
42 upstream:
43 service: "play-service"

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 75

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/apigateway/apigateway-crd.yaml

NetScaler ingress controller

44 port: 80
45 policy_bindings:
46 ratelimit:
47 name: "ratelimit-gitops"
48 rewritepolicy:
49 name: "prefixurl"
50 waf:
51 name: "buffoverflow"
52 aaa:
53 - crd_name: authgitops
54 mappings:
55 - petstore_auth: jwt-auth-provider
56 - api_key: introspect-auth-provider
57 <!--NeedCopy-->

Support for web insight based analytics

Web insight based analytics is now supported with the API gateway CRD. When you use GitOps, the
following web insight parameters are enabled by default:

• httpurl
• httpuseragent
• httphost
• httpmethod
• httpcontenttype

GSLB overview and deployment topologies

April 7, 2024

Overview

For ensuring high availability, proximity‑based load balancing, and scalability, you need to deploy an
application in multiple distributed Kubernetes clusters. When an application is deployed in multiple
Kubernetes clusters dispersed across geographically distributed locations, a load balancing decision
has to be taken to distribute traffic among application instances.

NetScaler GSLB controller configures NetScaler (GSLB device) to load balance services among geo‑
graphically distributed locations. GSLB solution ensures better performance and reliability for your
Kubernetes services that are exposed using ingress or service type LoadBalancer. In the GSLB topol‑
ogy, a GSLB device is deployed in each region; one of the GSLB devices acts as the primary ADC and

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 76

NetScaler ingress controller

others act as the secondary ADCs. The GSLB primary ADC is configured by the GSLB controller de‑
ployed in each cluster deployed across sites. This GSLB device load balances services deployed in
multiple clusters across sites.

For more information about GSLB, see Global Server Load Balancing.

Note:

The NetScaler GSLB controller image is the same as that of NetScaler Ingress Controller.

Deployment topologies

The components of GSLB deployment topology are described here:

• GSLB device: NetScaler MPX or NetScaler VPX is used as a global server load balancing (GSLB)
device. A GSLB device is configured for each data center. In each GSLB device, one site is config‑
ured as a local site representing the local data center. The other sites are configured as remote
sites. NetScaler MPX or NetScaler VPX used as the GSLB device can also be used as the ingress
device with NetScaler Ingress Controller.

• Ingress load balancer: NetScaler CPX or any third‑party application is deployed as the ingress
load balancer in each Kubernetes cluster.

• Ingress controller: The ingress controller can be a NetScaler Ingress Controller or any third‑
party ingress controller.

• GSLB controller: Each cluster in the deployment runs a GSLB controller instance. Each GSLB
controller configures the GSLB primary ADC for the applications deployed in its respective clus‑
ter. The global server load balancing (GSLB) configuration synchronization option is used to
copy the GSLB configuration on the primary site to all the GSLB sites in the GSLB setup. The
NetScaler on which you configure GSLB synchronization is referred as the primary site and the
sites to which the configuration is copied are referred as the secondary sites.

The followingdeploymentdiagramsshowsample topologies forNetScalerGSLBcontroller. Each sam‑
ple topology contains two data centers (sites) in different regions and each data center contains a
Kubernetes cluster.

Let’s consider two sample deployment topologies based on the type of ingress controller used in the
GSLB sites:

• NetScaler Ingress Controller in both GSLB sites
• Any third‑party ingress controller in both GSLB sites

Note:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 77

https://docs.netscaler.com/en-us/citrix-adc/current-release/global-server-load-balancing

NetScaler ingress controller

GSLB controller deployment is also supportedwithNetScaler Ingress Controller in oneGSLB site
and a third‑party ingress controller in another GSLB site.

NetScaler Ingress Controller in both GSLB sites

Note:

NetScaler MPX or NetScaler VPX used for GSLB and ingress or service type LB can be the same or
different. In the following example, the same NetScaler is used for GSLB and ingress or service
type LB.

The following diagram explains the deployment topology for NetScaler GSLB controller in presence
of NetScaler Ingress Controller.

The numbers in the following steps map to the numbers in the earlier diagram.

1. In each cluster, NetScaler Ingress Controller configures NetScaler either using ingress or us‑
ing the service of type LoadBalancer configuration.

2. In each cluster, NetScaler GSLB controller configures the GSLB device in the primary site with
the GSLB configuration.

3. GSLB configuration synchronizes automatically between the GSLB devices in different GSLB
sites.

4. A DNS query for application hostname or FQDN is sent to the GSLB virtual server configured on
NetScaler. The DNS resolution on the GSLB virtual server resolves to an IP address on any one
of the clusters based on the configured global traffic policy (GTP).

5. Based on the DNS resolution, data traffic lands on either the Ingress front‑end IP address or
service type LB IP address of one of the clusters.

6. The required application is accessed through the GSLB device.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 78

NetScaler ingress controller

Any third‑party ingress controller in both GSLB sites

The following diagram explains the deployment topology for NetScaler GSLB controller in the pres‑
ence of any third‑party ingress controller.

The following items explain the previous diagram:

1. NetScaler GSLB controller configures the GSLB primary ADC in the primary site with the GSLB
configuration.

2. GSLB configuration synchronizes automatically between the GSLB devices in different GSLB
sites.

3. A DNS query for application hostname or FQDN is sent to the GSLB virtual server configured on
NetScaler. The DNS resolution on the GSLB virtual server resolves to an IP address on any one
of the clusters based on the configured global traffic policy (GTP).

4. Based on the DNS resolution, data traffic lands on either the ingress front‑end IP address or
service type LB front‑end IP address of one of the clusters.

5. The required application is accessed through proxy.

GSLBmethods and supported deployment types

The following global load balancing methods are supported:

• Round trip time (RTT)

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 79

https://docs.citrix.com/en-us/citrix-adc/13/global-server-load-balancing/methods/dynamic-round-trip-time-method.html

NetScaler ingress controller

• Static proximity
• Round robin (RR)

The following deployment types are supported:

• Local first: In a local first deployment, when an applicationwants to communicatewith another
application, it prefers a local application in the same cluster. When the application is not avail‑
able locally, the request is directed to other clusters or regions.

• Canary: Canary release is a technique to reduce the risk of introducing a new software version
in production by first rolling out the change to a small subset of users. In this solution, canary
deployment can be used when you want to roll out new versions of the application to selected
clusters before moving it to production.

• Failover: A failover deployment is used when you want to deploy applications in an active/pas‑
sive configuration when they cannot be deployed in active/active mode.

• Round trip time (RTT): In an RTT deployment, the real‑time status of the network is monitored
and dynamically directs the client request to the data center with the lowest RTT value.

• Static proximity: In a static proximity deployment, an IP‑address based static proximity data‑
base is used to determine the proximity between the client’s local DNS server and the GSLB
sites. The requests are sent to the site that best matches the proximity criteria.

• Round robin: In a round robin deployment, the GSLB device continuously rotates a list of the
services that are bound to it. When it receives a request, it assigns the connection to the first
service in the list, and thenmoves that service to the bottom of the list.

Note:

Currently, IPv6 is not supported.

CRDs for configuring NetScaler GSLB controller for applications deployed in
distributed Kubernetes clusters

The following CRDs are introduced to support NetScaler configuration for performing GSLB of Kuber‑
netes applications.

• Global traffic policy (GTP)
• Global service entry (GSE)

GTP CRD

GTP CRD accepts the parameters for configuring GSLB on NetScaler including deployment type (ca‑
nary, failover), GSLB domain, health monitor for the ingress, and service type.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 80

https://docs.citrix.com/en-us/citrix-adc/13/global-server-load-balancing/methods/static-proximity.html
https://docs.citrix.com/en-us/citrix-adc/13/load-balancing/load-balancing-customizing-algorithms/roundrobin-method.html

NetScaler ingress controller

The GTP CRD spec is available here.

Note:

GTP CRD is the same across all the clusters for a given domain.

The following table explains the GTP CRD attributes.

Field Description

ipType Specifies the DNS record type as A or AAAA.
Currently, only A record type is supported

serviceType Specifies the protocol to which GSLB support is
applied.

host Specifies the domain for which GSLB support is
applied.

trafficPolicy Specifies the traffic distribution policy
supported in a GSLB deployment.

sourceIpPersistenceId Specifies the unique source IP persistence ID.
This attribute enables persistence based on the
source IP address for the inbound packets. The
sourceIpPersistenceId attribute should
be amultiple of 100 and should be unique.

secLbMethod Specifies the traffic distribution policy
supported among clusters under a group in
local‑first, canary, or failover.

destination Specifies the Ingress or LoadBalancer service
endpoint in each cluster. The destination name
should match with the name of GSE.

weight Specifies the proportion of traffic to be
distributed across clusters. For canary
deployment, the proportion is specified as
percentage.

CIDR Specifies the CIDR to be used in local‑first to
determine the scope of the locality.

primary Specifies whether the destination is a primary
cluster or a backup cluster in the failover
deployment.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 81

https://github.com/netscaler/netscaler-k8s-ingress-controller/blob/master/gslb/Manifest/gtp-crd.yaml

NetScaler ingress controller

Field Description

monType Specifies the type of probe to determine the
health of the GSLB endpoint. When the monitor
type is HTTPS, SNI is enabled by default during
the TLS handshake.

uri Specifies the path to be probed for the health of
the GSLB endpoint for HTTP and HTTPS
protocols.

respCode Specifies the response code expected to mark
the GSLB endpoint as healthy for HTTP and
HTTPS protocols.

GSE CRD

GSE CRD dictates the endpoint information (any Kubernetes object which routes traffic into the clus‑
ter) in each cluster.

The GSE CRD spec is available in the NetScaler Ingress Controller GitHub repo at: gse‑crd.yaml.

The following table explains the GSE CRD attributes.

Field Description

ipv4address Local cluster ingress ipv4 address or service of
type LoadBalancer endpoint ipv4 address

domainName Local cluster ingress domain name or service of
type LoadBalancer domain name

monitorPort Listening port of local cluster ingress or Listening
port of service of type LoadBalancer

Notes:

• GSE CRD is different for each cluster.
• For GSE CRD auto generation with ingress, the host namemust match the host name spec‑
ified in the GTP CRD instance. For both ingress and service of type LoadBalancer, the
GSE CRD is generated only for the first port specified.

• For a service of type LoadBalancer, the GSE CRD is auto generated if the service is re‑
ferred in the GTP CRD instance and the status-loadbalancer-ip/hostname field
is already populated.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 82

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/gslb/Manifest/gse-crd.yaml

NetScaler ingress controller

Deploy NetScaler GSLB controller

April 5, 2024

The following steps describe how to deploy a GSLB controller in a cluster.

Note:

Repeat the steps 1 through 5 to deploy a GSLB controller in other clusters.

1. Create the secrets required for the GSLB controller to connect to GSLB devices and push the
configuration from the GSLB controller.

1 kubectl create secret generic secret-1 --from-literal=username=<
username for gslb device1> --from-literal=password=<password
for gslb device1>

2 <!--NeedCopy-->

1 kubectl create secret generic secret-2 --from-literal=username=<
username for gslb device2> --from-literal=password=<password
for gslb device2>

2 <!--NeedCopy-->

Note:

These secrets are provided as parameters while installing GSLB controller using helm
install command for the respective sites. The username and password in the com‑
mand specifies the credentials of a NetScaler GSLB device user. For information about
creating a systemuser account onNetScaler, see Create systemuser account for NetScaler
Ingress Controller in NetScaler
.

2. Youneed tomanually provision theGSLB sites, configure the ADNS service, and enablemanage‑
ment access on each GSLB device using the following commands:

• add ip <site-ip-address> 255.255.255.0 -mgmtAccess ENABLED
• add gslbsite site1 <sitedata[0].siteIp> -publicIP
• add gslbsite site2 <sitedata[1].siteIp> -publicIP
• add service adns_svc <site-ip-address> ADNS 53

For information about sitedata[0].siteIp and sitedata[1].siteIp, see the table
in step 4.
site-ip-address is the GSLB device IP address in the site where the GSLB controller is de‑
ployed.

3. Add the NetScaler Helm chart repository to your local Helm registry using the following com‑
mand:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 83

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#create-system-user-account-for-netscaler-ingress-controller-in-netscaler
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#create-system-user-account-for-netscaler-ingress-controller-in-netscaler

NetScaler ingress controller

1 helm repo add netscaler https://netscaler.github.io/netscaler-helm
-charts/

2 <!--NeedCopy-->

4. Install theGSLB controller on a cluster using theHelm chart by running the following command:
helm install gslb-release netscaler/netscaler-gslb-controller -f
values.yaml --set crds.install=true

Notes:

• If CRDs are already installed, omit --set crds.install=true in the above in‑
stallation command.

• The chart installs the recommended RBAC roles and role bindings by default.

Example values.yaml file:

1 license:
2 accept: yes
3
4 localRegion: "east"
5 localCluster: "cluster1"
6
7 entityPrefix: "k8s"
8
9 sitedata:

10 - siteName: "site1"
11 siteIp: "x.x.x.x"
12 siteMask: "y.y.y.y"
13 sitePublicIp: "z.z.z.z"
14 secretName: "secret-1"
15 siteRegion: "east"
16 - siteName: "site2"
17 siteIp: "x.x.x.x"
18 siteMask: "y.y.y.y"
19 sitePublicIp: "z.z.z.z"
20 secretName: "secret-2"
21 siteRegion: "west"
22 <!--NeedCopy-->

Specify the following parameters in the values.yml file.

Parameter Description

LocalRegion Local region where the GSLB controller is
deployed.

LocalCluster The name of the cluster in which the GSLB
controller is deployed. This value is unique for
each kubernetes cluster.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 84

NetScaler ingress controller

Parameter Description

sitedata[0].siteName The name of the first GSLB site configured in the
GSLB device.

sitedata[0].siteIp IP address for the first GSLB site. Add the IP
address of the NetScaler in site1 as
sitedata[0].siteIp.

sitedata[0].siteMask The netmask of the first GSLB site IP address.

sitedata[0].sitePublicIp The public IP address of the first GSLB Site.

sitedata[0].secretName The name of the secret that contains the login
credentials of the first GSLB site.

sitedata[0].siteRegion The region of the first site.

sitedata[1].siteName The name of the second GSLB site configured in
the GSLB device.

sitedata[1].siteIp IP address for the second GSLB site. Add the IP
address of the NetScaler in site2 as
sitedata[0].siteIp

sitedata[1].siteMask The netmask of the second GSLB site IP address.

sitedata[1].sitePublicIp The public IP address of the second GSLB site.

sitedata[1].secretName The secret containing the login credentials of the
second site.

sitedata[1].siteRegion The region of the second site.

Note:

The order of the GSLB site information should be the same in all the clusters. The first site
in the order is considered as the primary site for pushing the configuration. When that
primary site goes down, the next site in the list becomes the new primary.
For example, if the order of sites issite1 followed bysite2 in cluster1, all other clusters
should have the same order.

5. Verify the installation using the following command: kubectl get pods -l app=gslb-
release-netscaler-gslb-controller.

After the successful installation of the GSLB controller on each cluster, the ADNS service will be con‑
figured and the management access will be enabled on both the GSLB devices.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 85

NetScaler ingress controller

Synchronize GSLB configuration

Run the following commands in the same order on the primary NetScaler GSLB device to enable
automatic synchronization of the GSLB configuration between the primary and secondary GSLB de‑
vices.

1 set gslb parameter -automaticconfigsync enable
2 sync gslb config -debug
3 <!--NeedCopy-->

Examples for global traffic policy (GTP) deployments

The GTP configuration should be the same across all the clusters.

In the following examples, an application app1 is deployed in the default namespace of the cluster1
of the east region and default namespace of cluster2 of the west region.

Note:

The destination information in the GTP yaml should be in the format servicename.
namespace.region.cluster, where the servicename and namespace corresponds to the
Kubernetes object of kind Service and its namespace.

You can specify the load balancing method for canary and failover deployments.

Example 1: Round robin deployment

Use this deployment to distribute the traffic evenly across the clusters. The following example config‑
ures a GTP for round robin deployment.

You can use the weight field to direct more client requests to a specific cluster within a group.

1 kubectl apply -f - <<EOF
2 apiVersion: "citrix.com/v1beta1"
3 kind: globaltrafficpolicy
4 metadata:
5 name: gtp1
6 namespace: default
7 spec:
8 serviceType: 'HTTP'
9 hosts:

10 - host: 'app1.com'
11 policy:
12 trafficPolicy: 'ROUNDROBIN'
13 targets:
14 - destination: 'app1.default.east.cluster1'
15 weight: 2
16 - destination: 'app1.default.west.cluster2'

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 86

NetScaler ingress controller

17 weight: 5
18 monitor:
19 - monType: tcp
20 uri: ''
21 respCode: 200
22 EOF
23 <!--NeedCopy-->

Example 2: Failover deployment

Use this policy to configure the application in active‑passive mode. In a failover deployment, the
application is deployed in multiple clusters. Failover is achieved between the application instances
(target destinations) in different clusters based on the weight assigned to those target destinations in
the GTP policy.

The following example showsa sampleGTPconfiguration for failover. Using theprimary field, you can
specify which target destination is active and which target destination is passive. The default value
for the primary field is True indicating that the target destination is active. Bind a monitor to the
endpoints in each cluster to probe their health.

1 kubectl apply -f - <<EOF
2 apiVersion: "citrix.com/v1beta1"
3 kind: globaltrafficpolicy
4 metadata:
5 name: gtp1
6 namespace: default
7 spec:
8 serviceType: 'HTTP'
9 hosts:

10 - host: 'app1.com'
11 policy:
12 trafficPolicy: 'FAILOVER'
13 secLbMethod: 'ROUNDROBIN'
14 targets:
15 - destination: 'app1.default.east.cluster1'
16 weight: 1
17 - destination: 'app1.default.west.cluster2'
18 primary: false
19 weight: 1
20 monitor:
21 - monType: http
22 uri: ''
23 respCode: 200
24 EOF
25 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 87

NetScaler ingress controller

Example 3: RTT deployment

Use this policy tomonitor the real‑time statusof thenetwork anddynamically direct the client request
to the target destination with the lowest RTT value.

Following is a sample global traffic policy for round trip time deployment.

1 kubectl apply -f - <<EOF
2 apiVersion: "citrix.com/v1beta1"
3 kind: globaltrafficpolicy
4 metadata:
5 name: gtp1
6 namespace: default
7 spec:
8 serviceType: 'HTTP'
9 hosts:

10 - host: 'app1.com'
11 policy:
12 trafficPolicy: 'RTT'
13 targets:
14 - destination: 'app1.default.east.cluster1'
15 - destination: 'app1.default.west.cluster2'
16 monitor:
17 - monType: tcp
18 EOF
19 <!--NeedCopy-->

Example 4: Canary deployment

Use the canary deployment when you want to roll out new versions of the application to selected
clusters before moving it to production.

This section describes a sample global traffic policy with Canary deployment, where a new version of
an application needs to be rolled out before deploying in production.

In this example, an application is deployed in a cluster cluster2 in the west region. A new ver‑
sion of the application is getting deployed in cluster1 of the east region. Using the weight field
you can specify how much traffic is redirected to each cluster. Here, weight is specified as 40 per‑
cent. Hence, only 40 percent of the traffic is directed to the new version. If the weight field is not
mentioned for a destination, it is considered as part of the productionwhich takes themajority traffic.
When the newer version of the application is found as stable, the new version can be rolled out to
other clusters as well.

1 kubectl apply -f - <<EOF
2 apiVersion: "citrix.com/v1beta1"
3 kind: globaltrafficpolicy
4 metadata:
5 name: gtp1

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 88

NetScaler ingress controller

6 namespace: default
7 spec:
8 serviceType: 'HTTP'
9 hosts:

10 - host: 'app1.com'
11 policy:
12 trafficPolicy: 'CANARY'
13 secLbMethod: 'ROUNDROBIN'
14 targets:
15 - destination: 'app1.default.east.cluster1'
16 weight: 40
17 - destination: 'app1.default.west.cluster2'
18 monitor:
19 - monType: http
20 uri: ''
21 respCode: 200
22 EOF
23 <!--NeedCopy-->

Example 5: Static proximity

Use this policy to select the service that best matches the proximity criteria.

Following GTP is an example for static proximity deployment.

Note:

For static proximity, you need to apply the location database manually on all the GSLB devices:
add locationfile /var/netscaler/inbuilt_db/Citrix_Netscaler_InBuilt_GeoIP_DB_IPv4
.

1 kubectl apply -f - <<EOF
2 apiVersion: "citrix.com/v1beta1"
3 kind: globaltrafficpolicy
4 metadata:
5 name: gtp1
6 namespace: default
7 spec:
8 serviceType: 'HTTP'
9 hosts:

10 - host: 'app1.com'
11 policy:
12 trafficPolicy: 'STATICPROXIMITY'
13 targets:
14 - destination: 'app1.default.east.cluster1'
15 - destination: 'app1.default.west.cluster2'
16 monitor:
17 - monType: http
18 uri: ''
19 respCode: 200

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 89

NetScaler ingress controller

20 EOF
21 <!--NeedCopy-->

Example 6: source IP persistence

The following traffic policy is an example to enable source IP persistence by providing the parameter
sourceIpPersistenceId.

1 kubectl apply -f - <<EOF
2 apiVersion: "citrix.com/v1beta1"
3 kind: globaltrafficpolicy
4 metadata
5 name: gtp1
6 namespace: default
7 spec:
8 serviceType: 'HTTP'
9 hosts:

10 - host: 'app1.com'
11 policy:
12 trafficPolicy: 'ROUNDROBIN'
13 sourceIpPersistenceId: 300
14 targets:
15 - destination: 'app1.default.east.cluster1'
16 weight: 2
17 - destination: 'app1.default.west.cluster2'
18 weight: 5
19 monitor:
20 - monType: tcp
21 uri: ''
22 respCode: 200
23 EOF
24 <!--NeedCopy-->

Example for global service entry (GSE)

GSE configuration is applied in a specific cluster based on the cluster endpoint information. The GSE
namemust be the same as the target destination name in the global traffic policy.

Note:

Creating GSE is optional. If GSE is not created, NetScaler Ingress Controller looks for matching
ingress with host matching <svcname>.<namespace>.<region>.<cluster> format.

For a global traffic policy mentioned in the earlier section, here is the global service entry for clus‑
ter1. In this example, the global service entry name app1.default.east.cluster1 is one of
the target destination names in the global traffic policy created.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 90

NetScaler ingress controller

1 kubectl apply -f - <<EOF
2 apiVersion: "citrix.com/v1beta1"
3 kind: globalserviceentry
4 metadata:
5 name: 'app1.default.east.cluster1'
6 namespace: default
7 spec:
8 endpoint:
9 ipv4address: 10.102.217.70

10 monitorPort: 33036
11 EOF
12 <!--NeedCopy-->

Example: Ingress service or Service type LB

Example for Ingress service

The following sample YAML deploys Ingress service for GSE defined above.

1 kubectl apply -f - <<EOF
2 ---
3 apiVersion: networking.k8s.io/v1
4 kind: Ingress
5 metadata:
6 name: app1-ingress
7 namespace: default
8 annotations:
9 kubernetes.io/ingress.class: citrix

10 ingress.citrix.com/frontend-ip: 10.102.217.70
11 spec:
12 rules:
13 - host: app1.com
14 http:
15 paths:
16 - backend:
17 service:
18 name: app1
19 port:
20 number: 80
21 path: /
22 pathType: Prefix
23
24 ---
25 apiVersion: apps/v1
26 kind: Deployment
27 metadata:
28 name: app1
29 namespace: default
30 labels:
31 name: app1

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 91

NetScaler ingress controller

32 app: app1
33 appHostname: app1.com
34 spec:
35 selector:
36 matchLabels:
37 app: app1
38 replicas: 2
39 template:
40 metadata:
41 labels:
42 name: app1
43 app: app1
44 spec:
45 containers:
46 - name: app1
47 image: <application image>
48 ports:
49 - name: http-80
50 containerPort: 80
51 - name: https-443
52 containerPort: 443
53
54 ---
55 apiVersion: v1
56 kind: Service
57 metadata:
58 name: app1
59 namespace: default
60 labels:
61 app: app1
62 annotations:
63 service.citrix.com/class: citrix
64 spec:
65 ports:
66 - name: http-80
67 port: 80
68 targetPort: 80
69 - name: https-443
70 port: 443
71 targetPort: 443
72 selector:
73 name: app1
74 EOF
75 <!--NeedCopy-->

Example for service type LB

The following sample YAML deploys LB service for GSE defined above.

1 kubectl apply -f - <<EOF
2 ---
3 apiVersion: apps/v1

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 92

NetScaler ingress controller

4 kind: Deployment
5 metadata:
6 name: app1
7 namespace: default
8 labels:
9 name: app1

10 app: app1
11 appHostname: app1.com
12 spec:
13 selector:
14 matchLabels:
15 app: app1
16 replicas: 2
17 template:
18 metadata:
19 labels:
20 name: app1
21 app: app1
22 spec:
23 containers:
24 - name: app1
25 image: <application image>
26 ports:
27 - name: http-80
28 containerPort: 80
29 - name: https-443
30 containerPort: 443
31
32 ---
33 ---
34 apiVersion: v1
35 kind: Service
36 metadata:
37 name: app1
38 namespace: default
39 annotations:
40 service.citrix.com/class: citrix
41 service.citrix.com/frontend-ip: 10.102.217.70
42 spec:
43 type: LoadBalancer
44 ports:
45 - name: port-8080
46 port: 443
47 targetPort: 80
48 selector:
49 app: app1
50 status:
51 loadBalancer:
52 ingress:
53 - ip: 10.102.217.70
54 EOF
55 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 93

NetScaler ingress controller

NetScaler GSLB controller for single site

March 21, 2024

Overview

For ensuring high availability, proximity‑based load balancing, and scalability, you need to deploy
an application in multiple Kubernetes clusters. GSLB solution ensures better performance and relia‑
bility for your Kubernetes services that are exposed using Ingress. NetScaler GSLB controller config‑
ures NetScaler (GSLB device) to load balance services among geographically distributed locations. In
a single‑site GSLB solution, a GSLB device in a data center is configured by the GSLB controller de‑
ployed in each Kubernetes cluster of a data center. This GSLB device load balances services deployed
in multiple clusters of the data center.

The following diagram describes the deployment topology for NetScaler GSLB controller in a data
center with two Kubernetes clusters and a single GSLB site.

Note:

NetScaler (MPX or VPX) used for GSLB and Ingress can be the same or different. In the following
diagram, the same NetScaler is used for GSLB and Ingress.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 94

NetScaler ingress controller

The numbers in the following steps map to the numbers in the earlier diagram.

1. In each cluster, the NetScaler Ingress Controller configures NetScaler using Ingress.

2. In each cluster, the NetScaler GSLB controller configures the GSLB device with the GSLB config‑
uration.

3. A DNS query for the application URL is sent to the GSLB virtual server configured on NetScaler.
The DNS resolution on the GSLB virtual server resolves to an IP address on any one of the clus‑
ters based on the configured global traffic policy (GTP).

4. Based on the DNS resolution, data traffic lands on either the Ingress front‑end IP address or the
content switching virtual server IP address of one of the clusters.

5. The required application is accessed through the GSLB device.

Deploy NetScaler GSLB controller

The following steps describe how to deploy a GSLB controller in a cluster.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 95

NetScaler ingress controller

Note:

Repeat the steps to deploy a GSLB controller in other clusters.

1. Create the secrets required for the GSLB controller to connect to GSLB devices and push the
configuration from the GSLB controller.

1 kubectl create secret generic secret--from-literal=username=<
username for gslb device>--from-literal=password=<password for
gslb device>

2 <!--NeedCopy-->

Note:

This secret is provided as a parameter in the GSLB controller helm install command
for the respective sites. The username and password in the command specify the cre‑
dentials of a NetScaler (GSLB device) user.

2. Add the NetScaler Helm chart repository to your local Helm registry using the following com‑
mand:

1 helm repo add netscaler https://netscaler.github.io/netscaler-helm
-charts/

2 <!--NeedCopy-->

3. Install GSLB controller using the Helm chart by running the following command: helm
install my-release netscaler/netscaler-gslb-controller -f values.
yaml

Note:

The chart installs the recommended RBAC roles and role bindings by default.

Example values.yaml file:

1 license:
2 accept: yes
3
4 localRegion: "east"
5 localCluster: "cluster 1"
6
7 entityPrefix: "k8s"
8
9 sitedata:

10 - siteName: "site 1"
11 siteIp: "x.x.x.x"
12 siteMask:
13 sitePublicIp:
14 secretName: "secret"
15 siteRegion: "east"

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 96

NetScaler ingress controller

16 nsIP: "x.x.x.x"
17 crds.install: true
18 adcCredentialSecret: <Secret-for-NetScaler-credentials>
19 <!--NeedCopy-->

Specify the following parameters in the YAML file.

Parameter Description

LocalRegion Local region where the GSLB controller is
deployed. This value is the same for GSLB
controller deployment across all the clusters.

LocalCluster The name of the cluster in which the GSLB
controller is deployed. This value is unique for
each Kubernetes cluster.

sitedata[0].siteName The name of the GSLB site.

sitedata[0].siteIp IP address for the GSLB site. Add the IP address
of the NetScaler in site 1 as sitedata[0].siteIp.

sitedata[0].siteMask The netmask of the GSLB site IP address.

sitedata[0].sitePublicIp The site public IP address of the GSLB site.

sitedata[0].secretName The name of the secret that contains the login
credentials of the GSLB site.

sitedata[0].siteRegion The region of the GSLB site.

NSIP The SNIP (subnet IP address) of the GSLB device.
Add the sitedata[0].siteIp as SNIP on NetScaler.

crds.install: true This parameter installs the required GTP and
GSE CRDs on the GSLB device.

adcCredentialSecret The Kubernetes secret containing the login
credentials for the NetScaler VPX or MPX.

If you don’t specify nsIP, adcCredentialSecret parameters in the YAML file, you need to man‑
ually provision the GSLB sites, configure the ADNS service, and enable management access on each
GSLB device using the following commands:

• add ip <site-ip-address> 255.255.255.0 -mgmtAccess ENABLED
• add gslbsite site 1 <site1-ip-address> -publicIP
• add service adns_svc <site-ip-address> ADNS 53

After the successful installation of a GSLB controller on each cluster, GSLB site and ADNS service are
configured andmanagement access is enabled on the GSLB site IP address.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 97

NetScaler ingress controller

Global traffic policy examples

In the following examples, a stable application app1 is deployed in the default namespace of cluster
1 and cluster 2 in site 1.

Notes:

• Ensure that the GTP configuration is the same across all the clusters. For information on
GTP CRD and allowed values, see GTP CRD.

• The destination information in the GTP YAML should be in the format servicename.
namespace.region.cluster, where the service name andnamespace correspond to
the Kubernetes object of type Service and its namespace, respectively.

You can specify the load balancing method for canary and failover deployments.

Example 1: Round robin deployment

Use this deployment to distribute the traffic evenly across the clusters. The following example config‑
ures a GTP for round robin deployment.
You can use the weight field to direct more client requests to a specific cluster within a group.

1 kubectl apply -f - <<EOF
2 apiVersion: "citrix.com/v1beta1"
3 kind: globaltrafficpolicy
4 metadata
5 name: gtp1
6 namespace: default
7 spec:
8 serviceType: 'HTTP'
9 hosts:

10 - host: 'app1.com'
11 policy:
12 trafficPolicy: 'ROUNDROBIN'
13 targets:
14 - destination: 'app1.default.east.cluster1'
15 weight: 2
16 - destination: 'app1.default.east.cluster2'
17 weight: 5
18 monitor:
19 - monType: tcp
20 uri: ''
21 respCode: 200
22 EOF
23 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 98

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/gslb/gslb.html#gtp-crd-definition

NetScaler ingress controller

Example 2: Failover deployment

Use this policy to configure the application in active‑passive mode. In a failover deployment, the
application is deployed in multiple clusters. Failover is achieved between the instances in target des‑
tinations based on the weight assigned to those target destinations in the GTP policy.

The following example shows a sample GTP configuration for failover. Using the primary field, you
can specify which target destination is active and which target destination is passive. The default
value for theprimary field isTrue indicating that the target destination is active. Bind amonitor to
the endpoints in each cluster to probe their health.

1 kubectl apply -f - <<EOF
2 apiVersion: "citrix.com/v1beta1"
3 kind: globaltrafficpolicy
4 metadata:
5 name: gtp1
6 namespace: default
7 spec:
8 serviceType: 'HTTP'
9 hosts:

10 - host: 'app1.com'
11 policy:
12 trafficPolicy: 'FAILOVER'
13 secLbMethod: 'ROUNDROBIN'
14 targets:
15 - destination: 'app1.default.east.cluster1'
16 weight: 1
17 - destination: 'app1.default.east.cluster2'
18 primary: false
19 weight: 1
20 monitor:
21 - monType: http
22 uri: ''
23 respCode: 200
24 EOF
25 <!--NeedCopy-->

Example 3: RTT deployment

Use this policy tomonitor the real‑time statusof thenetwork anddynamically direct the client request
to the target destination with the lowest RTT value.

The following example configures a GTP for RTT deployment.

1 kubectl apply -f - <<EOF
2 apiVersion: "citrix.com/v1beta1"
3 kind: globaltrafficpolicy
4 metadata:
5 name: gtp1

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 99

NetScaler ingress controller

6 namespace: default
7 spec:
8 serviceType: 'HTTP'
9 hosts:

10 - host: 'app1.com'
11 policy:
12 trafficPolicy: 'RTT'
13 targets:
14 - destination: 'app1.default.east.cluster1'
15 - destination: 'app1.default.east.cluster2'
16 monitor:
17 - monType: tcp
18 EOF
19 <!--NeedCopy-->

Example 4: Canary deployment

Use the canary deployment when you want to roll out new versions of the application to selected
clusters before moving it to production.

This section describes a sample global traffic policy with Canary deployment, where you need to roll
out a newer version of an application in stages before deploying it in production.

In this example, a stable version of an application is deployed in cluster2. A new version of the ap‑
plication is deployed incluster1. Using theweight field, specify howmuch traffic is redirected to
each cluster. Here, weight is specified as 40 percent. Hence, only 40 percent of the traffic is directed
to the new version. If the weight field is not mentioned for a destination, it is considered as part of
the production which takes the majority traffic. When the newer version of the application is stable,
the new version can be rolled out to the other clusters.

1 kubectl apply -f - <<EOF
2 apiVersion: "citrix.com/v1beta1"
3 kind: globaltrafficpolicy
4 metadata:
5 name: gtp1
6 namespace: default
7 spec:
8 serviceType: 'HTTP'
9 hosts:

10 - host: 'app1.com'
11 policy:
12 trafficPolicy: 'CANARY'
13 secLbMethod: 'ROUNDROBIN'
14 targets:
15 - destination: 'app1.default.east.cluster1'
16 weight: 40
17 - destination: 'app1.default.east.cluster2'
18 monitor:
19 - monType: http

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 100

NetScaler ingress controller

20 uri: ''
21 respCode: 200
22 EOF
23 <!--NeedCopy-->

Example 5: Static proximity

Use this policy to select the service that best matches the proximity criteria. Following traffic policy
is an example for static proximity deployment.

Note:

For static proximity, youmust apply the location database manually: add locationfile /
var/netscaler/inbuilt_db/Citrix_Netscaler_InBuilt_GeoIP_DB_IPv4.

1 kubectl apply -f - <<EOF
2 apiVersion: "citrix.com/v1beta1"
3 kind: globaltrafficpolicy
4 metadata:
5 name: gtp1
6 namespace: default
7 spec:
8 serviceType: 'HTTP'
9 hosts:

10 - host: 'app1.com'
11 policy:
12 trafficPolicy: 'STATICPROXIMITY'
13 targets:
14 - destination: 'app1.default.east.cluster1'
15 - destination: 'app1.default.east.cluster2'
16 monitor:
17 - monType: http
18 uri: ''
19 respCode: 200
20 EOF
21 <!--NeedCopy-->

Example 6: Source IP persistence

The following traffic policy is an example to enable source IP persistence by providing the parameter
sourceIpPersistenceId.

1 kubectl apply -f - <<EOF
2 apiVersion: "citrix.com/v1beta1"
3 kind: globaltrafficpolicy
4 metadata
5 name: gtp1
6 namespace: default

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 101

NetScaler ingress controller

7 spec:
8 serviceType: 'HTTP'
9 hosts:

10 - host: 'app1.com'
11 policy:
12 trafficPolicy: 'ROUNDROBIN'
13 sourceIpPersistenceId: 300
14 targets:
15 - destination: 'app1.default.east.cluster1'
16 weight: 2
17 - destination: 'app1.default.east.cluster2'
18 weight: 5
19 monitor:
20 - monType: tcp
21 uri: ''
22 respCode: 200
23 EOF
24 <!--NeedCopy-->

Global service entry (GSE) examples

GSE configuration is applied in a specific cluster based on the cluster endpoint information. The GSE
namemust be the same as the target destination name in the global traffic policy.

Note:

Creating GSE is optional. If GSE is not created, NetScaler Ingress Controller looks for matching
ingress with host matching <svcname>.<namespace>.<region>.<cluster> format.

For a global traffic policy mentioned in the earlier examples, the following YAML is the global
service entry for cluster1. In this example, the global service entry name app1.default.east.
cluster1 is one of the target destination names in the global traffic policy.

1 kubectl apply -f - <<EOF
2 apiVersion: "citrix.com/v1beta1"
3 kind: globalserviceentry
4 metadata:
5 name: 'app1.default.east.cluster1'
6 namespace: default
7 spec:
8 endpoint:
9 ipv4address: 10.102.217.70

10 monitorPort: 33036
11 EOF
12 <!--NeedCopy-->

For a global traffic policy mentioned in the earlier examples, the following YAML is the global
service entry for cluster2. In this example, the global service entry name app1.default.east.
cluster2 is one of the target destination names in the global traffic policy.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 102

NetScaler ingress controller

1 kubectl apply -f - <<EOF
2 apiVersion: "citrix.com/v1beta1"
3 kind: globalserviceentry
4 metadata:
5 name: 'app1.default.east.cluster2'
6 namespace: default
7 spec:
8 endpoint:
9 ipv4address: 10.102.217.70

10 monitorPort: 33036
11 EOF
12 <!--NeedCopy-->

Service Mesh lite

December 31, 2023

An Ingress solution (either hardware or virtualized or containerized) typically performs L7 proxy func‑
tions for north‑south (N‑S) traffic. The Service Mesh lite architecture uses the same Ingress solution
to manage east‑west traffic as well.

In a standard Kubernetes deployment, east‑west (E‑W) traffic traverses the built‑in kube‑proxy de‑
ployed in each node. Kube‑proxy is an L4 proxy that can only perform TCP/UDP based load balancing
and cannot offer the benefits provided by an L7 proxy.

NetScaler (MPX, VPX, or CPX) can provide the benefits of L7 proxy for E‑W traffic such as:

• Mutual TLS and SSL offload.
• Content based routing, allow or block traffic based on HTTP and HTTPS header parameters.
• Advanced load balancing algorithms (least connections or least response time).
• Observability of east‑west traffic through measuring golden signals (errors, latencies, satura‑
tion, traffic volume). NetScaler ADM Service Graph is an observability solution to monitor and
debugmicroservices.

A Service Mesh architecture (such as Istio or LinkerD) is complex to manage. Service Mesh lite archi‑
tecture is a lightweight version andmuch simpler to get started to achieve the same requirements.

To configure east‑west communication with NetScaler CPX in a Service mesh lite architecture, you
must first understand how the kube‑proxy is configured to manage east‑west traffic.

East‑west communication with kube‑proxy

Whenyoucreate aKubernetesdeployment for amicroservice, Kubernetesdeploys a set of podsbased
on the replica count. To access those pods, you create a Kubernetes service which provides an ab‑

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 103

NetScaler ingress controller

straction to access those pods. The abstraction is provided by assigning a Cluster IP address to the
service.

KubernetesDNSgets populatedwith anaddress record thatmaps the servicenamewith theCluster IP
address. So, when an application, say teawants to access a microservice named coffee then DNS
returns the Cluster IP address of the coffee service to the tea application. The tea application
initiates a connection which is then intercepted by kube‑proxy to load balance it to a set of coffee
pods.

East‑west communication with NetScaler CPX in Service Mesh Lite architecture

The goal is to insert the NetScaler CPX in the east‑west path and use the Ingress rules to control this
traffic.

Perform the following steps to configure east‑west communication with NetScaler CPX.

Step 1: Modify the coffee service definition to point to NetScaler CPX

For NetScaler CPX to manage east‑west traffic, the FQDN of the microservice (for example, coffee
) should point to the NetScaler CPX IP address instead of the Cluster IP of the target microservice
(coffee). (This NetScaler CPX deployment can be the same as the Ingress NetScaler CPX device.)
After thismodification, when a pod in the Kubernetes cluster resolves the FQDN for the coffee service,
the IP address of the NetScaler CPX is returned.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 104

NetScaler ingress controller

Note:

If you are deploying service mesh lite to bring up the service graph in NetScaler ADM for observ‑
ability, then you should add the labelcitrix-adc: cpx in all the services of your application
which are pointing to the NetScaler CPX IP address after modifying the service.

Step 2: Create a headless service named coffee-headless for coffeemicroservice pods

Since you havemodified the coffee service to point to NetScaler CPX, you need to create onemore
service that represents coffeemicroservice deployment.

The following is a sample headless service resource:

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: coffee-headless
5 spec:
6 #headless Service
7 clusterIP: None
8 ports:
9 - name: coffee-443

10 port: 443
11 targetPort: 443
12 selector:
13 name: coffee-deployment
14 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 105

NetScaler ingress controller

Step 3: Create an Ingress resource with rules for the coffee-headless service

With the changes in the previous steps, you are now ready to create an Ingress object that configures
the NetScaler CPX to control the east‑west traffic to the coffeemicroservice pods.

The following is a sample Ingress resource:

Using the usual Ingress load balancingmethodologywith these changes, NetScaler CPX can now load
balance the east‑west traffic. The following diagrams show how the NetScaler CPX Service Mesh Lite
architecture provides L7 proxying for east‑west communication between tea and coffeemicroser‑
vices using the Ingress rules:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 106

NetScaler ingress controller

East‑west communication with NetScaler MPX or VPX in Service Mesh lite architecture

NetScaler MPX or VPX acting as an Ingress can also load balance east‑west microservice communica‑
tion in a similar way as mentioned in the previous section with slight modifications. The following
procedure shows how to achieve the same.

Step 1: Create an external service resolving the coffee host name to NetScaler MPX/VPX IP
address

There are two ways to do it. You can add an external service mapping a host name or by using an IP
address.

Mapping by a host name (CNAME)

• Create a domain name for the Ingress endpoint IP address(Content Switching virtual server
IP address) in NetScaler MPX or VPX (for example, myadc–instance1.us-east-1.
mydomain.com) and update it in your DNS server.

• Create a Kubernetes service for coffee with externalName as myadc–instance1.us-
east-1.mydomain.com.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 107

NetScaler ingress controller

• Now, when any pod looks up for the coffeemicroservice a CNAME(myadc–instance1.us
-east-1.mydomain.com) is returned.

1 kind: Service
2 apiVersion: v1
3 metadata:
4 name: coffee
5 spec:
6 type: ExternalName
7 externalName: myadc – instance1.us-east-1.mydomain.com
8 <!--NeedCopy-->

Mapping a host name to an IP address When you want your application to use the host name
coffee that will redirect to the virtual IP address hosted in NetScaler MPX or VPX, you can create
the following:

1 ---
2 kind: "Service"
3 apiVersion: "v1"
4 metadata:
5 name: "coffee"
6 spec:
7 ports:
8 -
9 name: "coffee"

10 protocol: "TCP"
11 port: 80
12 ---
13 kind: "Endpoints"
14 apiVersion: "v1"
15 metadata:
16 name: "coffee"
17 subsets:
18 -
19 addresses:
20 -
21 ip: "1.1.1.1" # Ingress IP in MPX
22 ports:
23 -
24 port: 80
25 name: "coffee"
26 <!--NeedCopy-->

Step 2: Create a headless service for microservice pods

Since you have modified the coffee service to point to NetScaler MPX, you need to create one more
service that represents coffeemicroservice deployment.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 108

NetScaler ingress controller

Step 3: Create an Ingress resource

Create an Ingress resource using the ingress.citrix.com/frontend-ip annotation where
the value matches the Ingress endpoint IP address in NetScaler MPX or VPX.

Now, you can create an Ingress object that configures the NetScaler MPX or VPX to control the east‑
west traffic to the coffeemicroservice pods.

The following is a sample ingress resource:

Using the usual ingress load balancingmethodologywith these changes NetScaler MPX can now load
balance east‑west traffic. The following diagram shows a NetScaler MPX or VPX configured as the N‑S
and E‑W proxy using the Ingress rules.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 109

NetScaler ingress controller

Automated deployment of applications in Service Mesh lite

Todeploy an application in a ServiceMesh lite architecture, you need to performmultiple tasksmanu‑
ally. However, when youwant to deploymultiple applications which consist of several microservices,
you have an easier way to deploy the services in a Service Mesh lite architecture. NetScaler provides
you an automated way to generate ready to deploy YAMLs.

This document provides information on how to generate all the necessary YAMLs for ServiceMesh lite
deployment from your existing YAMLs using the NetScaler provided script.

Deploy the NetScaler Ingress Controller as an OpenShift router plug‑in

December 31, 2023

In anOpenShift cluster, external clients needaway to access the services providedbypods. OpenShift
provides two resources for communicating with services running in the cluster: routes and Ingress.

In an OpenShift cluster, a route exposes a service on a given domain name or associates a domain
namewith a service. OpenShift routers route external requests to services inside theOpenShift cluster
according to the rules specified in routes. When youuse theOpenShift router, youmust also configure
the external DNS to make sure that the traffic is landing on the router.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 110

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/deploy/service-mesh-lite-script.md
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html
https://kubernetes.io/docs/concepts/services-networking/ingress/

NetScaler ingress controller

The NetScaler Ingress Controller can be deployed as a router plug‑in in the OpenShift cluster to inte‑
gratewith NetScalers deployed in your environment. The NetScaler Ingress Controller enables you to
use the advanced load balancing and traffic management capabilities of NetScaler with your Open‑
Shift cluster.

OpenShift routes can be secured or unsecured. Secured routes specify the TLS termination of the
route.

The NetScaler Ingress Controller supports the following OpenShift routes:

• Unsecured Routes: For Unsecured routes, HTTP traffic is not encrypted.

• EdgeTermination: For edge termination, TLS is terminatedat the router. Traffic fromthe router
to the endpoints over the internal network is not encrypted.

• Passthrough Termination: With passthrough termination, the router is not involved in TLS of‑
floading and encrypted traffic is sent straight to the destination.

• Re‑encryption Termination: In re‑encryption termination, the router terminates the TLS con‑
nection but then establishes another TLS connection to the endpoint.

For detailed information on routes, see the OpenShift documentation.

You can either deploy a NetScaler MPX or VPX appliance outside the OpenShift cluster or deploy
NetScaler CPXs as pods inside the cluster. TheNetScaler Ingress Controller integrates NetScalerswith
the OpenShift cluster and automatically configures NetScalers based on rules specified in routes.

Basedonhowyouwant touseNetScaler, thereare twoways todeploy theNetScaler IngressController
as a router plug‑in in the OpenShift cluster:

• As a sidecar container alongside NetScaler CPX in the same pod: In this mode, the NetScaler
Ingress Controller configures the NetScaler CPX.

• As a standalone pod in the OpenShift cluster: In this mode, you can control the NetScaler MPX
or VPX appliance deployed outside the cluster.

For information on deploying the NetScaler Ingress Controller to control the OpenShift ingress, see
the NetScaler Ingress Controller for Kubernetes.

You can use NetScaler for load balancing OpenShift control plane (master nodes). NetScaler provides
a solution to automate the configuration of NetScaler using Terraform instead of manually configur‑
ing the NetScaler. For more information, see NetScaler as a load balancer for the OpenShift control
plane.

Alternate Backend Support

OpenShift Alternate backends is now supported by NetScaler Ingress Controller.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 111

https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#secured-routes
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/index.html
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/openshift/citrix-adc-for-control-plane/README.md
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/openshift/citrix-adc-for-control-plane/README.md
https://docs.openshift.com/container-platform/3.7/architecture/networking/routes.html#alternateBackends

NetScaler ingress controller

NetScaler is configured according to theweights provided in the routes definition and traffic is distrib‑
uted among the service pods based on those weights.

The following is an example of a route manifest with alternate backend:

1 kind: Route
2 apiVersion: route.openshift.io/v1
3 metadata:
4 name: r1
5 labels:
6 name: apache
7 annotations:
8 ingress.citrix.com/frontend-ip: "<Frontend-ip>"
9 spec:

10 host: some.alternate-backends.com
11 to:
12 kind: Service
13 name: apache-1
14 weight: 30
15 alternateBackends:
16 - kind: Service
17 name: apache-2
18 weight: 20
19 - kind: Service
20 name: apache-3
21 weight: 50
22 port:
23 targetPort: 80
24 wildcardPolicy: None
25 <!--NeedCopy-->

For this route, 30 percent of the traffic is sent to the service apache‑1 and 20 percent is sent to the
service apache2 and 50 percent to the service apache‑3 based on weights provided in the route man‑
ifest

Supported Citrix components on OpenShift

Citrix components Versions

NetScaler Ingress Controller Latest

NetScaler VPX 12.1 50.x and later

NetScaler CPX 13.0–36.28

Note:

CRDs provided for the NetScaler Ingress Controller is not supported for OpenShift routes. You

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 112

https://github.com/citrix/citrix-k8s-ingress-controller/tree/master/crd

NetScaler ingress controller

can use OpenShift ingress to use CRDs.

Deploy NetScaler CPX as a router within the OpenShift cluster

In this deployment, you can use the NetScaler CPX instance for load balancing the North‑South traffic
to microservices in your OpenShift cluster. The NetScaler Ingress Controller is deployed as a sidecar
alongside the NetScaler CPX container in the same pod using the cpx_cic_side_car.yaml file.

Beforeyoubegin: WhenyoudeployNetScalerCPXas a router, port conflicts canarisewith thedefault
router in OpenShift. You should remove the default router in OpenShift before deploying NetScaler
CPX as a router. To remove the default router in OpenShift, perform the following steps:

1. Back up the default router configuration using the following command.

1 oc get -o yaml dc/router clusterrolebinding/router-router-role
serviceaccount/router > default-router-backup.yaml

2. Delete the default router using the following command.

1 oc delete -f default-router-backup.yaml

Perform the following steps to deploy NetScaler CPX as a router with the NetScaler Ingress Controller
as a sidecar.

1. Download the cpx_cic_side_car.yaml file using the following command:

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-
controller/master/deployment/openshift/manifest/
cpx_cic_side_car.yaml

2. Add the service account to privileged security context constraints (SCC) of OpenShift.

1 oc adm policy add-scc-to-user privileged system:serviceaccount:
default:citrix

3. Deploy the NetScaler Ingress Controller using the following command:

1 oc create -f cpx_cic_side_car.yaml

4. Verify if the NetScaler Ingress Controller is deployed successfully using the following command:

1 oc get pods --all-namespaces

Deploy NetScaler MPX/VPX as a router outside the OpenShift cluster

In this deployment, the NetScaler Ingress Controller which runs as a stand‑alone pod allows you to
control the NetScaler MPX, or VPX appliance from the OpenShift cluster.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 113

https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/openshift/manifest/cpx_cic_side_car.yaml
https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/openshift/manifest/cpx_cic_side_car.yaml

NetScaler ingress controller

You can use the cic.yaml file for this deployment.

Note: The NetScaler MPX or VPX can be deployed in standalone, high‑availability, or clustered
modes.

Prerequisites

• Determine the IP address needed by the NetScaler Ingress Controller to communicate with the
NetScaler appliance. The IP address might be any one of the following depending on the type
of NetScaler deployment:

– NSIP (for standalone appliances): The management IP address of a standalone NetScaler
appliance. For more information, see IP Addressing in NetScaler.

– SNIP (for appliances in High Availability mode): The subnet IP address. For more informa‑
tion, see IP Addressing in NetScaler.

– CLIP (for appliances in clustered mode): The cluster management IP (CLIP) address for a
clustered NetScaler deployment. For more information, see IP addressing for a cluster.

• The user name and password of the NetScaler VPX or MPX appliance used as the Ingress de‑
vice. If you are not using the default credentials, the NetScaler appliance must have a system
user account with certain privileges so that the NetScaler Ingress Controller can configure the
NetScaler MPX, or VPX appliance. To create a system user account on NetScaler, see Create a
system user account for the NetScaler Ingress Controller in NetScaler.

You can directly pass the user name and password as environment variables to the NetScaler
Ingress Controller or use OpenShift secrets (recommended). If you want to use OpenShift se‑
crets, create a secret for the user name and password using the following command:

1 oc create secret generic nslogin --from-literal=username=<
username> --from-literal=password=<password>

Create a system user account for the NetScaler Ingress Controller in NetScaler The NetScaler
Ingress Controller configures a NetScaler appliance (MPX or VPX) using a system user account of the
NetScaler appliance. The system user account must have the permissions to configure the following
tasks on the NetScaler:

• Add, Delete, or View Content Switching (CS) virtual server
• Configure CS policies and actions
• Configure Load Balancing (LB) virtual server
• Configure Service groups
• Cofigure SSL certkeys
• Configure routes

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 114

https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/openshift/manifest/cic.yaml
https://docs.citrix.com/en-us/citrix-adc/12-1/getting-started-with-citrix-adc.html
https://docs.citrix.com/en-us/citrix-adc/12-1/getting-started-with-citrix-adc/configure-ha-first-time.html
https://docs.citrix.com/en-us/citrix-adc/12-1/clustering.html
https://docs.citrix.com/en-us/citrix-adc/12-1/networking/ip-addressing.html
https://docs.citrix.com/en-us/citrix-adc/12-1/networking/ip-addressing.html
https://docs.citrix.com/en-us/citrix-adc/12-1/clustering/cluster-overview/ip-addressing.html

NetScaler ingress controller

• Configure user monitors
• Add system file (for uploading SSL testkeys from OpenShift)
• Configure Virtual IP address (VIP)
• Check the status of the NetScaler appliance
• Configure SSL actions and policies
• Configure SSL vServer
• Configure responder actions and policies

To create the system user account, perform the following:

1. Log on to the NetScaler appliance using the following steps:

a) Use an SSH client, such as PuTTy, to open an SSH connection to the NetScaler appliance.

b) Log on to the appliance by using the administrator credentials.

2. Create the system user account using the following command:

1 add system user <username> <password>

For example:

1 add system user cic mypassword

3. Create a policy to provide required permissions to the system user account. Use the following
command:

1 add cmdpolicy cic-policy ALLOW '^\(\?!shell)\(\?!sftp)\(\?!scp)
\(\?!batch)\(\?!source)\(\?!.*superuser)\(\?!.*nsroot)\(\?!
install)\(\?!show\s+system\s+\(user|cmdPolicy|file))\(\?!\(set|
add|rm|create|export|kill)\s+system)\(\?!\(unbind|bind)\s+
system\s+\(user|group))\(\?!diff\s+ns\s+config)\(\?!\(set|unset
|add|rm|bind|unbind|switch)\s+ns\s+partition).*|\(^install\s
*\(wi|wf))|\(^\S+\s+system\s+file)^\(\?!shell)\(\?!sftp)\(\?!
scp)\(\?!batch)\(\?!source)\(\?!.*superuser)\(\?!.*nsroot)
\(\?!install)\(\?!show\s+system\s+\(user|cmdPolicy|file))
\(\?!\(set|add|rm|create|export|kill)\s+system)\(\?!\(unbind|
bind)\s+system\s+\(user|group))\(\?!diff\s+ns\s+config)\(\?!\(
set|unset|add|rm|bind|unbind|switch)\s+ns\s+partition).*|\(^
install\s*\(wi|wf))|\(^\S+\s+system\s+file)'

Note: The system user account would have privileges based on the command policy that you
define.

The command policy mentioned in step 3 is similar to the built‑in sysAdmin command policy
with another permission to upload files.

In the commandpolicy specification provided, special characterswhich need to be escaped are
already omitted to easily copy‑paste into the NetScaler command line.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 115

NetScaler ingress controller

For configuring the command policy from the NetScaler configuration wizard (GUI), use the fol‑
lowing command policy specification.

1 ^\(?!shell)\(?!sftp)\(?!scp)\(?!batch)\(?!source)\(?!.*superuser)
\(?!.*nsroot)\(?!install)\(?!show\s+system\s+\(user|cmdPolicy|
file))\(?!\(set|add|rm|create|export|kill)\s+system)\(?!\(
unbind|bind)\s+system\s+\(user|group))\(?!diff\s+ns\s+config)
\(?!\(set|unset|add|rm|bind|unbind|switch)\s+ns\s+partition)
.*|\(^install\s*\(wi|wf))|\(^\S+\s+system\s+file)^\(?!shell)
\(?!sftp)\(?!scp)\(?!batch)\(?!source)\(?!.*superuser)\(?!.*
nsroot)\(?!install)\(?!show\s+system\s+\(user|cmdPolicy|file))
\(?!\(set|add|rm|create|export|kill)\s+system)\(?!\(unbind|bind
)\s+system\s+\(user|group))\(?!diff\s+ns\s+config)\(?!\(set|
unset|add|rm|bind|unbind|switch)\s+ns\s+partition).*|\(^
install\s*\(wi|wf))|\(^\S+\s+system\s+file)

4. Bind the policy to the system user account using the following command:

1 bind system user cic cic-policy 0

Deploy the NetScaler Ingress Controller as a pod in an OpenShift cluster

Perform the following steps to deploy the NetScaler Ingress Controller as a pod:

1. Download the cic.yaml file using the following command:

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-
controller/master/deployment/openshift/manifest/cic.yaml

2. Edit the cic.yaml file and enter the values for the following environmental variables:

Environment Variable Mandatory or Optional Description

NS_IP Mandatory The IP address of the NetScaler
appliance. For more details,
see Prerequisites.

NS_USER and NS_PASSWORD Mandatory The user name and password
of the NetScaler VPX or MPX
appliance used as the Ingress
device. For more details, see
Prerequisites.

EULA Mandatory The End User License
Agreement. Specify the value
as Yes.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 116

https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/openshift/manifest/cic.yaml
https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/openshift/manifest/cic.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/tree/master/deployment/openshift#prerequisites
https://github.com/citrix/citrix-k8s-ingress-controller/tree/master/deployment/openshift#prerequisites

NetScaler ingress controller

Environment Variable Mandatory or Optional Description

NS_VIP Optional NetScaler Ingress Controller
uses the IP address provided in
this environment variable to
configure a virtual IP address to
the NetScaler that receives
Ingress traffic. Note: NS_VIP
acts as a fallback when the
frontend‑ip annotation is not
provided in Ingress or Route
yaml. Not supported for Type
Loadbalancer service.

3. Add the service account to privileged security context constraints (SCC) of OpenShift.

1 oc adm policy add-scc-to-user privileged system:serviceaccount:
default:citrix

4. Save the edited cic.yaml file and deploy it using the following command:

1 oc create -f cic.yaml

5. Verify if the NetScaler Ingress Controller is deployed successfully using the following command:

1 oc create get pods --all-namespaces

6. Configure static routes on NetScaler VPX or MPX to reach the pods inside the OpenShift cluster.

a) Use the following command to get the information about host names, host IP addresses,
and subnets for static route configuration.

1 oc get hostsubnet

b) Log on to the NetScaler instance.

c) Add the route on the NetScaler instance using the following command.

1 add route <pod_network> <netmask> <gateway>

1 Example:
2
3 oc get hostsubnet
4
5 NAME HOST HOST IP SUBNET
6 os.example.com os.example.com 192.168.122.46 192.1.1.0/24
7

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 117

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/configure/annotations.md

NetScaler ingress controller

8 From the output of the `oc get hostsubnet` command:
9

10 <pod_network> = 192.1.1.0
11 Value for subnet = 192.1.1.0/x where x = 24 that means <

netmask>= 255.255.255.0
12 <gateway> = 192.168.122.46
13
14 The required static route to add on NetScaler is as follows:
15
16 add route 10.1.1.0 255.255.255.0 192.168.122.46

Example: Deploy the NetScaler Ingress Controller as a router plug‑in in an OpenShift
cluster

In this example, the NetScaler Ingress Controller is deployed as a router plug‑in in the OpenShift clus‑
ter to load balance an application.

1. Deploy a sample application (apache.yaml) in your OpenShift cluster and expose it as a service
in your cluster using the following command.

1 oc create -f https://raw.githubusercontent.com/citrix/citrix-k8s-
ingress-controller/master/deployment/openshift/manifest/apache.
yaml

Note:
When you deploy a normal Apache pod in OpenShift, it may fail as Apache pod always runs as a
root pod. OpenShift has strict security checks which block running a pod as root or binding to
port 80. As a workaround, you can add the default service account of the pod to the privileged
security context of OpenShift by using the following commands:

1 oc adm policy add-scc-to-user privileged system:serviceaccount
:default:default

2 oc adm policy add-scc-to-group anyuid system:authenticated

The content of the apache.yaml file is given as follows.

1 ---
2 apiVersion: apps/v1
3 kind: Deployment
4 metadata:
5 labels:
6 name: apache-only-http
7 name: apache-only-http
8 spec:
9 replicas: 4

10 selector:
11 matchLabels:
12 app: apache-only-http
13 template:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 118

https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/openshift/manifest/apache.yaml

NetScaler ingress controller

14 metadata:
15 labels:
16 app: apache-only-http
17 spec:
18 containers:
19 - image: raghulc/apache-multiport-http:1.0.0
20 imagePullPolicy: IfNotPresent
21 name: apache-only-http
22 ports:
23 - containerPort: 80
24 protocol: TCP
25 - containerPort: 5080
26 protocol: TCP
27 - containerPort: 5081
28 protocol: TCP
29 - containerPort: 5082
30 protocol: TCP
31 ---
32 apiVersion: apps/v1
33 kind: Deployment
34 metadata:
35 labels:
36 name: apache-only-ssl
37 name: apache-only-ssl
38 spec:
39 replicas: 4
40 selector:
41 matchLabels:
42 app: apache-only-ssl
43 template:
44 metadata:
45 labels:
46 app: apache-only-ssl
47 spec:
48 containers:
49 - image: raghulc/apache-multiport-ssl:1.0.0
50 imagePullPolicy: IfNotPresent
51 name: apache-only-ssl
52 ports:
53 - containerPort: 443
54 protocol: TCP
55 - containerPort: 5443
56 protocol: TCP
57 - containerPort: 5444
58 protocol: TCP
59 - containerPort: 5445
60 protocol: TCP
61 ---
62 apiVersion: v1
63 kind: Service
64 metadata:
65 name: svc-apache-multi-http
66 spec:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 119

NetScaler ingress controller

67 ports:
68 - name: apache-http-6080
69 port: 6080
70 targetPort: 5080
71 - name: apache-http-6081
72 port: 6081
73 targetPort: 5081
74 - name: apache-http-6082
75 port: 6082
76 targetPort: 5082
77 selector:
78 app: apache-only-http
79 ---
80 apiVersion: v1
81 kind: Service
82 metadata:
83 name: svc-apache-multi-ssl
84 spec:
85 ports:
86 - name: apache-ssl-6443
87 port: 6443
88 targetPort: 5443
89 - name: apache-ssl-6444
90 port: 6444
91 targetPort: 5444
92 - name: apache-ssl-6445
93 port: 6445
94 targetPort: 5445
95 selector:
96 app: apache-only-ssl
97 ---

2. Deploy theNetScaler Ingress Controller for NetScaler VPX as a stand‑alone pod in theOpenShift
cluster using the steps in Deploy the NetScaler Ingress Controller as a pod.

1 oc create -f cic.yaml

Note:
To deploy the NetScaler Ingress Controller with NetScaler CPX in the OpenShift cluster, perform
the steps in Deploy the NetScaler Ingress Controller as a sidecar with NetScaler CPX.

3. Create an OpenShift route for exposing the application.

• For creatinganunsecuredOpenShift route (unsecured‑route.yaml), use the following com‑
mand:

1 oc create -f unsecured-route.yaml

• For creating a secured OpenShift route with edge termination (secured‑edge‑route.yaml),
use the following command.

1 oc create -f secured-route-edge.yaml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 120

https://github.com/citrix/citrix-k8s-ingress-controller/tree/master/deployment/openshift#deploy-the-citrix-ingress-controller-as-a-pod-in-an-openshift-cluster
https://github.com/citrix/citrix-k8s-ingress-controller/tree/master/deployment/openshift#deploy-citrix-adc-cpx-as-a-router-within-the-openshift-cluster
https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/openshift/manifest/unsecured-route.yaml
https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/openshift/manifest/secured-edge-route.yaml

NetScaler ingress controller

• For creating a secured OpenShift route with passthrough termination (secured‑
passthrough‑route.yaml), use the following command.

1 oc create -f secured-passthrough-route.yaml

• For creatinga securedOpenShift routewith re‑encryption termination (secured‑reencrypt‑
route.yaml), use the following command.

1 oc create -f secured-reencrypt-route.yaml

To see the contents of the YAML files for OpenShift routes in this example, see YAML files for
routes.

Note:

For a securedOpenShift routewith passthrough termination, youmust include the default
certificate.

4. Access the application using the following command.

1 curl http://<VIP of NetScaler VPX>/ -H 'Host: < host-name-as-per
-the-host-configuration-in-route >'

2 <!--NeedCopy-->

YAML files for routes

This section contains YAML files for unsecured and secured routes specified in the example.

Note:
Keys used in this example are for testing purpose only. You must create your own keys for the actual
deployment.

The contents of the unsecured-route.yaml file is given as follows:

1 apiVersion: v1
2 kind: Route
3 metadata:
4 name: unsecured-route
5 spec:
6 host: unsecured-route.openshift.citrix-cic.com
7 path: "/"
8 to:
9 kind: Service

10 name: svc-apache-multi-http
11 <!--NeedCopy-->

See, secured‑edge‑route for the contents of the secured-edge-route.yaml file.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 121

https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/openshift/manifest/secured-passthrough-route.yaml
https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/openshift/manifest/secured-passthrough-route.yaml
https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/openshift/manifest/secured-reencrypt-route.yaml
https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/openshift/manifest/secured-reencrypt-route.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/tree/master/deployment/openshift#yaml-files-for-routes
https://github.com/citrix/citrix-k8s-ingress-controller/tree/master/deployment/openshift#yaml-files-for-routes
https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/openshift/manifest/secured-edge-route.yaml

NetScaler ingress controller

The contents of the secured-passthrough-route is given as follows:

1 apiVersion: v1
2 kind: Route
3 metadata:
4 name: secured-passthrough-route
5 spec:
6 host: secured-passthrough-route.openshift.citrix-cic.com
7 to:
8 kind: Service
9 name: svc-apache-multi-ssl

10 tls:
11 termination: passthrough
12 <!--NeedCopy-->

See, secured‑reencrypt‑route for the contents of the secured-reencrypt-route.yaml file.

Deploy the NetScaler Ingress Controller with OpenShift router sharding
support

December 31, 2023

OpenShift router sharding allows distributing a set of routes among multiple OpenShift routers. By
default, an OpenShift router selects all routes from all namespaces. In router sharding, labels are
added to routes or namespaces and label selectors to routers for filtering routes. Each router shard
selects only routes with specific labels that match its label selection parameters.

NetScaler can be integrated with OpenShift in two ways and both deployments support OpenShift
router sharding.

• NetScaler CPX deployed as an OpenShift router along with NetScaler Ingress Controller inside
the cluster

• NetScaler Ingress Controller as a router plug‑in for NetScaler MPX or VPX deployed outside the
cluster

To configure router sharding for a NetScaler deployment onOpenShift, a NetScaler Ingress Controller
instance is required per shard. The NetScaler Ingress Controller instance is deployed with route or
namespace labels or both as environment variables depending on the criteria required for sharding.
When the NetScaler Ingress Controller processes a route, it compares the route’s labels or route’s
namespace labels with the selection criteria configured on it. If the route satisfies the criteria, the
appropriate configuration is applied to NetScaler, otherwise it does not apply the configuration.

In router sharding, selecting a subset of routes from the entire pool of routes is based on selection
expressions. Selection expressions are a combination of multiple values and operations.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 122

https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/openshift/manifest/secured-reencrypt-route.yaml
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#router-sharding

NetScaler ingress controller

For example, consider there are some routes with various labels for service level agreement(sla), ge‑
ographical location (geo), hardware requirements (hw), department (dept), type, and frequency as
shown in the following table.

Label Values

sla high, medium, low

geo east, west

hw modest, strong

dept finance, dev, ops

type static, dynamic

frequency high, weekly

The following table shows selectors for route labels or namespace labels and a few sample selection
expressions based on labels in the example. Route selection criteria is configured on the NetScaler
Ingress Controller by using environment variables ROUTE_LABELS and NAMESPACE_LABLES.

Type of selector Example

OR operation ROUTE_LABELS=’dept in (dev, ops)’

AND operation ROUTE_LABELS=’
hw=strong,type=dynamic,geo=west’

NOT operation ROUTE_LABELS=’dept!= finance’

Exact match NAMESPACE_LABELS=’frequency=weekly’

Exact match with both route and namespace
labels

NAMESPACE_LABELS=’frequency=weekly’
ROUTE_LABELS=’sla=low’

Key basedmatching independent of value NAMESPACE_LABELS=’name’

NOT operation with key basedmatching
independent of value

NAMESPACE_LABELS=’!name’

Note:

The label selectors use the language supported by Kubernetes labels.

If you want, you can change route or namespace labels by editing them later. Once you change the
labels, router shard is revalidated and based on the change the NetScaler Ingress Controller updates
the configuration on NetScaler.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 123

NetScaler ingress controller

Deploy NetScaler CPXwith OpenShift router sharding

To deploy CPX with OpenShift router sharding support, perform the following steps:

1. Download the cpx_cic_side_car.yaml file using the following command:

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-
controller/master/deployment/openshift/manifest/
cpx_cic_side_car.yaml

2. Edit the cpx_cic_side_car.yaml file and specify the route labels and namespace label selectors
as environment variables.

The following example shows how to specify a sample route label and namespace label in the
cpx_cic_side_car.yaml file. This example selects routes with label “name”values as ei‑
ther abc or xyz and with namespace label as frequency=high.

1 env:
2 - name: "ROUTE_LABELS"
3 value: "name in (abc,xyz)"
4 - name: "NAMESPACE_LABELS"
5 value: "frequency=high"

3. Deploy the NetScaler Ingress Controller using the following command.

1 oc create -f cpx_cic_side_car.yaml

Deploy the NetScaler Ingress Controller router plug‑in with OpenShift router sharding
support

To deploy a NetScaler Ingress Controller router plug‑in with router sharding, perform the following
steps:

1. Download the cic.yaml file using the following command:

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-
controller/master/deployment/openshift/manifest/cic.yaml

2. Edit the cic.yaml file and specify the route labels andnamespace label selectors as environment
variables.

The following example shows how to specify a sample route label and namespace label in the
cic.yaml file. This example selects routes with label “name”values as either abc or xyz and
with namespace label as frequency=high.

1 env:
2 - name: "ROUTE_LABELS"
3 value: "name in (abc,xyz)"

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 124

https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/openshift/manifest/cpx_cic_side_car.yaml
https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/openshift/manifest/cpx_cic_side_car.yaml
https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/openshift/manifest/cic.yaml
https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/openshift/manifest/cic.yaml

NetScaler ingress controller

4 - name: "NAMESPACE_LABELS"
5 value: "frequency=high"

3. Deploy the NetScaler Ingress Controller using the following command.

1 oc create -f cic.yaml

Example: Create an OpenShift route and verify the route configuration on NetScaler
VPX

This example shows how to create an OpenShift route with labels and verify the router shard configu‑
ration.
In this example, route configuration is verified on a NetScaler VPX deployment.

Perform the following steps to create a sample route with labels.

1. Define the route in a YAML file. Following is an example for a sample route named as route.
yaml.

1 apiVersion: v1
2 kind: Route
3 metadata:
4 name: web-backend-route
5 namespace: default
6 labels:
7 sla: low
8 name: abc
9 spec:

10 host: web-frontend.cpx-lab.org
11 path: "/web-backend"
12 port:
13 targetPort: 80
14 to:
15 kind: Service
16 name: web-backend

2. Use the following command to deploy the route.

1 oc create -f route.yaml

3. Add labels to the namespace where you create the route.

1 oc label namespace default 'frequency=high'

Verify route configuration

You can verify the OpenShift route configuration on a NetScaler VPX by performing the following
steps:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 125

NetScaler ingress controller

1. Log on to NetScaler VPX by performing the following:

• Use an SSH client such as PuTTy, to open an SSH connection to NetScaler VPX.
• Log on to NetScaler VPX by using administrator credentials.

2. Check if the service group is created using the following command.

1 show serviceGroup

3. Verify the route configuration on NetScaler VPX in the show serviceGroup command out‑
put.

Following is a sample route configuration from the show serviceGroup command output.

1 > show serviceGroup
2 k8s-web-backend-route_default_80_k8s-web-backend_default_80_svc -

HTTP
3 State: ENABLED Effective State: DOWN Monitor Threshold : 0
4 Max Conn: 0 Max Req: 0 Max Bandwidth: 0 kbits
5 Use Source IP: NO
6 Client Keepalive(CKA): NO
7 TCP Buffering(TCPB): NO
8 HTTP Compression(CMP): NO
9 Idle timeout: Client: 180 sec Server: 360 sec

10 Client IP: DISABLED
11 Cacheable: NO
12 SC: OFF
13 SP: OFF
14 Down state flush: ENABLED
15 Monitor Connection Close : NONE
16 Appflow logging: ENABLED
17 ContentInspection profile name: ???
18 Process Local: DISABLED
19 Traffic Domain: 0

Deploy NetScaler Ingress Controller in OpenShift using NetScaler
Operator

March 26, 2024

An Operator is an open source toolkit designed to package, deploy, and manage OpenShift native
applications in an effective, automated, and scalable way.

The NetScaler Operator enables you to deploy NetScaler Ingress Controller in an OpenShift cluster.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 126

https://operatorframework.io/

NetScaler ingress controller

Deployment options

Based on your requirement of NetScalers, there are two ways to deploy NetScaler Ingress Controller
in an OpenShift cluster using the NetScaler Operator:

• As a standalone pod in the OpenShift cluster: In this mode, NetScaler Ingress Controller config‑
ures NetScaler MPX NetScaler VPX residing outside the OpenShift cluster.

• As a sidecar container alongsideNetScaler CPX in the samepod: In thismode, NetScaler Ingress
Controller configures NetScaler CPX deployed in the OpenShift cluster.

Deploy NetScaler Operator

Perform the following steps:

1. Log in to the OpenShift cluster console.

2. Navigate to Operators > OperatorHub, select Certified source in the left panel, select
NetScaler Operator, and then click Install.

3. To subscribe to NetScaler Operator, select one of the following options:

• All namespaces on the cluster (default): NetScaler Operator is available in all the name‑
spaces on the OpenShift cluster. Hence, this option enables you to initiate the NetScaler
instance from any namespace on the cluster.

• A specific namespace on the cluster: NetScaler Operator is available in the selected
namespace on the OpenShift cluster. Hence, this option enables you to initiate the
NetScaler Operator instance on the selected namespace only.

4. In this case, let’s select A specific namespace on the cluster.

5. Click Install.

Wait until the NetScaler Operator is subscribed successfully.

6. Navigate to Workloads > Pods section and verify that the netscaler‑Operator‑controller‑
manager pod is up and running.

Deploy NetScaler Ingress Controller as a standalone pod using NetScaler Operator

Using the NetScaler Operator you can deploy NetScaler Ingress Controller as a standalone pod in an
OpenShift cluster. NetScaler IngressController configures theNetScaler VPXorMPXwhich is deployed
as an Ingress device or router for an application running in the OpenShift cluster. The following dia‑
gram explains the topology:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 127

NetScaler ingress controller

Prerequisites

• Red Hat OpenShift Cluster (version 4.1 or later).

• Identify the IP address that NetScaler Ingress Controller needs to communicate with NetScaler.
This IP address might be any one of the following IP addresses depending on the type of
NetScaler deployment:

– NSIP (for standalone appliances) ‑ Themanagement IP address of a standalone NetScaler
appliance. For more information, see IP Addressing in NetScaler.

– SNIP (for appliances in High Availabilitymode) ‑ The subnet IP address. Formore informa‑
tion, see IP Addressing in NetScaler.

– CLIP (for appliances in Cluster mode) ‑ The cluster management IP (CLIP) address for a
clustered NetScaler deployment. For more information, see IP addressing for a cluster.

• The user name and password of NetScaler VPX or NetScaler MPX used as the Ingress device.
NetScaler must have a system user account (non‑default) with certain privileges so that the
NetScaler Ingress Controller can configure NetScaler VPX or NetScaler MPX. For instructions to
create a system user account on NetScaler, see Create a NetScaler user account to configure
NetScaler using NetScaler Ingress Controller.

You can directly pass the user name and password as environment variables to the controller,
or use OpenShift secrets (recommended). To create a secret for the user name and password
using the following command,modify the<username> and<password> to required values:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 128

https://www.openshift.com
https://docs.citrix.com/en-us/citrix-adc/12-1/networking/ip-addressing.html
https://docs.citrix.com/en-us/citrix-adc/12-1/networking/ip-addressing.html
https://docs.citrix.com/en-us/citrix-adc/12-1/clustering/cluster-overview/ip-addressing.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#create-system-user-account-for-netscaler-ingress-controller-in-netscaler
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#create-system-user-account-for-netscaler-ingress-controller-in-netscaler

NetScaler ingress controller

1 oc create secret generic nslogin --from-literal=username=<
username> --from-literal=password=<password>

2 <!--NeedCopy-->

Deploy NetScaler Ingress Controller as a standalone pod using NetScaler Operator

Perform the following steps:

1. Log in to OpenShift 4.x Cluster console.

2. Deploy an Apache application using the console.

a) Navigate toWorkloads>Deployments >CreateDeployment anduse the following YAML
file to create the deployment.

NOTE:

The Apache application is for the demonstration purpose only. You can modify the
YAML file based on your requirement.

1 ---
2 apiVersion: apps/v1
3 kind: Deployment
4 metadata:
5 name: apache
6 labels:
7 name: apache
8 spec:
9 selector:

10 matchLabels:
11 app: apache
12 replicas: 2
13 template:
14 metadata:
15 labels:
16 app: apache
17 spec:
18 containers:
19 - name: apache
20 image: httpd:latest
21 ports:
22 - containerPort: 80
23 ---
24
25 <!--NeedCopy-->

b) Navigate toWorkloads > Pods section and ensure that the Apache application pods are
up and running.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 129

NetScaler ingress controller

3. Create a service for the Apache application. Navigate to Networking > Services > Create Ser‑
vice and use the following YAML file.

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: apache
5 spec:
6 ports:
7 - port: 80
8 targetPort: 80
9 selector:

10 app: apache
11
12 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 130

NetScaler ingress controller

4. Create an ingress for the Apache application. Navigate to Networking > Ingress > Create
Ingress and use the following YAML to create the ingress. Ensure to update VIP of the NetScaler
VPX in the ingress YAML before applying it in the cluster.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 annotations:
5 ingress.citrix.com/frontend-ip: <NSVIP>
6 name: vpx-ingress
7 spec:
8 rules:
9 - host: citrix-ingress-operator.com

10 http:
11 paths:
12 - backend:
13 service:
14 name: apache
15 port:
16 number: 80
17 path: /
18 pathType: Prefix
19
20 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 131

NetScaler ingress controller

5. Navigate toOperators > Installed Operators and selectNetScaler Operator.

6. ClickNetScaler Ingress Controller tab and select Create NetScalerIngressController.

The NetScaler Ingress Controller YAML definition is displayed.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 132

NetScaler ingress controller

7. Refer this table that lists themandatory and optional parameters that you can configure during
installation.

Note:

• Ensure that the license.accept parameter is set to yes.
• Provide the IP address of NetScaler VPX instance fornsIP parameter and Kubernetes
secret created usingNetScaler VPX credentials inadcCredentialSecretparame‑
ter respectively.

• If CRDs are already installed, specify crds.install=false.

You can configure other available parameters depending upon your use case.

8. After updating the values for the required parameters, click Create.

Ensure that NetScaler Ingress Controller is successfully deployed and initialized.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 133

https://github.com/citrix/citrix-helm-charts/tree/master/citrix-ingress-controller#configuration

NetScaler ingress controller

9. Navigate toWorkloads > Pods section and verify whether the NetScaler Ingress Controller pod
is up and running.

10. Verify the deployment by sending traffic:

1 curl http://citrix-ingress-Operator.com --resolve citrix-ingress-
Operator.com:80:<VIP>

2 <!--NeedCopy-->

The previous curl command should return the following:

1 <html><body><h1>It works!</h1></body></html>

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 134

NetScaler ingress controller

2 <!--NeedCopy-->

Note:

Ensure that the pod network in OpenShift cluster is reachable from NetScaler VPX or NetScaler
MPX if you are using service of type ClusterIP for your application. To configure static route auto‑
matically using NSIC, see Configure static route.

Deploy NetScaler Ingress Controller as a sidecar with NetScaler CPX

Using the NetScaler Operator, you can deploy NetScaler CPX with the NetScaler Ingress Controller
as a sidecar. The NetScaler Ingress Controller configures the NetScaler CPX which is deployed as an
Ingress or router for an application running in the OpenShift cluster. The following diagram explains
the topology.

Prerequisites

• Red Hat Openshift Cluster (version 4.1 or later).
• Install Prometheus Operator if you want to view the metrics of the NetScaler CPX collected
through the direct Prometheus export.

Deploy NetScaler Ingress Controller as a sidecar with NetScaler CPX using NetScaler Operator

Perform the following steps:

1. Log in to OpenShift 4.x Cluster console.

2. Deploy an Apache application using the console.

a) Navigate toWorkloads>Deployments >CreateDeployment anduse the following YAML
to create the deployment.

1 ---
2 apiVersion: apps/v1
3 kind: Deployment
4 metadata:
5 name: apache
6 labels:
7 name: apache
8 spec:
9 selector:

10 matchLabels:
11 app: apache
12 replicas: 2
13 template:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 135

https://github.com/netscaler/netscaler-k8s-ingress-controller/blob/310ae7eb1c8bdea57faa7f4556979a76822e23ec/docs/network/staticrouting.md
https://www.openshift.com
https://github.com/coreos/prometheus-Operator
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/direct-promethues-export-support

NetScaler ingress controller

14 metadata:
15 labels:
16 app: apache
17 spec:
18 containers:
19 - name: apache
20 image: httpd:latest
21 ports:
22 - containerPort: 80
23 ---
24
25 <!--NeedCopy-->

Note:

The Apache application is for the demonstration purpose only, you can modify the
YAML file based on your requirement.

b) Navigate toWorkloads > Pods section and ensure that the Apache application pods are
up and running.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 136

NetScaler ingress controller

3. Create a service for the Apache application. Navigate to Networking > Services > Create Ser‑
vice and use the following YAML to create the service.

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: apache
5 spec:
6 ports:
7 - port: 80
8 targetPort: 80
9 selector:

10 app: apache
11 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 137

NetScaler ingress controller

4. Create an Ingress for the Apache application. Navigate to Networking > Ingress > Create
Ingress and use the following YAML to create the ingress.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: cpx-ingress
5 spec:
6 rules:
7 - host: citrix-ingress-operator.com
8 http:
9 paths:

10 - backend:
11 service:
12 name: apache
13 port:
14 number: 80
15 path: /
16 pathType: Prefix
17 <!--NeedCopy-->

5. Navigate toOperators > Installed Operators and selectNetScaler Operator.

6. ClickNetScaler CPXwith Ingress Controller tab and click Create NetScalerCpxWithIngress‑
Controller .

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 138

NetScaler ingress controller

The NetScaler CPX with ingress controller YAML definition is displayed.

See this table that lists the mandatory and optional parameters that you can configure during
installation.

Note:

• Ensure that the license.accept parameter is set to yes.
• To expose NetScaler CPX service using type nodePort to access the Apache applica‑
tion, set serviceType.nodePort.enabled to true.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 139

https://github.com/citrix/citrix-helm-charts/tree/master/citrix-cpx-with-ingress-controller#configuration

NetScaler ingress controller

• If CRDs are already installed, specify crds.install=false.

You can configure other available parameters depending upon your use case.

7. After updating the values for required parameters, click Create. Ensure that the NetScaler CPX
with Ingress Controller is succesfully deployed and initialised.

8. Attach privileged security context constraints to the service account of NetScaler CPX (as it runs
as a privileged pod) by using the following commands:

• Get the service account name used by NetScaler CPX using the following command in the
namespace where NetScaler CPX has been deployed: oc get sa

• Attach privileged SCC to the service account of the NetScaler CPX:

1 oc adm policy add-scc-to-user privileged -z <CPX-ServiceAccount-
Name retrieved in the previous step>

2 <!--NeedCopy-->

9. Navigate toWorkloads>Pods sectionandverify that thenetscaler-cpx-with-ingress
-controller pod is up and running.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 140

NetScaler ingress controller

10. Verify the deployment by sending traffic.

a) Obtain the NodePort details using the following command:

1 oc get svc
2 <!--NeedCopy-->

b) Use cpx-service NodePort and send the traffic as shown in the following command:

1 curl http://citrix-ingress-Operator.com:<NodePort> --resolve
citrix-ingress-Operator.com:<NodePort>:<Master-Node-IP>

2 <!--NeedCopy-->

The above curl command should return the following output:

1 <html><body><h1>It works!</h1></body></html>
2 <!--NeedCopy-->

References

• For information about how to deploy NetScaler Observability Exporter using NetScaler Opera‑
tor, see Deploy NetScaler Observability Exporter using NetScaler Operator.

• For information about how to deploy NetScaler ADMAgent using NetScaler Agent Operator, see
Install a NetScaler agent operator using the OpenShift console.

• Alternatively, you can deploy NetScaler Ingress Controller using Helm charts. See Deploy the
NetScaler Ingress Controller using Helm charts.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 141

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/nsoe-openshift-Operator.html
https://docs.netscaler.com/en-us/netscaler-console-service/getting-started/install-agent-as-Operator-openshift.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-helm.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-helm.html

NetScaler ingress controller

Deploy NetScaler Observability Exporter using NetScaler Operator

March 22, 2024

NetScaler Observability Exporter is a container that collects metrics and transactions from NetScaler
and transforms them to suitable formats such as JSON and AVRO for supported endpoints. You can
export the data collected byNetScaler Observability Exporter to the desired endpoint for analysis and
get valuable insights at the microservices level for applications proxied by NetScalers.

Prerequisites

• Red Hat OpenShift Cluster (version 4.1 or later).
• Deploy NetScaler Operator. See Deploy NetScaler Operator.

Deploy NetScaler Observability Exporter using NetScaler Operator

Perform the following steps:

1. Log in to OpenShift 4.x Cluster console.

2. Navigate toOperators > Installed Operators and select theNetScaler Operator.

3. Click NetScaler Observability Exporter tab and select Create NetScalerObservabilityEx‑
porter option.

The NetScaler Observability Exporter YAML definition is displayed.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 142

https://www.openshift.com
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/nsic-openshift-operator.html#deploy-netscaler-operator

NetScaler ingress controller

4. Refer this table that lists the mandatory and optional parameters and their default values that
you can configure during installation.

Notes:

• To enable tracing, set ns_tracing.enabled to true and ns_tracing.server
to the tracer endpoint such as zipkin.default.cluster.svc.local:9411/api/v1/spans.
Default value for Zipkin server is zipkin:9411/api/v1/spans.

• To enable Elasticsearch endpoint for transactions, set elasticsearch.enabled
to true and elasticsearch.server to the elasticsearch endpoint such as elas‑
ticsearch.default.svc.cluster.local:9200. Default value for Elasticsearch endpoint is
elasticsearch:9200.

• To enable Kafka endpoint for transactions, set kafka.enabled to true. Set kafka
.broker, kafka.topic, and kafka.dataFormat to required values. Default
value for kafka.topic is HTTP. Default value for kafka.dataFormat is AVRO.

• To enable Timeseries data upload in prometheus format, set timeseries.
enabled to true. Currently, Prometheus is the only Timeseries endpoint supported.

• To enable Splunk endpoint for transactions, set splunk.enabled to true, splunk
.server to Splunk server with port, splunk.authtoken to Splunk authentica‑
tion token and splunk.indexprefix to index prefix to upload the transactions.
Default value for splunk.indexprefix is adc_noe.

5. After updating the values for the required parameters, click Create.

Ensure that the NetScaler Observability Exporter is succesfully deployed.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 143

https://github.com/netscaler/netscaler-helm-charts/tree/master/citrix-observability-exporter#configuration

NetScaler ingress controller

6. Navigate toWorkloads > Pods section and verify that the NetScaler Observability Exporter pod
is up and running.

Deploy NetScaler CPX as an Ingress device in an Azure Kubernetes
Service cluster

December 31, 2023

This topic explains how to deploy NetScaler CPX as an ingress device in an Azure Kubernetes Service
(AKS) cluster. NetScaler CPX supports both the Advanced Networking (Azure CNI) and Basic Network‑
ing (Kubenet) mode of AKS.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 144

https://azure.microsoft.com/en-in/services/kubernetes-service/
https://azure.microsoft.com/en-in/services/kubernetes-service/
https://docs.microsoft.com/en-us/azure/aks/concepts-network#azure-cni-advanced-networking
https://docs.microsoft.com/en-us/azure/aks/concepts-network#kubenet-basic-networking
https://docs.microsoft.com/en-us/azure/aks/concepts-network#kubenet-basic-networking

NetScaler ingress controller

Note:

If you want to use Azure repository images for NetScaler CPX or the NetScaler Ingress Controller
instead of the default quay.io images, then see Deploy NetScaler CPX as an Ingress device in an
AKS cluster using Azure repository images.

Deploy NetScaler CPX as an ingress device in an AKS cluster

Perform the following steps to deploy NetScaler CPX as an ingress device in an AKS cluster.

Note:

In this procedure, Apache web server is used as the sample application.

1. Deploy the required application in your Kubernetes cluster and expose it as a service in your
cluster using the following command.

1 kubectl create -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/deployment/azure/manifest/apache.
yaml

Note:

In this example, apache.yaml is used. You should use the specific YAML file for your
application.

2. Deploy NetScaler CPX as an ingress device in the cluster using the following command.

1 kubectl create -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/deployment/azure/manifest/
standalone_cpx.yaml

3. Create the ingress resource using the following command.

1 kubectl create -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/deployment/azure/manifest/
cpx_ingress.yaml

4. Create a service of type LoadBalancer for accessing the NetScaler CPX by using the following
command.

1 kubectl create -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/deployment/azure/manifest/
cpx_service.yaml

This command creates an Azure load balancer with an external IP for receiving traffic.

5. Verify the service and checkwhether the load balancer has created an external IP.Wait for some
time if the external IP is not created.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 145

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/azure-image.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/azure-image.html

NetScaler ingress controller

1 kubectl get svc
2
3 |NAME|TYPE|CLUSTER-IP|EXTERNAL-IP|PORT\(S)| AGE|
4 |----|----|-----|-----|----|----|
5 |apache |ClusterIP|10.0.103.3|none| 80/TCP | 2m|
6 |cpx-ingress |LoadBalancer |10.0.37.255 | pending |80:32258/TCP

,443:32084/TCP |2m|
7 |Kubernetes |ClusterIP | 10.0.0.1 |none | 443/TCP | 22h |

6. Once the external IP for the load‑balancer is available as follows, you can access your resources
using the external IP for the load balancer.

1 kubectl get svc
2
3 |NAME|TYPE|CLUSTER-IP|EXTERNAL-IP|PORT\(S)| AGE|
4 |---|---|----|----|----|----|
5 |apache|ClusterIP|10.0.103.3 |none|80/TCP| 3m|
6 |cpx-ingress |LoadBalancer|10.0.37.255| EXTERNAL-IP CREATED|

80:32258/TCP,443:32084/TCP | 3m|
7 |Kubernetes| ClusterIP|10.0.0.1 |none| 443/TCP| 22h|

Note:

The health check for the cloud load‑balancer is obtained from the readinessProbe con‑
figured in the NetScaler CPX deployment yaml file. If the health check fails, you should
check the readinessProbe configured for NetScaler CPX. For more information, see readi‑
nessProbe and external Load balancer.

7. Access the application using the following command.

1 curl http://<External-ip-of-loadbalancer>/ -H 'Host: citrix-
ingress.com

Quick Deploy

For the ease of deployment, you can just deploy a single all‑in‑one manifest that would combine the
steps explained in the previous topic.

1. Deploy a NetScaler CPX ingress with in built NetScaler Ingress Controller in your Kubernetes
cluster using the all‑in‑one.yaml.

1 kubectl create -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/deployment/azure/manifest/all-in-
one.yaml

2. Access the application using the following command.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 146

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/azure/manifest/cpx_service.yaml
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#define-readiness-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#define-readiness-probes
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/azure/manifest/all-in-one.yaml

NetScaler ingress controller

1 curl http://<External-ip-of-loadbalancer>/ -H 'Host: citrix-
ingress.com'

Note:

To delete the deployment, use the kubectl delete -f all-in-one.yaml com‑
mand.

Deploy NetScaler Ingress Controller in an Azure Kubernetes Service
cluster with NetScaler VPX

December 31, 2023

This topic explains how to deploy the NetScaler Ingress Controller with NetScaler VPX in an Azure
Kubernetes Service (AKS) cluster. You can also configure the Kubernetes cluster on Azure VMs and
then deploy the NetScaler Ingress Controller with NetScaler VPX.

The procedure to deploy for both AKS and Azure VM is the same. However, if you are configuring
Kubernetes on Azure VMs you need to deploy the CNI plug‑in for the Kubernetes cluster.

Prerequisites

You should complete the following tasks before performing the steps in the procedure.

• Ensure that you have a Kubernetes cluster up and running.

Note:

For more information on creating a Kubernetes cluster in AKS, see Guide to create an AKS
cluster.

Topology

The following is the sample topology used in this deployment.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 147

https://azure.microsoft.com/en-in/services/kubernetes-service/
https://azure.microsoft.com/en-in/services/kubernetes-service/
https://azure.microsoft.com/en-in/services/virtual-machines/
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/azure/create-aks/README.md
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/azure/create-aks/README.md

NetScaler ingress controller

Get a NetScaler VPX instance from Azure Marketplace

You can create NetScaler VPX from the Azure Marketplace.
For more information on how to create a NetScaler VPX instance from Azure Marketplace, see Get
NetScaler VPX from Azure Marketplace.

Get the NetScaler Ingress Controller from Azure Marketplace

To deploy the NetScaler Ingress Controller, an image registry should be created on Azure and the cor‑
responding image URL should be used to fetch the NetScaler Ingress Controller image.

For more information on how to create a registry and get the image URL, see Get NetScaler Ingress
Controller from Azure Marketplace.

Once a registry is created, the NetScaler Ingress Controller registry name should be attached to the
AKS cluster used for deployment.

1 az aks update -n <cluster-name> -g <resource-group-where-aks-
deployed> --attach-acr <cic-registry>

Deploy NetScaler Ingress Controller

Perform the following steps to deploy the NetScaler Ingress Controller.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 148

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/deploy/azure-vpx.md
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/deploy/azure-vpx.md
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/deploy/azure-cic-url.md
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/deploy/azure-cic-url.md

NetScaler ingress controller

1. Create NetScaler VPX login credentials using Kubernetes secret.

1 kubectl create secret generic nslogin --from-literal=username='<
azure-vpx-instance-username>' --from-literal=password='<azure-
vpx-instance-password>'

Note:

The NetScaler VPX user name and password should be the same as the credentials set
while creating NetScaler VPX on Azure.

2. Using SSH, configure a SNIP in the NetScaler VPX, which is the secondary IP address of the
NetScaler VPX. This step is required for the NetScaler to interact with pods inside the Kuber‑
netes cluster.

1 add ns ip <snip-vpx-instance-private-ip> <vpx-instance-primary-ip-
subnet>

• snip-vpx-instance-private-ip is the dynamic private IP address assignedwhile
adding a SNIP during the NetScaler VPX instance creation.

• vpx-instance-primary-ip-subnet is the subnet of theprimary private IP address
of the NetScaler VPX instance.

To verify the subnet of the private IP address, SSH into the NetScaler VPX instance and use the
following command.

1 show ip <primary-private-ip-addess>

3. Update the NetScaler VPX image URL, management IP, and VIP in the NetScaler Ingress Con‑
troller YAML file.

a) Download the NetScaler Ingress Controller YAML file.

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-
ingress-controller/master/deployment/azure/manifest/
azurecic/cic.yaml

Note:

If you do not have wget installed, you can use the fetch or curl command.

b) Update theNetScaler IngressController imagewith theAzure imageURL in thecic.yaml
file.

1 - name: cic-k8s-ingress-controller
2 # CIC Image from Azure
3 image: "<azure-cic-image-url>"

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 149

NetScaler ingress controller

c) Update theprimary IP address of theNetScaler VPX in thecic.yaml in the following field
with the primary private IP address of the Azure VPX instance.

1 # Set NetScaler NSIP/SNIP, SNIP in case of HA (mgmt has to
be enabled)

2 - name: "NS_IP"
3 value: "X.X.X.X"

d) Update the NetScaler VPX VIP in the cic.yaml in the following field with the private IP
address of the VIP assigned during VPX Azure instance creation.

1 # Set NetScaler VIP for the data traffic
2 - name: "NS_VIP"
3 value: "X.X.X.X"

4. Once you have configured the NetScaler Ingress Controller with the required values, deploy the
NetScaler Ingress Controller using the following command.

1 kubectl create -f cic.yaml

Verify the deployment using a sample application

1. Deploy the required application in your Kubernetes cluster and expose it as a service in your
cluster using the following command.

1 kubectl create -f https://raw.githubusercontent.com/citrix/citrix
-k8s-ingress-controller/master/deployment/azure/manifest/
azurecic/apache.yaml

2. Create the Ingress resource using the following command.

1 kubectl create -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/deployment/azure/manifest/
azurecic/ingress.yaml

3. To validate your deployment, use the following command.

1 $ curl --resolve citrix-ingress.com:80:<Public-ip-address-of-VIP>
http://citrix-ingress.com

2 <html><body><h1>It works!</h1></body></html>

The response is received from the samplemicroservice (Apache)which is inside the Kubernetes
cluster. NetScaler VPX has load‑balanced the request.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 150

NetScaler ingress controller

Deploy NetScaler CPX as an Ingress device in Google Cloud Platform

December 31, 2023

This topic explains how to deploy NetScaler CPX as an ingress device in Google Kubernetes Engine
(GKE)

Prerequisites

You should complete the following tasks before performing the steps in the procedure.

• Ensure that you have a Kubernetes Cluster up and running.

• If you are running your cluster in GKE, ensure that you have configured a cluster‑admin role
binding.

You can use the following command to configure cluster‑admin role binding.

1 kubectl create clusterrolebinding citrix-cluster-admin --clusterrole=
cluster-admin --user=<email-id of your google account>

You can get your Google account details using the following command.

1 gcloud info | grep Account

Deploy NetScaler CPX as an ingress device in Google Cloud Platform

1. Deploy the required application in your Kubernetes cluster and expose it as a service in your
cluster using the following command.

1 kubectl create -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/deployment/gcp/manifest/apache.
yaml

Note:

In this example, apache.yaml is used. You should use the specific YAML file for your
application.

2. Deploy NetScaler CPX as an ingress device in the cluster using the following command.

1 kubectl create -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/deployment/gcp/manifest/
standalone_cpx.yaml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 151

https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/

NetScaler ingress controller

3. Create the ingress resource using the following command.

1 kubectl create -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/deployment/gcp/manifest/
cpx_ingress.yaml

4. Create a service of type LoadBalancer for accessing the NetScaler CPX by using the following
command.

1 kubectl create -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/deployment/gcp/manifest/
cpx_service.yaml

Note:

This command creates a load balancer with an external IP for receiving traffic.

1. Verify the service and checkwhether the load balancer has created an external IP.Wait for some
time if the external IP is not created.

1 kubectl get svc
2
3 |NAME | TYPE | CLUSTER-IP | EXTERNAL-IP | PORT\(S) | AGE |
4 | --- | ---| ----| ----| ----| ----|
5 |apache | ClusterIP |10.7.248.216 |none | 80/TCP | 2m |
6 |cpx-ingress |LoadBalancer | 10.7.241.6 | pending | 80:32258/TCP

,443:32084/TCP | 2m|
7 |kubernetes |ClusterIP |10.7.240.1 |none | 443/TCP | 22h|

2. Once the external IP for the load‑balancer is available as follows, you can access your resources
using the external IP for the load balancer.

1 kubectl get svc
2
3 |Name | Type | Cluster-IP | External IP| Port\(s) | Age |
4 |-----| -----| -------| -----| -----| ----|
5 |apache| ClusterIP|10.7.248.216|none|80/TCP |3m|
6 |cpx-ingress|LoadBalancer|10.7.241.6|EXTERNAL-IP CREATED|80:32258/

TCP,443:32084/TCP|3m|
7 |kubernetes| ClusterIP| 10.7.240.1|none|443/TCP|22h|`

Note:
The health check for the cloud load‑balancer is obtained from the readinessProbe configured
in the NetScaler CPX service YAML file. If the health check fails, you should check the readi‑
nessProbe configured for NetScaler CPX.
For more information, see readinessProbe and external Load balancer.

3. Access the application using the following command.

1 curl http://<External-ip-of-loadbalancer>/ -H 'Host: citrix-
ingress.com'

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 152

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/azure/manifest/cpx_service.yaml
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#define-readiness-probes
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/

NetScaler ingress controller

Quick Deploy

For the ease of deployment, you can just deploy a single all‑in‑one manifest that would combine the
steps explained in the previous topic.

1. Deploy a NetScaler CPX ingress with in built NetScaler Ingress Controller in your Kubernetes
cluster using the all‑in‑one.yaml.

1 kubectl create -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/deployment/gcp/manifest/all-in-
one.yaml

2. Access the application using the following command.

1 curl http://<External-ip-of-loadbalancer>/ -H 'Host: citrix-
ingress.com'

Note:

To delete the deployment, use the kubectl delete -f all-in-one.yaml com‑
mand.

Deploy the NetScaler Ingress Controller in Anthos

December 31, 2023

Anthos is a hybrid and multi cloud platform that lets you run your applications on existing on‑prem
hardware or in the public cloud. It provides a consistent development and operation experience for
cloud and on‑premises environments.

The NetScaler Ingress Controller can be deployed in Anthos GKE on‑premises using the following de‑
ployment modes:

• ExposingNetScaler CPXwith the sidecar ingress controller as a service of typeLoadBalancer.
• Dual‑tier Ingress deployment

Expose NetScaler CPX as a service of type LoadBalancer in Anthos GKE on‑prem

In this deployment, NetScaler VPX or MPX is deployed outside the cluster at Tier‑1 and NetScaler CPX
at Tier‑2 inside the Anthos cluster similar to a dual‑tier deployment. However instead of using Ingress,
the NetScaler CPX is exposed using the Kubernetes service of type LoadBalancer.
The NetScaler Ingress Controller automates the process of configuring the IP address provided in the
LoadBalancerIP field of the service specification.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 153

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/gcp/manifest/all-in-one.yaml
https://cloud.google.com/anthos

NetScaler ingress controller

Prerequisites

• You must deploy a Tier‑1 NetScaler VPX or MPX in the same subnet as the Anthos GKE on‑prem
user cluster.

• Youmust configure a subnet IP address (SNIP) on the Tier‑1 NetScaler and Anthos GKE on‑prem
cluster nodes should be reachable using the IP address.

• To use a NetScaler VPX or MPX from a different network, use node controller to enable commu‑
nication between the NetScaler and the Anthos GKE on‑prem cluster.

• Youmust set aside a virtual IP address (VIP) to be used as a Load Balancer IP address.

Deploy NetScaler CPX as service of type LoadBalancer in Anthos GKE on‑premises

Perform the following steps to deploy NetScaler CPX as a service of type LoadBalancer in Anthos
GKE on‑premises.

1. Deploy the required application in your Kubernetes cluster and expose it as a service in your
cluster using the following command.

1 kubectl --kubeconfig user-cluster-1-kubeconfig create -f https://
raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/
master/deployment/anthos/manifest/service-type-lb/apache.yaml

Note:

In this example, apache.yaml is used. You should use the specific YAML file for your
application.

2. Deploy NetScaler CPX with the sidecar NetScaler Ingress Controller as Tier‑2 Ingress device us‑
ing the cpx‑cic.yaml file.

1 kubectl --kubeconfig user-cluster-1-kubeconfig create -f https://
raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/
master/deployment/anthos/manifest/service-type-lb/cpx-cic.yaml

3. (Optional) Create a self‑signed SSL certificate and a key to be used with the Ingress for TLS con‑
figuration.

1 openssl req -subj '/CN=anthos-citrix-ingress.com/O=Citrix Systems
Inc/C=IN' -new -newkey rsa:2048 -days 5794 -nodes -x509 -keyout
$PWD/anthos-citrix-certificate.key -out $PWD/anthos-citrix-
certificate.crt;openssl rsa -in $PWD/anthos-citrix-certificate.
key -out $PWD/anthos-citrix-certificate.key

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 154

https://github.com/citrix/citrix-k8s-node-controller
https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/anthos/manifest/service-type-lb/cpx-cic.yaml

NetScaler ingress controller

Note:

If you already have an SSL certificate, you can create a Kubernetes secret using the same.
This is just an example command to create a self‑signed certificate and also this command
assumes the host name of the application to be anthos-citrix-ingress.com.

4. Create a Kubernetes secret with the created SSL cert‑key pair.

1 kubectl --kubeconfig user-cluster-1-kubeconfig create secret tls
anthos-citrix --cert=$PWD/anthos-citrix-certificate.crt --key=
$PWD/anthos-citrix-certificate.key

5. Create an Ingress resource for Tier‑2 using the tier‑2‑ingress.yaml file.

1 kubectl --kubeconfig user-cluster-1-kubeconfig create -f https://
raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/
master/deployment/anthos/manifest/service-type-lb/tier-2-
ingress.yaml

6. Create a Kubernetes secret for the Tier‑1 NetScaler.

1 kubectl --kubeconfig user-cluster-1-kubeconfig create secret
generic nslogin --from-literal=username='citrix-adc-username'
--from-literal=password='citrix-adc-password'

7. Deploy the NetScaler Ingress Controller as a Tier‑1 ingress controller.

a) Download the cic.yaml file.

b) Enter the management IP address of NetScaler. Update the Tier‑1 NetScaler’s manage‑
ment IP address in the placeholder Tier-1-Citrix-ADC-IP specified in the cic.
yaml file.

c) Save and deploy the cic.yaml using the following command.

1 kubectl --kubeconfig user-cluster-1-kubeconfig create -f
cic.yaml

8. Expose NetScaler CPX as a Kubernetes service of type LoadBalancer.

a) Download the cpx‑service‑type‑lb.yaml file.

b) Edit the YAML file and specify the value of VIP-for-accessing-microservices as
the VIP address which is to be used for accessing the applications inside the cluster. This
VIP address is the one set aside to be used as a Load Balancer IP address.

c) Save and deploy thecpx-service-type-lb.yaml file using the following command.

1 kubectl --kubeconfig user-cluster-1-kubeconfig create -f
cpx-service-type-lb.yaml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 155

https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/anthos/manifest/service-type-lb/tier-2-ingress.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/anthos/manifest/service-type-lb/cic.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/anthos/manifest/service-type-lb/cpx-service-type-lb.yaml

NetScaler ingress controller

9. Update the DNS records with the IP address ofVIP-for-accessing-microservices for
accessing themicroservice. In this example, to access the Apachemicroservice, youmust have
the following DNS entry.

1 `<VIP-for-accessing-microservices> anthos-citrix-ingress.com`

10. Use the following command to access the application.

1 curl -k --resolve anthos-citrix-ingress.com:443:<VIP-for-
accessing-microservices> https://anthos-citrix-ingress.
com/ <html><body><h1>It works!</h1></body></html>

Note:

In this command, --resolve anthos-citrix-ingress.com:443:<VIP-for-
accessing-microservices> is used to override the DNS configuration part in step 9
for demonstration purpose.

Clean up the installation: Expose NetScaler CPX as service of type LoadBalancer

To clean up the installation, use the kubectl --kubeconfig delete command to delete each
deployment.

To delete the NetScaler CPX service deployment (CPX+CIC service) use the following command:

1 kubectl --kubeconfig user-cluster-1-kubeconfig delete -f cpx-
service-type-lb.yaml

To delete the Tier‑2 Ingress object, use the following command.

1 kubectl --kubeconfig user-cluster-1-kubeconfig delete -f tier-2-
ingress.yaml

To delete the NetScaler CPX deployment along with the sidecar NetScaler Ingress Controller, use the
following command.

1 kubectl --kubeconfig user-cluster-1-kubeconfig delete -f cpx-cic.
yaml

To delete the stand‑alone NetScaler Ingress Controller, use the following command.

1 kubectl --kubeconfig user-cluster-1-kubeconfig delete -f cic.yaml

To delete the Apachemicroservice, use the following command.

1 kubectl --kubeconfig user-cluster-1-kubeconfig delete -f apache.
yaml

To delete the Kubernetes secret, use the following command.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 156

NetScaler ingress controller

1 kubectl --kubeconfig user-cluster-1-kubeconfig delete secret anthos
-citrix

To delete the nslogin secret, use the following command.

1 kubectl --kubeconfig user-cluster-1-kubeconfig delete secret
nslogin

Dual tier Ingress deployment

In a dual‑tier Ingress deployment, NetScaler VPX or MPX is deployed outside the Kubernetes cluster
(Tier‑1) and NetScaler CPXs are deployed inside the Kubernetes cluster (Tier‑2).

NetScalerMPXorVPXdevices inTier‑1proxy the traffic (North‑South) fromtheclient toNetScalerCPXs
in Tier‑2. The Tier‑2 NetScaler CPX then routes the traffic to the microservices in the Kubernetes clus‑
ter. The NetScaler Ingress Controller deployed as a standalone pod configures the Tier‑1 NetScaler.
The sidecar NetScaler Ingress Controller in one ormoreNetScaler CPX pods configures the associated
NetScaler CPX in the same pod.

Prerequisites

• You must deploy a Tier‑1 NetScaler VPX or MPX in the same subnet as the Anthos GKE on‑prem
user cluster.

• Youmust configure a subnet IP address (SNIP) on the Tier‑1 NetScaler and Anthos GKE on‑prem
cluster nodes should be reachable using the IP address.

• To use a NetScaler VPX or MPX from a different network, use the node controller to enable com‑
munication between the NetScaler and the Anthos GKE on‑prem cluster.

• Youmust set aside a virtual IP address to be used as a front‑end IP address in the Tier‑1 Ingress
manifest.

Dual‑tier Ingress deployment in Anthos GKE on‑prem

Perform the following steps to deploy a dual‑tier Ingress deployment of NetScaler in Anthos GKE on‑
prem.

1. Deploy the required application in your Kubernetes cluster and expose it as a service in your
cluster using the following command.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 157

https://github.com/citrix/citrix-k8s-node-controller

NetScaler ingress controller

1 kubectl --kubeconfig user-cluster-1-kubeconfig create -f https://
raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/
master/deployment/anthos/manifest/dual-tiered-ingress/apache.
yaml

Note:

In this example, apache.yaml is used. You should use the specific YAML file for your
application.

2. Deploy NetScaler CPX with the NetScaler Ingress Controller as Tier‑2 Ingress using the
cpx‑cic.yaml file.

1 kubectl --kubeconfig user-cluster-1-kubeconfig create -f https://
raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/
master/deployment/anthos/manifest/dual-tiered-ingress/cpx-cic.
yaml

3. Expose NetScaler CPX as a Kubernetes service using the cpx-service.yaml file.

1 kubectl --kubeconfig user-cluster-1-kubeconfig create -f https://
raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/
master/deployment/anthos/manifest/dual-tiered-ingress/cpx-
service.yaml

4. (Optional) Create a self‑signed SSL certificate and a key to be used with the Ingress for TLS con‑
figuration.

Note:

If you already have an SSL certificate, you can create a Kubernetes secret using the same.

1 openssl req -subj '/CN=anthos-citrix-ingress.com/O=Citrix Systems
Inc/C=IN' -new -newkey rsa:2048 -days 5794 -nodes -x509 -keyout
$PWD/anthos-citrix-certificate.key -out $PWD/anthos-citrix-
certificate.crt;openssl rsa -in $PWD/anthos-citrix-certificate.
key -out $PWD/anthos-citrix-certificate.key

Note:

This is just an example command to create a self‑signed certificate and also this command
assumes that the hostname of the application to be anthos-citrix-ingress.com.

5. Create a Kubernetes secret with the created SSL cert‑key pair.

1 kubectl --kubeconfig user-cluster-1-kubeconfig create secret tls
anthos-citrix --cert=$PWD/anthos-citrix-certificate.crt --key=
$PWD/anthos-citrix-certificate.key

6. Create an Ingress resource for Tier‑2 using the tier‑2‑ingress.yaml file.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 158

https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/anthos/manifest/dual-tiered-ingress/cpx-cic.yaml
https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/deployment/anthos/manifest/dual-tiered-ingress/tier-2-ingress.yaml

NetScaler ingress controller

1 kubectl --kubeconfig user-cluster-1-kubeconfig create -f https://
raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/
master/deployment/anthos/manifest/dual-tiered-ingress/tier-2-
ingress.yaml

7. Create a Kubernetes secret for the Tier‑1 NetScaler.

1 kubectl --kubeconfig user-cluster-1-kubeconfig create secret
generic nslogin --from-literal=username='citrix-adc-username'
--from-literal=password='citrix-adc-password'

8. Deploy the NetScaler Ingress Controller as a Tier‑1 ingress controller.

a) Download the cic.yaml file.

b) Enter the management IP address of NetScaler. Update the Tier‑1 NetScaler’s manage‑
ment IP address in the placeholder Tier-1-Citrix-ADC-IP specified in the cic.
yaml file.

c) Save and deploy the cic.yaml using the following command.

1 kubectl --kubeconfig user-cluster-1-kubeconfig create -f
cic.yaml

9. Create an Ingress resource for Tier‑1 using the tier‑1‑ingress.yaml file.

a) Download the tier‑1‑ingress.yaml file.

b) Edit the YAML file and replace VIP-Citrix-ADC with the VIP address which was set
aside.

c) Save and deploy the tier-1-ingress.yaml file using the following command.

1 kubectl --kubeconfig user-cluster-1-kubeconfig create -f
tier-1-ingress.yaml

10. Update the DNS records with the IP address of VIP-Citrix-ADC for accessing the microser‑
vice. In this example, to access theApachemicroservice, youmust have the followingDNSentry.

1 <VIP-Citrix-ADC> anthos-citrix-ingress.com

11. Use the following command to access the application.

1 curl -k --resolve anthos-citrix-ingress.com:443:<VIP-Citrix-ADC
> https://anthos-citrix-ingress.com/

2 <html><body><h1>It works!</h1></body></html>

Note:

In this command, --resolve anthos-citrix-ingress.com:443:<VIP-for-

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 159

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/anthos/manifest/dual-tiered-ingress/cic.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/anthos/manifest/dual-tiered-ingress/tier-1-ingress.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/anthos/manifest/dual-tiered-ingress/tier-1-ingress.yaml

NetScaler ingress controller

accessing-microservices> is used to override the DNS configuration part.

Clean up the installation: Dual tier Ingress

To clean up the installation, use the kubectl --kubeconfig delete command to delete each
deployment.

To delete the Tier‑1 Ingress object, use the following command.

1 kubectl --kubeconfig user-cluster-1-kubeconfig delete -f tier-1-
ingress.yaml

To delete the Tier‑2 Ingress object, use the following command.

1 kubectl --kubeconfig user-cluster-1-kubeconfig delete -f tier-2-
ingress.yaml`

To delete the NetScaler CPX deployment along with the sidecar NetScaler Ingress Controller, use the
following command.

1 kubectl --kubeconfig user-cluster-1-kubeconfig delete -f cpx-cic.
yaml

To delete the NetScaler CPX service deployment, use the following command:

1 kubectl --kubeconfig user-cluster-1-kubeconfig delete -f cpx-
service.yaml

To delete the stand‑alone NetScaler Ingress Controller use the following command:

1 kubectl --kubeconfig user-cluster-1-kubeconfig delete -f cic.yaml

To delete the Apachemicroservice, use the following command.

1 kubectl --kubeconfig user-cluster-1-kubeconfig delete -f apache.
yaml

To delete the Kubernetes secret, use the following command.

1 kubectl --kubeconfig user-cluster-1-kubeconfig delete secret anthos
-citrix

To delete the nslogin secret, use the following command.

1 kubectl --kubeconfig user-cluster-1-kubeconfig delete secret
nslogin`

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 160

NetScaler ingress controller

Deploy NetScaler VPX in active‑active high availability in EKS
environment using Amazon ELB and NetScaler Ingress Controller

December 31, 2023

The topic covers a solution to deployNetScaler VPX in active‑active high availabilitymodeonmultiple
availability zones in AWS Elastic Container Service (EKS) platform. The solution combines AWS Elas‑
tic load balancing (ELB) and NetScaler VPX to load balance the Ingress traffic to themicroservices de‑
ployed in EKS cluster. AWS ELB handles the Layer 4 traffic and the NetScaler VPXs provides advanced
Layer 7 functionalities such as, advanced load balancing, caching, and content‑based routing.

Solution overview

A basic architecture of an EKS cluster would include three public subnet and three private subnets
deployed across three availability zones as shown in the following diagram:

With the solution, the architecture of the EKS cluster would be as shown in the following diagram:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 161

NetScaler ingress controller

In the AWS cloud, AWS Elastic Load Balancing handles the Layer 4 TCP connections and load balances
the traffic using a flow hash routing algorithm. The ELB can be either Network Load Balancer or a
Classic Load Balancer.

AWSELB listens for incoming connections as definedby its listeners. Each listener forwards anewcon‑
nection to one of the available NetScaler VPX instances. TheNetScaler VPX instance load balances the
traffic to the EKSpods. It also performsother Layer 7 functionalities such as, rewrite policy, responder
policy, SSL offloading and so on provided by NetScaler VPX.

A NetScaler Ingress Controller is deployed in the EKS cluster for each NetScaler VPX instance. The
NetScaler IngressControllers are configuredwith the same ingress class. And, it configures the Ingress
objects in the EKS cluster on the respective NetScaler VPX instances.

AWSElastic LoadBalancing (ELB) has aDNSname towhich an IP address is assigneddynamically. The
DNSname can be added as Alias A record for your domain in Route53 to access the application hosted
in the EKS cluster.

Deployment process

Perform the following to deploy the solution:

1. Deploy NetScaler VPX Instances.

2. Deploy NetScaler Ingress Controller.

3. Set up Amazon Elastic Load Balancing. You can either set up Network Load Balancer or Classic
Load Balancer.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 162

https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/what-is-load-balancing.html
https://aws.amazon.com/route53/

NetScaler ingress controller

4. Verify the solution.

Deploy NetScaler VPX instances

NetScaler VPX is available as CloudFormation Template. The CloudFormation template deploys an
instance of NetScaler VPXwith single ENI on a given subnet. It also configures the NSIP, VIP, and SNIP
for the NetScaler VPX instance.

For this solution you need to deploy two instances of NetScaler VPX. Deploy the NetScaler VPX in‑
stances on two availability zones by specifying the sameNetScaler VPX and different public subnet.

After you deploy the NetScaler VPX instances, you can verify the deployment by reviewing the output
of the CloudFormation template as shown in the following screenshot. The output must show the
various IP addresses (VIP, SNIP, and NSIP) configured for the NetScaler VPX instances:

Note:

TheCloudFormation template deploys theNetScaler VPX instancewith primary IP address of the
NetScaler VPX EC2 instance as VIP and secondary IP address as management IP address.

After theNetScaler VPX instances are successfully deployed, youmust edit the security groups to allow
traffic fromEKSnode group security group. Also, youmust change the EKSnode group security group
to allow traffic from VPX instances.

Deploy NetScaler Ingress Controller

Deploy separate instance of NetScaler Ingress Controller for each NetScaler VPX instance. Follow the
deployment instructions to deploy NetScaler Ingress Controller.

After the NetScaler VPX instance is up, you must set up a system user account on the NetScaler VPX
instances. The system user account is used by NetScaler Ingress Controller to log into the NetScaler
VPX instances. For instruction to set up the system user account, see Create System User Account for
CIC in NetScaler.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 163

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/deploy/cloud-formation-template.md
https://docs.citrix.com/en-us/netscaler/12/networking/ip-addressing/configuring-netscaler-owned-ip-addresses/configuring-netscaler-ip-address.html
https://docs.citrix.com/en-us/netscaler/12/networking/ip-addressing/configuring-netscaler-owned-ip-addresses/configuring-and-managing-virtual-ip-addresses-vips.html
https://docs.citrix.com/en-us/netscaler/12/networking/ip-addressing/configuring-netscaler-owned-ip-addresses/configuring-subnet-ip-addresses-snips.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#create-system-user-account-for-citrix-ingress-controller-in-citrix-adc
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#create-system-user-account-for-citrix-ingress-controller-in-citrix-adc

NetScaler ingress controller

1. Edit the NetScaler Ingress Controller deployment YAML (citrix‑ingress‑controller.yaml).

Replace NS_IP with the Private NSIP address of the respective NetScaler VPX instance.
Also, provide the system user account user name and password that you have created on the
NetScaler VPX instance. Once you edited the citrix-ingress-controller.yaml file,
deploy the updated YAML file using the following command:

1 kubectl apply -f citrix-ingress-controller .yaml

2. Perform Step 1 on the second NetScaler Ingress Controller instance.

3. Ensure that both the pods are UP and running. Also, verify if NetScaler Ingress Controller is able
to connect to the respective NetScaler VPX instance using the logs:

1 kubectl logs <cic_pod_name>

After the NetScaler Ingress Controller pods are deployed and running in the EKS cluster. Any, Kuber‑
netes Ingress resource configuredwith the citrix ingress class is automatically configured on both
the NetScaler VPX instances.

Setup elastic load balancing

Depending upon your requirement you can configure any of the following load balancers:

• Network Load Balancers
• Classic Load Balancers

Set up network load balancer Network Load Balancer (NLB) is a good option for handling TCP
connection load balancing. In this solution, NLB is used to accept the incoming traffic and route it to
one of the NetScaler VPX instances. NLB load balances using the flow hash algorithm based on the
protocol, source IP address, source port, destination IP address, destination port, and TCP sequence
number.

To set up NLB:

1. Log on to the AWS Management Console for EC2.

2. In the left navigation bar, click Target Group. Create two different target groups. One target
group (Target‑Group‑80) for routing trafficonport 80and theother target group (Target‑Group‑
443) for routing traffic on 443 respectively.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 164

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/aws/manifest/citrix-ingress-controller.yaml
https://console.aws.amazon.com/ec2/

NetScaler ingress controller

3. Create a target group named, *Target‑Group‑80. Perform the following:

a) In the Target group name field, enter the target group name as Target‑Group‑80.

b) In the Target type field, select Instance.

c) From the Protocol list, select TCP.

d) In the Port field, enter 80.

e) From the VCP list, select you VPC where you deployed your EKS cluster.

f) In theHealth check settings section, use TCP for health check.

g) Optional. You canmodify the Advance health check settings to configure health checks.

4. Create a target group named, *Target‑Group‑443. Perform the following:

a) In the Target group name field, enter the target group name as Target‑Group‑443.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 165

NetScaler ingress controller

b) In the Target type field, select Instance.

c) From the Protocol list, select TCP.

d) In the Port field, enter 443.

e) From the VCP list, select you VPC where you deployed your EKS cluster.

f) In theHealth check settings section, use TCP for health check.

g) Optional. You canmodify the Advance health check settings to configure health checks.

5. Once you have created the target groups, youmust register the target instances.

a) Select the created target group in the list page, click the Target tab, and select edit.
b) In the Instances tab, select the two NetScaler VPX instances and click Add to registered.

6. Repeat Step 5 for the other target group that you have created.

7. Create Network Load Balancer.

a) In the left navigation bar, select Load Balancers, then click Create Load Balancer.

b) In the Select load balancer typewindow, clickCreate in theNetwork Loadbalancer panel.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 166

NetScaler ingress controller

8. In the Configure Load Balancer page, do the following:

a) In theName field, enter a name for the load balancer.

b) In the Scheme field, select internet‑facing.

c) In the Listeners section, click Add listener and add two entries with TCP as the load bal‑
ancer protocol and 80 and 443 as the load balancer port respectively as shown in the
following image:

d) In the Availability Zones section, select the VPC, availability zones, and subnets where the
NetScaler VPX instances are deployed.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 167

NetScaler ingress controller

9. In the Configure routing page. do the following:

a) In the Target group list, click Existing target group.

b) In theName field, enter Target‑Group‑80.

c) In the Target type field, select Instance.

d) In the Protocol list, select TCP.

e) In the Port field, enter 80.

f) Select TCP from the Protocol list in the Health checks section as shown in the following
image:

10. In the Review page, review your configuration and click Create.

11. After the Network load balancer is created, select the load balancer that you have created for
the list page. Select Listeners tab, select TCP : 444 and then click Edit.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 168

NetScaler ingress controller

12. In the Listeners page, delete the default action and then select Target‑Group‑443 in the For‑
ward to list.

13. ClickUpdate.

Set up classic load balancer Alternative to Amazon Network load balancer, you can set up Classic
Load Balancer (CLB) as Tier 1 TCP load balancer.

1. Log on to the AWS Management Console for EC2.

2. In the left navigation bar, select Load Balancers, then click Create Load Balancer.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 169

https://console.aws.amazon.com/ec2/

NetScaler ingress controller

3. In the Select load balancer typewindow, click Create on the Classic Load balancer panel.

4. In the Define Load Balancer page, do the following:

a) In the Load Balancer name field, enter a name for the load balancer.

b) In the Create LB Inside list, select your NetScaler VPX.

c) In the Listener Configuration section, clickAdd and add two entrieswithTCP as the load
balancer protocol and80 and443 as the load balancer port respectively. Also, selectTCP
as instance protocol and 80 and 443 as the instance port respectively as shown in the
following image:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 170

NetScaler ingress controller

d) In theSelect Subnets section, select twopublic subnets in twodifferent availability zones
for the Classic Load balancer to route the traffic. These subnets are same as where you
have deployed the NetScaler VPX instances.

e) In the Assign Security Groups page, select a security group for the ELB instance. The
security group can be same as the security group attached to NetScaler VPX ENI or it can
be a new security group.
If you are using a new security group,make sure that you allow traffic to the NetScaler VPX
security group from the ELB security group and conversely.

f) In the Configure Health Check page, select the configuration for the health check. By
default health check is set as TCP on port 80, optionally you can do the health check on

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 171

NetScaler ingress controller

port 443 as well.

g) In the Add EC2 Instances page, select two NetScaler VPX instances that were deployed
earlier.

1 ![Classic ADD EC2 Instances](/en-us/netscaler-k8s-ingress-
controller/media/classic-add-ec2.png)

h) In the Add Tags page, add tags as per your requirement.

i) In the Review page, review your configurations.

j) Click Create.

Verify the solution

After you have successfully deployed NetScaler VPX, AWS ELB, and NetScaler Ingress Controller, you
can verify the solution using a sample service.

Perform the following:

1. Deploy a sample service and ingress using app.yaml.

1 kubectl apply -f app.yaml

2. Log on to theNetScaler VPX instance and verify if the Content Switching vserver are successfully
configured on both the NetScaler VPX instance. Do the following:

a) Log on to the NetScaler VPX instance. Perform the following:

i. Use an SSH client, such as PuTTy, to open an SSH connection to the NetScaler VPX
instance.

ii. Log on to the instance by using the administrator credentials.

b) Verify if theContentSwitching (cs) vserver is configuredon the instanceusing the following
command:

1 sh cs vserver

Output:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 172

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/aws/manifest/app.yaml

NetScaler ingress controller

1 1) k8s-10.0.139.87:80:http (10.0.139.87:80) - HTTP Type:
CONTENT

2 State: UP
3 Last state change was at Fri Apr 12 14:24:13 2019
4 Time since last state change: 3 days, 03:09:18.920
5 Client Idle Timeout: 180 sec
6 Down state flush: ENABLED
7 Disable Primary Vserver On Down : DISABLED
8 Comment: uid=

NNJRYQ54VM2KWCXOERK6HRJHR4VEQYRI7U3W4BNFQLTIAENMTHWA
====

9 Appflow logging: ENABLED
10 Port Rewrite : DISABLED
11 State Update: DISABLED
12 Default: Content Precedence: RULE
13 Vserver IP and Port insertion: OFF
14 L2Conn: OFF Case Sensitivity: ON
15 Authentication: OFF
16 401 Based Authentication: OFF
17 Push: DISABLED Push VServer:
18 Push Label Rule: none
19 Listen Policy: NONE
20 IcmpResponse: PASSIVE
21 RHIstate: PASSIVE
22 Traffic Domain: 0

c) Access the application test.example.com using the DNS name of the ELB instance.

1 # curl -H 'Host: test.example.com' <DNS name of the ELB>

Example:

1 % curl -H 'Host: test.example.com' http://VPX-HA
-829787521.us-west-2.elb.amazonaws.com

d) To delete the deployment, use the following command:

1 kubectl delete -f app.yaml

Troubleshooting

Problem Resolution

CloudFormation stack failure Ensure that the IAM user or role has sufficient
privilege to create EC2 instances and Lambda
configurations.
Ensure that you haven’t exceeded the resource
quota.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 173

NetScaler ingress controller

Problem Resolution

NetScaler Ingress Controller unable to
communicate with the NetScaler VPX instances.

Ensure that user name and password is correct in
citrix-ingress-controller.yaml file.
Ensure that the NetScaler VPX security group
allows the traffic on port 80 and 443 from the
EKS node group security group.

The services are DOWN in the NetScaler VPX
instances.

Ensure that the NetScaler VPX traffic can reach
the EKS cluster. Modify the security group of EKS
node group to allow traffic from NetScaler VPX
security group.

Traffic not routing to NetScaler VPX instance
from ELB.

Ensure that security group of NetScaler VPX
allows traffic from the ELB security group.

Deploy the NetScaler Ingress Controller for NetScaler with admin
partitions

December 31, 2023

NetScaler Ingress Controller is used to automatically configure one or more NetScaler based on the
Ingress resource configuration. The ingress NetScaler appliance (MPX or VPX) can be partitioned into
logical entities called adminpartitions,where eachpartition canbe configuredandusedas a separate
NetScaler appliance. Formore information, seeAdminPartition. NetScaler IngressController canalso
be deployed to configure NetScaler with admin partitions.

ForNetScalerwith adminpartitions, youmust deploy a single instance of NetScaler Ingress Controller
for each partition. And, the partitionmust be associatedwith a partition user specific to theNetScaler
Ingress Controller instance.

Note:

NetScaler Metrics Exporter supports exporting metrics from the admin partitions of NetScaler.

Prerequisites

Ensure that:

• Admin partitions are configured on the NetScaler appliance. For instructions see, Configure
admin partitions.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 174

https://docs.citrix.com/en-us/citrix-adc/13/admin-partition.html
https://docs.citrix.com/en-us/citrix-adc/13/admin-partition.html#user-access-and-roles
https://docs.citrix.com/en-us/citrix-adc/13/admin-partition/admin-partition-access-and-configure.html
https://docs.citrix.com/en-us/citrix-adc/13/admin-partition/admin-partition-access-and-configure.html

NetScaler ingress controller

• Create a partition user specifically for the NetScaler Ingress Controller. NetScaler Ingress Con‑
troller configures the NetScaler using this partition user account. Ensure that you do not asso‑
ciate this partition user to other partitions in the NetScaler appliance.

Note:

For SSL‑related use cases in the admin partition, ensure that you use NetScaler version
12.0–56.8 and above.

To deploy the NetScaler Ingress Controller for NetScaler with admin partitions

1. Download the citrix‑k8s‑ingress‑controller.yaml using the following command:

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-
controller/master/deployment/baremetal/citrix-k8s-ingress-
controller.yaml

2. Edit thecitrix‑k8s‑ingress‑controller.yaml file andenter thevalues for the followingenvironmen‑
tal variables:

Environment Variable Mandatory or Optional Description

NS_IP Mandatory The IP address of the NetScaler
appliance. For more details,
see Prerequisites.

NS_USER and NS_PASSWORD Mandatory The user name and password
of the partition user that you
have created for the NetScaler
Ingress Controller. For more
details, see Prerequisites.

NS_VIP Mandatory NetScaler Ingress Controller
uses the IP address provided in
this environment variable to
configure a virtual IP address to
the NetScaler that receives the
Ingress traffic. Note: NS_VIP
acts as a fallback when the
frontend‑ip annotation is not
provided in Ingress YAML. Only
Supported for Ingress.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 175

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/citrix-k8s-ingress-controller.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/citrix-k8s-ingress-controller.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/configure/annotations.md

NetScaler ingress controller

Environment Variable Mandatory or Optional Description

NS_SNIPS Optional Specifies the SNIP addresses
on the NetScaler appliance or
the SNIP addresses on a
specific admin partition on the
NetScaler appliance.

NS_ENABLE_MONITORING Mandatory Set the value Yes to monitor
NetScaler. Note: Ensure that
you disable NetScaler
monitoring for NetScaler with
admin partitions. Set the value
to No.

EULA Mandatory The End User License
Agreement. Specify the value
as Yes.

Kubernetes_url Optional The kube‑apiserver url that
NetScaler Ingress Controller
uses to register the events. If
the value is not specified,
NetScaler Ingress Controller
uses the internal
kube‑apiserver IP address.

LOGLEVEL Optional The log levels to control the
logs generated by NetScaler
Ingress Controller. By default,
the value is set to DEBUG. The
supported values are:
CRITICAL, ERROR, WARNING,
INFO, and DEBUG. For more
information, see Log Levels

NS_PROTOCOL and NS_PORT Optional Defines the protocol and port
that must be used by the
NetScaler Ingress Controller to
communicate with NetScaler.
By default, the NetScaler
Ingress Controller uses HTTPS
on port 443. You can also use
HTTP on port 80.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 176

https://kubernetes.io/docs/tasks/access-application-cluster/access-cluster/#accessing-the-api-from-a-pod
https://kubernetes.io/docs/tasks/access-application-cluster/access-cluster/#accessing-the-api-from-a-pod
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/log-levels.html

NetScaler ingress controller

Environment Variable Mandatory or Optional Description

ingress‑classes Optional If multiple ingress load
balancers are used to load
balance different ingress
resources. You can use this
environment variable to specify
the NetScaler Ingress
Controller to configure
NetScaler associated with a
specific ingress class. For
information on Ingress classes,
see Ingress class support

3. Once youupdate the environment variables, save the YAML file anddeploy it using the following
command:

1 kubectl create -f citrix-k8s-ingress-controller.yaml

4. Verify if the NetScaler Ingress Controller is deployed successfully using the following command:

1 kubectl get pods --all-namespaces

Use case: How to securely deliver multitenantmicroservice‑based applications using
NetScaler admin partitions

You can isolate ingress traffic between different microservice based applications with the NetScaler
admin partition using NetScaler Ingress Controller. NetScaler admin partition enables multitenancy
at the software level in a single NetScaler instance. Each partition has its own control plane and net‑
work plane.

You can deploy one instance of NetScaler Ingress Controller in each namespace in a cluster.

For example, imagine youhave twonamespaces in a Kubernetes cluster and youwant to isolate these
namespaces from each other under two different admins. You can use the admin partition feature to
separate these two namespaces. Create namespace 1 and namespace 2 and deploy NetScaler Ingress
Controller separately in both of these namespaces.

NetScaler Ingress Controller instances provide configuration instructions to the respective NetScaler
partitions using the system user account specified in the YAMLmanifest.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 177

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/ingress-classes.html

NetScaler ingress controller

In this example, apache and guestbook sample applications are deployed in two different name‑
spaces (namespace 1 and namespace 2 respectively) in a Kubernetes cluster. Both apache and
guestbook application teams want to manage their workload independently and do not want to
share resources. NetScaler admin partition helps to achieve multitenancy and in this example, two
partitions (default, partition1) are used to manage both application workload separately.

The following prerequisites apply:

• Ensure that you have configured admin partitions on the NetScaler appliance. For instructions
see, Configure admin partitions.

• Ensure that you create a partition user account specifically for the NetScaler Ingress Controller.
NetScaler Ingress Controller configures the NetScaler using this partition user account. Ensure
that you do not associate this partition user to other partitions in the NetScaler appliance.

Example

The following example scenario shows how to deploy different applications within different name‑
spaces in a Kubernetes cluster and how the request can be isolated from ADC using the admin parti‑

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 178

https://docs.citrix.com/en-us/citrix-adc/13/admin-partition/admin-partition-access-and-configure.html

NetScaler ingress controller

tion.

In this example, two sample applications are deployed in two different namespaces in a Kubernetes
cluster. In this example, it is used a default partition in NetScaler for the apache application and the
admin partition p1 for the guestbook application.

Create namespaces

Create two namespaces ns1 and ns2 using the following commands:

1 kubectl create namespace ns1
2 kubectl create namespace ns2

Configurations in namespace ns1

1. Deploy the apache application in ns1.

1 apiVersion: v1
2 kind: Namespace
3 metadata:
4 name: ns1
5
6 ---
7 apiVersion: apps/v1
8 kind: Deployment
9 metadata:

10 labels:
11 app: apache-ns1
12 name: apache-ns1
13 namespace: ns1
14 spec:
15 replicas: 2
16 selector:
17 matchLabels:
18 app: apache-ns1
19 template:
20 metadata:
21 labels:
22 app: apache-ns1
23 spec:
24 containers:
25 - image: httpd
26 name: httpd
27 ---
28
29 apiVersion: v1
30 kind: Service
31 metadata:
32 creationTimestamp: null

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 179

NetScaler ingress controller

33 labels:
34 app: apache-ns1
35 name: apache-ns1
36 namespace: ns1
37 spec:
38 ports:
39 - port: 80
40 protocol: TCP
41 targetPort: 80
42 selector:
43 app: apache-ns1

2. Deploy NetScaler Ingress Controller in ns1.

You can use the YAML file to deploy NetScaler Ingress Controller or use the Helm chart.

Ensure that you use the user credentials that are bound to the default partition.

1 helm install cic-def-part-ns1 citrix/citrix-ingress-controller --
set nsIP=<nsIP of ADC>,license.accept=yes,adcCredentialSecret=
nslogin,ingressClass[0]=citrix-def-part-ns1 --namespace ns1

3. Deploy the Ingress resource.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: ingress-apache-ns1
5 namespace: ns1
6 annotations:
7 kubernetes.io/ingress.class: "citrix-def-part-ns1"
8 ingress.citrix.com/frontend-ip: "< ADC VIP IP >"
9 spec:

10 rules:
11 - host: apache-ns1.com
12 http:
13 paths:
14 - backend:
15 service:
16 name: apache-ns1
17 port:
18 number: 80
19 pathType: Prefix
20 path: /index.html

4. NetScaler Ingress Controller in ns1 configures the ADC entities in the default partition.

Configurations in namespace ns2

1. Deploy guestbook application in ns2.

1 apiVersion: v1

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 180

NetScaler ingress controller

2 kind: Namespace
3 metadata:
4 name: ns2
5 ---
6 apiVersion: v1
7 kind: Service
8 metadata:
9 name: redis-master

10 namespace: ns2
11 labels:
12 app: redis
13 tier: backend
14 role: master
15 spec:
16 ports:
17 - port: 6379
18 targetPort: 6379
19 selector:
20 app: redis
21 tier: backend
22 role: master
23 ---
24 apiVersion: apps/v1 # for k8s versions before 1.9.0 use apps/

v1beta2 and before 1.8.0 use extensions/v1beta1
25 kind: Deployment
26 metadata:
27 name: redis-master
28 namespace: ns2
29 spec:
30 selector:
31 matchLabels:
32 app: redis
33 role: master
34 tier: backend
35 replicas: 1
36 template:
37 metadata:
38 labels:
39 app: redis
40 role: master
41 tier: backend
42 spec:
43 containers:
44 - name: master
45 image: k8s.gcr.io/redis:e2e # or just image: redis
46 resources:
47 requests:
48 cpu: 100m
49 memory: 100Mi
50 ports:
51 - containerPort: 6379
52 ---
53 apiVersion: v1

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 181

NetScaler ingress controller

54 kind: Service
55 metadata:
56 name: redis-slave
57 namespace: ns2
58 labels:
59 app: redis
60 tier: backend
61 role: slave
62 spec:
63 ports:
64 - port: 6379
65 selector:
66 app: redis
67 tier: backend
68 role: slave
69 ---
70 apiVersion: apps/v1 # for k8s versions before 1.9.0 use apps/

v1beta2 and before 1.8.0 use extensions/v1beta1
71 kind: Deployment
72 metadata:
73 name: redis-slave
74 namespace: ns2
75 spec:
76 selector:
77 matchLabels:
78 app: redis
79 role: slave
80 tier: backend
81 replicas: 2
82 template:
83 metadata:
84 labels:
85 app: redis
86 role: slave
87 tier: backend
88 spec:
89 containers:
90 - name: slave
91 image: gcr.io/google_samples/gb-redisslave:v1
92 resources:
93 requests:
94 cpu: 100m
95 memory: 100Mi
96 env:
97 - name: GET_HOSTS_FROM
98 value: dns
99 # If your cluster config does not include a dns service,

then to
100 # instead access an environment variable to find the

master
101 # service's host, comment out the 'value: dns' line

above, and
102 # uncomment the line below:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 182

NetScaler ingress controller

103 # value: env
104 ports:
105 - containerPort: 6379
106 ---
107 apiVersion: v1
108 kind: Service
109 metadata:
110 name: frontend
111 namespace: ns2
112 labels:
113 app: guestbook
114 tier: frontend
115 spec:
116 # if your cluster supports it, uncomment the following to

automatically create
117 # an external load-balanced IP for the frontend service.
118 # type: LoadBalancer
119 ports:
120 - port: 80
121 selector:
122 app: guestbook
123 tier: frontend
124 ---
125 apiVersion: apps/v1 # for k8s versions before 1.9.0 use apps/

v1beta2 and before 1.8.0 use extensions/v1beta1
126 kind: Deployment
127 metadata:
128 name: frontend
129 namespace: ns2
130 spec:
131 selector:
132 matchLabels:
133 app: guestbook
134 tier: frontend
135 replicas: 3
136 template:
137 metadata:
138 labels:
139 app: guestbook
140 tier: frontend
141 spec:
142 containers:
143 - name: php-redis
144 image: gcr.io/google-samples/gb-frontend:v4
145 resources:
146 requests:
147 cpu: 100m
148 memory: 100Mi
149 env:
150 - name: GET_HOSTS_FROM
151 value: dns
152 # If your cluster config does not include a dns service,

then to

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 183

NetScaler ingress controller

153 # instead access environment variables to find service
host

154 # info, comment out the 'value: dns' line above, and
uncomment the

155 # line below:
156 # value: env
157 ports:
158 - containerPort: 80

2. Deploy NetScaler Ingress Controller in namespace ns2.

Ensure that you use the user credentials that are bound to the partition p1.

1 helm install cic-adm-part-p1 citrix/citrix-ingress-controller --
set nsIP=<nsIP of ADC>,nsSNIPS='[<SNIPs in partition p1>]',
license.accept=yes,adcCredentialSecret=admin-part-user-p1,
ingressClass[0]=citrix-adm-part-ns2 --namespace ns2

3. Deploy ingress for the guestbook application.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 annotations:
5 kubernetes.io/ingress.class: citrix-adm-part-ns2
6 ingress.citrix.com/frontend-ip: "<VIP in partition 1>"
7 name: guestbook-ingress
8 namespace: ns2
9 spec:

10 rules:
11 - host: www.guestbook.com
12 http:
13 paths:
14 - backend:
15 service:
16 name: frontend
17 port:
18 number: 80
19 path: /
20 pathType: Prefix

4. NetScaler Ingress Controller in ns2 configures the ADC entities in partition p1.

Deploy Citrix solution for service of type LoadBalancer in AWS

December 31, 2023

A service of type LoadBalancer is a simpler and fasterway to expose amicroservice running in a Kuber‑
netes cluster to the external world. In cloud deployments, when you create a service of type LoadBal‑

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 184

https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer

NetScaler ingress controller

ancer, a cloud managed load balancer is assigned to the service. The service is, then, exposed using
the load balancer. For more information about services of type LoadBalancer, see Services of type
LoadBalancer.

With theCitrix solution for serviceof typeLoadBalancer, youcanuseNetScaler todirectly loadbalance
and expose a service instead of the cloud managed load balancer. NetScaler provides this solution
for service of type LoadBalancer for on‑prem and cloud. Services of type LoadBalancer are natively
supported in Kubernetes deployments on public clouds such as AWS, GCP, and Azure.

When you deploy a service in AWS, a load balancer is created automatically and the IP address is al‑
located to the external field of the service. In this Citrix solution, allocates the IP address and that
IP address is the VIP of NetScaler VPX. NetScaler Ingress Controller, deployed in a Kubernetes clus‑
ter, configures a NetScaler deployed outside the cluster to load balance the incoming traffic. So, the
service is accessed through NetScaler VPX instead of the cloud load balancer.

You need to specify the service type as LoadBalancer in the service definition. Setting the type
field to LoadBalancer provisions a load balancer for your service on AWS.

is used to automatically allocate IP addresses to services of type LoadBalancer from a specified range
of IP addresses. Formore information about the Citrix solution for services of type LoadBalancer, see
Expose services of type LoadBalancer.

You can deploy the Citrix solution for service of type LoadBalancer in AWS using Helm charts or YAML
files.

Prerequisites

• Ensure that the Elastic Kubernetes Service (EKS) cluster version 1.18 or later is running.
• Ensure that NetScaler VPX and EKS are deployed and running in the same VPC. For information
about creating NetScaler VPX in AWS, see Create a NetScaler VPX instance from AWS Market‑
place.

Deploy Citrix solution for service of type LoadBalancer in AWS using Helm charts

Perform the following steps to configure the Citrix solution for service of type LoadBalancer using
Helm charts.

1. Download the unified‑lb‑values.yaml file and edit the YAML file for specifying the following de‑
tails:

• NetScaler VPX NSIP. For more information, see NetScaler Ingress Controller Helm chart.

• Secret created using the NetScaler VPX credentials. For more information, see NetScaler
Ingress Controller Helm chart.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 185

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html
https://github.com/citrix/citrix-k8s-ingress-controller/tree/master/deployment/aws/quick-deploy-cic#create-a-citrix-adc-vpx-instance-from-aws-marketplace
https://github.com/citrix/citrix-k8s-ingress-controller/tree/master/deployment/aws/quick-deploy-cic#create-a-citrix-adc-vpx-instance-from-aws-marketplace
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/how-to/typeLB/aws/unified-lb-values.yaml
https://github.com/citrix/citrix-helm-charts/tree/master/citrix-cloud-native/charts/citrix-ingress-controller
https://github.com/citrix/citrix-helm-charts/tree/master/citrix-cloud-native/charts/citrix-ingress-controller
https://github.com/citrix/citrix-helm-charts/tree/master/citrix-cloud-native/charts/citrix-ingress-controller

NetScaler ingress controller

• List of VIPs to be used in IPAM controller. For more information, see IPAM Helm chart.

2. Deploy and NetScaler Ingress Controller on your Amazon EKS cluster using the edited YAML file.
Use the following commands:

1 helm repo add citrix https://citrix.github.io/citrix-helm-charts/
2
3 helm install serviceLB citrix/citrix-cloud-native -f values.yaml

3. Deploy the application and service in Amazon EKS:

a) Add the following annotation in the service manifest:

1 beta.kubernetes.io/aws-load-balancer-type: "external"

b) Deploy the application and service with themodified annotation using the following com‑
mand:

1 kubectl create -f https://github.com/citrix/citrix-k8s-ingress
-controller/blob/master/docs/how-to/typeLB/aws/guestbook-
all-in-one-lb.yaml

Note: The guestbookmicroservice is a sample used in this procedure. You can deploy
an application of your choice. Ensure that the service should be of type LoadBalancer and
the service manifest should contain the annotation.

c) Associate an elastic IP address with the VIP of NetScaler VPX.

d) Access the application using a browser. For example, http://EIP-associated-
with-vip.

Deploy Citrix solution for service of type LoadBalancer in AWS using YAML

Perform the following steps to deploy the Citrix solution for service of type LoadBalancer using
YAML.

1. Download the citrix‑k8s‑ingress‑controller.yaml file and specify the following details.

• NetScaler VPX NSIP

• Secret created using the NetScaler VPX credentials. For information about creating the
secret, see Create a secret.

• Specify the argument for :

1 args:
2 - --ipam
3 citrix-ipam-controller

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 186

https://github.com/citrix/citrix-helm-charts/tree/master/citrix-cloud-native/charts/citrix-ipam-controller
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/citrix-k8s-ingress-controller.yaml
https://docs.citrix.com/en-us/citrix-adc/current-release/networking/ip-addressing/configuring-citrix-adc-owned-ip-addresses/configuring-citrix-adc-ip-address.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/how-to/secret-credentials.html/#create-a-kubernetes-secret

NetScaler ingress controller

2. Deploy the NetScaler Ingress Controller using the modified YAML.

1 kubectl create -f citrix-k8s-ingress-controller.yaml

3. Deploy the NetScaler VIP CRD which enables communication between the NetScaler Ingress
Controller and the IPAM controller using the following command.

1 kubectl create -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/crd/vip/vip.yaml

For more information about deploying NetScaler VIP CRD, see Deploy the VIP CRD.

4. Deploy the IPAM controller. For information about deploying the IPAM controller, see Deploy
the IPAM controller.

Note:

Specify the list ofNetScaler VPXVIPs in theVIP_RANGE fieldof the IPAMdeployment YAML
file.

5. Deploy the applicationwith service type LoadBalancer in AmazonEKSusing the following steps:

a) Add the following annotation in the service manifest.

1 beta.kubernetes.io/aws-load-balancer-type: "external"

b) Deploy the application and service with themodified annotation using the following com‑
mand.

1 kubectl create -f https://github.com/citrix/citrix-k8s-ingress
-controller/blob/master/docs/how-to/typeLB/aws/guestbook-
all-in-one-lb.yaml

Note:

Theguestbookmicroservice is a sample used in this procedure. You can deploy an
application of your choice. Ensure that the service should be of type LoadBalancer
and the service manifest should contain the annotation.

c) Associate an elastic IP address with the VIP of NetScaler VPX.

d) Access the application using a browser. For example, http://EIP-associated-
with-vip.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 187

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html#how-does-the-citrix-solution-for-services-of-type-loadbalancer-work-on-bare-metal-clusters
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html#how-does-the-citrix-solution-for-services-of-type-loadbalancer-work-on-bare-metal-clusters
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html#how-does-the-citrix-solution-for-services-of-type-loadbalancer-work-on-bare-metal-clusters

NetScaler ingress controller

Multi‑cloud and GSLB solution with Amazon EKS andMicrosoft AKS
clusters

December 31, 2023

You can deploy multiple instances of the same application across multiple clouds provided by dif‑
ferent cloud providers. This multi‑cloud strategy helps you to ensure resiliency, high availability,
and proximity. A multi‑cloud approach also allows you to take advantage of the best of each cloud
provider by reducing the risks such as vendor lock‑in and cloud outages.

NetScaler with the help of the NetScaler Ingress Controller can perform multi‑cloud load balancing.
NetScaler can direct traffic to clusters hosted on different cloud provider sites. The solution performs
load balancing by distributing the traffic intelligently between theworkloads running on Amazon EKS
(Elastic Kubernetes Service) and Microsoft AKS (Azure Kubernetes Service) clusters.

You can deploy the multi‑cloud and GSLB solution with Amazon EKS and Microsoft AKS.

Deployment topology

The following diagram explains a deployment topology of themulti‑cloud ingress and load balancing
solution for Kubernetes service provided by Amazon EKS and Microsoft AKS.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 188

NetScaler ingress controller

Prerequisites

• You should be familiar with AWS and Azure.
• You should be familiar with NetScaler and NetScaler networking.
• Instances of the same applicationmust be deployed in Kubernetes clusters on Amazon EKS and
Microsoft AKS.

To deploy the multi‑cloud and GSLB solution, youmust perform the following tasks.

1. Deploy NetScaler VPX in AWS.
2. Deploy NetScaler VPX in Azure.
3. Configure ADNS service on NetScaler VPX deployed in AWS and AKS.
4. Configure GSLB service on NetScaler VPX deployed in AWS and AKS.
5. Apply GTP and GSE CRDs on AWS and Azure Kubernetes clusters.
6. Deploy the GSLB controller.

Deploying NetScaler VPX in AWS

Youmust ensure that the NetScaler VPX instances are installed in the same virtual private cloud (VPC)
on the EKS cluster. It enables NetScaler VPX to communicate with EKS workloads. You can use an
existing EKS subnet or create a subnet to install the NetScaler VPX instances.

Also, you can install the NetScaler VPX instances in a different VPC. In that case, youmust ensure that
the VPC for EKS can communicate using VPC peering. For more information about VPC peering, see
VPC peering documentation.

For high availability (HA), you can install two instances of NetScaler VPX in HAmode.

1. Install NetScaler VPX in AWS. For information on installing NetScaler VPX in AWS, see Deploy
NetScaler VPX instance on AWS.

NetScaler VPX requires a secondary public IP address other than the NSIP to run GSLB service
sync and ADNS service.

2. Open the AWS console and choose EC2 >Network Interfaces > VPX primary ENI ID >Manage
IP addresses. Click Assign new IP Address.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 189

https://docs.citrix.com/en-us/citrix-adc/current-release/networking.html
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.citrix.com/en-us/citrix-adc/current-release/deploying-vpx/deploy-aws.html#deploy-a-citrix-adc-vpx-instance-on-aws
https://docs.citrix.com/en-us/citrix-adc/current-release/deploying-vpx/deploy-aws.html#deploy-a-citrix-adc-vpx-instance-on-aws

NetScaler ingress controller

After the secondary public IP address has been assigned to the VPX ENI, associate an elastic IP
address to it.

3. Choose EC2 > Network Interfaces > VPX ENI ID ‑ Actions , click Associate IP Address. Select
an elastic IP address for the secondary IP address and click Associate.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 190

NetScaler ingress controller

4. Log in to the NetScaler VPX instance and add the secondary IP address as SNIP and enable the
management access using the following command:

1 add ip 192.168.211.73 255.255.224.0 -mgmtAccess ENABLED -type SNIP

Note:

• To log in to NetScaler VPX using SSH, you must enable the SSH port in the security
group. Route tables must have an internet gateway configured for the default traffic
and the NACLmust allow the SSH port.

• If you are running the NetScaler VPX in High Availability (HA)mode, youmust perform
this configuration in both of the NetScaler VPX instances.

5. Enable Content Switching (CS), Load Balancing (LB), Global Server Load Balancing(GSLB), and
SSL features in NetScaler VPX using the following command:

1 enable feature *feature*

Note:

To enable GSLB, youmust have an additional license.

6. Enable port 53 for UDP and TCP in the VPX security group for NetScaler VPX to receive DNS traf‑
fic. Also enable the TCP port 22 for SSH and the TCP port range 3008–3011 for GSLB metric
exchange.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 191

NetScaler ingress controller

For information on adding rules to the security group, see Adding rules to a security group.

7. Add a nameserver to NetScaler VPX using the following command:

1 add nameserver *nameserver IP*

Deploying NetScaler VPX in Azure

You can run a standaloneNetScaler VPX instance on an AKS cluster or run twoNetScaler VPX instances
in High Availability mode on the AKS cluster.

While installing, ensure that the AKS cluster must have connectivity with the VPX instances. To en‑
sure the connectivity, you can install the NetScaler VPX in the same virtual network (VNet) on the AKS
cluster in a different resource group.

While installing theNetScaler VPX, select the VNetwhere theAKS cluster is installed. Alternatively, you
canuse VNet peering to ensure the connectivity betweenAKSandNetScaler VPX if the VPX is deployed
in a different VNet other than the AKS cluster.

1. Install NetScaler VPX in AWS. For information on installing NetScaler VPX in AKS, see Deploy a
NetScaler VPX instance on Microsoft Azure.

You must have a SNIP with public IP for GSLB sync and ADNS service. If SNIP already exists,
associate a public IP address with it.

2. To associate, chooseHome > Resource group > VPX instance > VPX NIC instance. Associate a
public IP address as shown in the following image. Click Save to save the changes.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 192

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/working-with-security-groups.html#adding-security-group-rule
https://docs.citrix.com/en-us/citrix-adc/current-release/deploying-vpx/deploy-vpx-on-azure.html
https://docs.citrix.com/en-us/citrix-adc/current-release/deploying-vpx/deploy-vpx-on-azure.html

NetScaler ingress controller

3. Log in to the Azure NetScaler VPX instance and add the secondary IP as SNIP with the manage‑
ment access enabled using the following command:

1 add ip 10.240.0.11 255.255.0.0 -type SNIP -mgmtAccess ENABLED

If the resource exists, you can use the following command to set the management access en‑
abled on the existing resource.

1 set ip 10.240.0.11 -mgmtAccess ENABLED

4. Enable CS, LB, SSL, and GSLB features in the NetScaler VPX using the following command:

1 enable feature *feature*

To access the NetScaler VPX instance through SSH, you must enable the inbound port rule for
the SSH port in the Azure network security group that is attached to the NetScaler VPX primary
interface.

5. Enable the inbound rule for the following ports in the network security group on the Azure por‑
tal.

• TCP: 3008–3011 for GSLBmetric exchange
• TCP: 22 for SSH

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 193

NetScaler ingress controller

• TCP and UDP: 53 for DNS

6. Add a nameserver to NetScaler VPX using the following command:

1 add nameserver *nameserver IP*

Configure ADNS service in NetScaler VPX deployed in AWS and Azure

TheADNSservice inNetScaler VPXacts asanauthoritativeDNS for yourdomain. Formore information
on the ADNS service, see Authoritative DNS service.

1. Log in to AWS NetScaler VPX and configure the ADNS service on the secondary IP address and
port 53 using the following command:

1 add service Service-ADNS-1 192.168.211.73 ADNS 53

Verify the configuration using the following command:

1 show service Service-ADNS-1

2. Log in to Azure NetScaler VPX and configure the ADNS service on the secondary IP address and
port 53 using the following command:

1 add service Service-ADNS-1 10.240.0.8 ADNS 53

Verify the configuration using the following command:

1 show service Service-ADNS-1

3. After creating two ADNS service for the domain, update the NS record of the domain to point to
the ADNS services in the domain registrar.

For example, create an ‘A’record ns1.domain.com pointing to the ADNS service public IP
address. NS record for the domain must point to ns1.domain.com.

Configure GSLB service in NetScaler VPX deployed in AWS and Azure

Youmust create GSLB sites on NetScaler VPX deployed on AWS and Azure.

1. Log in to AWS NetScaler VPX and configure GSLB sites on the secondary IP address using the
following command. Also, specify the public IP address using the –publicIP argument. For ex‑
ample:

1 add gslb site aws_site 192.168.197.18 -publicIP 3.139.156.175
2
3 add gslb site azure_site 10.240.0.11 -publicIP 23.100.28.121

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 194

https://docs.citrix.com/en-us/citrix-adc/current-release/global-server-load-balancing/configure/configure-gslb-adns-service.html

NetScaler ingress controller

2. Log in to Azure NetScaler VPX and configure GSLB sites. For example:

1 add gslb site aws_site 192.168.197.18 -publicIP 3.139.156.175
2
3 add gslb site azure_site 10.240.0.11 -publicIP 23.100.28.121

3. Verify that the GSLB sync is successful by initiating a sync from any of the sites using the follow‑
ing command:

1 sync gslb config – debug

Note:

If the initial sync fails, review the security groups on both AWS and Azure to allow the required
ports.

Apply GTP and GSE CRDs on AWS and Azure Kubernetes clusters

The global traffic policy (GTP) and global service entry (GSE) CRDs help to configure NetScaler for per‑
forming GSLB in Kubernetes applications. These CRDs are designed for configuring NetScaler GSLB
controller for applications deployed in distributed Kubernetes clusters.

GTP CRD

The GTP CRD accepts the parameters for configuring GSLB on the NetScaler including deployment
type (canary, failover, and local‑first), GSLB domain, health monitor for the ingress, and service
type.

For GTP CRD definition, see the GTP CRD. Apply the GTP CRD definition on AWS and Azure Kubernetes
clusters using the following command:

1 kubectl apply -f https://raw.githubusercontent.com/citrix/citrix-k8s-
ingress-controller/master/gslb/Manifest/gtp-crd.yaml

GSE CRD

TheGSECRDspecifies theendpoint information (informationaboutanyKubernetesobject that routes
traffic into the cluster) in each cluster. The global service entry automatically picks the external IP
address of the application, which routes traffic into the cluster. If the external IP address of the routes
change, the global service entry picks a newly assigned IP address and configure the GSLB endpoints
of NetScalers accordingly.

For the GSE CRD definition, see the GSE CRD. Apply the GSE CRD definition on AWS and Azure Kuber‑
netes clusters using the following command:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 195

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/gslb/gslb.md#gtp-crd-definition
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/gslb/gslb.md#gse-crd-definition

NetScaler ingress controller

1 kubectl apply -f https://raw.githubusercontent.com/citrix/citrix-k8s-
ingress-controller/master/gslb/Manifest/gse-crd.yaml

Deploy GSLB controller

GSLB controller helps you to ensure the high availability of the applications across clusters in amulti‑
cloud environment.

You can install the GSLB controller on the AWS and Azure clusters. GSLB controller listens to GTP and
GSECRDsandconfigures theNetScaler forGSLB thatprovideshighavailability acrossmultiple regions
in a multi‑cloud environment.

To deploy the GSLB controller, perform the following steps:

1. Create an RBAC for the GSLB controller on the AWS and Azure Kubernetes clusters.

1 kubectl apply -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/gslb/Manifest/gslb-rbac.yaml

2. Create the secrets on the AWS and Azure clusters using the following command:

Note:

Secrets enable the GSLB controller to connect and push the configuration to the GSLB de‑
vices.

1 kubectl create secret generic secret-1 --from-literal=username=<
username> --from-literal=password=<password>

Note:

You can add a user to NetScaler using the add system user command.

3. Download the GSLB controller YAML file from gslb‑controller.yaml.

4. Apply the gslb-controller.yaml in an AWS cluster using the following command:

1 kubectl apply -f gslb-controller.yaml

For the AWS environment, edit the gslb-controller.yaml to define the LOCAL_REGION,
LOCAL_CLUSTER, and SITENAMES environment variables.

The following example defines the environment variable LOCAL_REGION as us‑east‑
2 and LOCAL_CLUSTER as eks‑cluster and the SITENAMES environment variable as
aws_site,azure_site.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 196

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/gslb/Manifest/gslb-controller.yaml

NetScaler ingress controller

1 name: "LOCAL_REGION"
2 value: "us-east-2"
3 name: "LOCAL_CLUSTER"
4 value: "eks-cluster"
5 name: "SITENAMES"
6 value: "aws_site,azure_site"
7 name: "aws_site_ip"
8 value: "NSIP of aws VPX(internal IP)"
9 name: "aws_site_region"

10 value: "us-east-2"
11 name: "azure_site_ip"
12 value: "NSIP of azure_VPX(public IP)"
13 name: "azure_site_region"
14 value: "central-india"
15 name: "azure_site_username"
16 valueFrom:
17 secretKeyRef:
18 name: secret-1
19 key: username
20 name: "azure_site_password"
21 valueFrom:
22 secretKeyRef:
23 name: secret-1
24 key: password
25 name: "aws_site_username"
26 valueFrom:
27 secretKeyRef:
28 name: secret-1
29 key: username
30 name: "aws_site_password"
31 valueFrom:
32 secretKeyRef:
33 name: secret-1
34 key: password

Apply the gslb‑controller.yaml in the Azure cluster using the following command:

1 kubectl apply -f gslb-controller.yaml

5. For the Azure site, edit the gslb-controller.yaml to define LOCAL_REGION,
LOCAL_CLUSTER, and SITENAMES environment variables.

The following example defines the environment variable LOCAL_REGION as central‑india,
LOCAL_CLUSTER as azure‑cluster, and SITENAMES as aws_site, azure_site.

1 name: "LOCAL_REGION"
2 value: "central-india"
3 name: "LOCAL_CLUSTER"
4 value: "aks-cluster"
5 name: "SITENAMES"
6 value: "aws_site,azure_site"
7 name: "aws_site_ip"

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 197

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/gslb/Manifest/gslb-controller.yaml

NetScaler ingress controller

8 value: "NSIP of AWS VPX(public IP)"
9 name: "aws_site_region"

10 value: "us-east-2"
11 name: "azure_site_ip"
12 value: "NSIP of azure VPX(internal IP)"
13 name: "azure_site_region"
14 value: "central-india"
15 name: "azure_site_username"
16 valueFrom:
17 secretKeyRef:
18 name: secret-1
19 key: username
20 name: "azure_site_password"
21 valueFrom:
22 secretKeyRef:
23 name: secret-1
24 key: password
25 name: "aws_site_username"
26 valueFrom:
27 secretKeyRef:
28 name: secret-1
29 key: username
30 name: "aws_site_password"
31 valueFrom:
32 secretKeyRef:
33 name: secret-1
34 key: password

Note:
The order of the GSLB site information should be the same in all clusters. The first site
in the order is considered as the master site for pushing the configuration. Whenever the
master site goes down, the next site in the list becomes the newmaster. Hence, the order
of the sites should be the same in all Kubernetes clusters.

Deploy a sample application

In this example application deployment scenario, an https image of apache is used. However, you
can choose the sample application of your choice.

The application is exposed as type LoadBalancer in both AWS and Azure clusters. You must run the
commands in both AWS and Azure Kubernetes clusters.

1. Create a deployment of a sample apache application using the following command:

1 kubectl create deploy apache --image=httpd:latest port=80

2. Expose the apache application as service of type LoadBalancer using the following command:

1 kubectl expose deploy apache --type=LoadBalancer --port=80

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 198

NetScaler ingress controller

3. Verify that an external IP address is allocated for the service of type LoadBalancer using the
following command:

1 kubectl get svc apache
2 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE
3 apache LoadBalancer 10.0.16.231 20.62.235.193 80:32666/TCP

3m2s

After deploying the application on AWS and Azure clusters, you must configure the GTE custom re‑
source to configure high availability in the multi‑cloud clusters.

Create a GTP YAML resource gtp_isntance.yaml as shown in the following example.

1 apiVersion: "citrix.com/v1beta1"
2 kind: globaltrafficpolicy
3 metadata:
4 name: gtp-sample-app
5 namespace: default
6 spec:
7 serviceType: 'HTTP'
8 hosts:
9 - host: <domain name>

10 policy:
11 trafficPolicy: 'FAILOVER'
12 secLbMethod: 'ROUNDROBIN'
13 targets:
14 - destination: 'apache.default.us-east-2.eks-cluster'
15 weight: 1
16 - destination: 'apache.default.central-india.aks-cluster'
17 primary: false
18 weight: 1
19 monitor:
20 - monType: http
21 uri: ''
22 respCode: 200
23 status:
24 {
25 }
26
27 <!--NeedCopy-->

In this example, traffic policy is configured as FAILOVER. However, the multi‑cluster controller sup‑
ports multiple traffic policies. For more information, see the documentation for the traffic policies.

Apply the GTP resource in both the clusters using the following command:

1 kubectl apply -f gtp_instance.yaml

You can verify that the GSE resource is automatically created in both of the clusters with the required
endpoint information derived from the service status. Verify using the following command:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 199

NetScaler ingress controller

1 kubectl get gse
2 kubectl get gse *name* -o yaml

Also, log in to NetScaler VPX and verify that the GSLB configuration is successfully created using the
following command:

1 show gslb runningconfig

As the GTP CRD is configured for the traffic policy as FAILOVER, NetScaler VPX instances serve the
traffic from the primary cluster (EKS cluster in this example).

1 curl -v http://*domain_name*

However, if an endpoint is not available in the EKS cluster, applications are automatically served from
the Azure cluster. You can ensure it by setting the replica count to 0 in the primary cluster.

NetScaler VPX as ingress and GSLB device for Amazon EKS andMicrosoft AKS clusters

You can deploy the multi‑cloud and multi‑cluster ingress and load balancing solution with Amazon
EKS and Microsoft AKS with NetScaler VPX as GSLB and the same NetScaler VPX as ingress device
too.

To deploy the multi‑cloud multi‑cluster ingress and load balancing with NetScaler VPX as the ingress
device, youmust complete the following tasks described in the previous sections:

1. Deploy NetScaler VPX in AWS
2. Deploy NetScaler VPX in Azure
3. Configure ADNS service on NetScaler VPX deployed in AWS and AKS
4. Configure GSLB service on NetScaler VPX deployed in AWS and AKS
5. Apply GTP and GSE CRDs on AWS and Azure Kubernetes clusters
6. Deploy the GSLB controller

After completing the preceding tasks, perform the following tasks:

1. Configure NetScaler VPX as Ingress Device for AWS
2. Configure NetScaler VPX as Ingress Device for Azure

Configure NetScaler VPX as Ingress device for AWS

Perform the following steps:

1. Create NetScaler VPX login credentials using Kubernetes secret

1 kubectl create secret generic nslogin --from-literal=username='
nsroot' --from-literal=password='<instance-id-of-vpx>'

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 200

NetScaler ingress controller

The NetScaler VPX password is usually the instance‑id of the VPX if you have not changed it.

2. Configure SNIP in the NetScaler VPX by connecting to the NetScaler VPX using SSH. SNIP is the
secondary IP address of Citrix a VPX to which the elastic IP address is not assigned.

1 add ns ip 192.168.84.93 255.255.224.0

This step is required for NetScaler to interact with the pods inside the Kubernetes cluster.

3. Update the NetScaler VPX management IP address and VIP in the NetScaler Ingress Controller
manifest.

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-
controller/master/deployment/aws/quick-deploy-cic/manifest/cic.
yaml

Note:

If you do not have wget installed, you can use fetch or curl.

4. Update the primary IP address of NetScaler VPX in the cic.yaml in the following field.

1 # Set NetScaler NSIP/SNIP, SNIP in case of HA (mgmt has to be
enabled)

2 - name: "NS_IP"
3 value: "X.X.X.X"

5. Update the NetScaler VPX VIP in the cic.yaml in the following field. This is the private IP
address to which you have assigned an elastic IP address

1 # Set NetScaler VIP for the data traffic
2 - name: "NS_VIP"
3 value: "X.X.X.X"

6. Once youhave edited the YAML filewith the required values deployNetScaler Ingress Controller.

1 kubectl create -f cic.yaml

Configure NetScaler VPX as Ingress device for Azure

Perform the following steps:

1. Create NetScaler VPX login credentials using Kubernetes secrets.

1 kubectl create secret generic nslogin --from-literal=username='<
azure-vpx-instance-username>' --from-literal=password='<azure-
vpx-instance-password>'

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 201

NetScaler ingress controller

Note:

The NetScaler VPX user name and password should be the same as the credentials set
while creating NetScaler VPX on Azure.

2. Using SSH, configure a SNIP in the NetScaler VPX, which is the secondary IP address of the
NetScaler VPX. This step is required for the NetScaler to interact with pods inside the Kuber‑
netes cluster.

1 add ns ip <snip-vpx-instance-private-ip> <vpx-instance-primary-ip-
subnet>

• snip-vpx-instance-private-ip is the dynamic private IP address assignedwhile
adding a SNIP during the NetScaler VPX instance creation.

• vpx-instance-primary-ip-subnet is the subnet of theprimary private IP address
of the NetScaler VPX instance.

To verify the subnet of the private IP address, SSH into the NetScaler VPX instance and use the
following command.

1 show ip <primary-private-ip-addess>

3. Update theNetScaler VPX imageURL,management IP address, and VIP in theNetScaler Ingress
Controller YAML file.

a) Download the NetScaler Ingress Controller YAML file.

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-
ingress-controller/master/deployment/azure/manifest/
azurecic/cic.yaml

Note:

If you do not have wget installed, you can use the fetch or curl command.

b) Update theNetScaler IngressController imagewith theAzure imageURL in thecic.yaml
file.

1 - name: cic-k8s-ingress-controller
2 # CIC Image from Azure
3 image: "<azure-cic-image-url>"

c) Update the primary IP address of the NetScaler VPX in the cic.yaml with the primary
private IP address of the Azure VPX instance.

1 # Set NetScaler NSIP/SNIP, SNIP in case of HA (mgmt has to be
enabled)

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 202

NetScaler ingress controller

2 - name: "NS_IP"
3 value: "X.X.X.X"

d) Update the NetScaler VPX VIP in the cic.yaml with the private IP address of the VIP as‑
signed during VPX Azure instance creation.

1 # Set NetScaler VIP for the data traffic
2 - name: "NS_VIP"
3 value: "X.X.X.X"

4. Once you have configured NetScaler Ingress Controller with the required values, deploy the
NetScaler Ingress Controller using the following command.

1 kubectl create -f cic.yaml

Annotations

April 7, 2024

Ingress annotations

The following ingress annotations are supported by NetScaler:

Annotations Type Required Description Default
Possible
value

ingress.
citrix.com
/frontend-
ip

String Optional Specify an IP
address that
needs to be
used as the
content
switching
virtual server
IP address.
Note: There
are multiple
ways to
configure
content
switching
virtual server
IP address
such as IPAM
configuration,
default nsVIP,
and so on.

NA Numeric IP
address. For
example,
1.2.3.4ingress.

citrix.com
/frontend-
ipset-name

String Optional Specify the
IPSET name
that needs to
be bound to
the content
switching
virtual server.
Use this
annotation
along with
ingress.
citrix.com
/frontend-
ip.
Note: The
IPSET name
that you
specify in the
annotation
should
already be
configured in
NetScaler.

NA NetScaler
IPSET entity
name

ingress.
citrix.com
/insecure-
service-
type

String Optional Specify the
protocols
among
HTTP/TCP/UD‑
P/sip_UDP/any
for content
switching
virtual server.

http http, tcp,
udp,
sip_udp, or
any

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 203

NetScaler ingress controller

Annotations Type Required Description Default
Possible
value

ingress.
citrix.com
/insecure-
port

String Optional Configure the
port for
content
switching
virtual server
for
http/tcp/ud‑
p/sip_udp/any
protocols.

80 Valid port
number

ingress.
citrix.com
/secure-
service-
type

String Optional Specify the
protocols
among
SSL/SSL_TCP
as the
protocol for
content
switching
virtual server.

ssl ssl,
ssl_tcp

ingress.
citrix.com
/secure-
port

String Optional Configure the
port for
content
switching
virtual server
for HTTPS
traffic.

443 Valid port
number

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 204

NetScaler ingress controller

Annotations Type Required Description Default
Possible
value

ingress.
citrix.com
/insecure-
termination

String Optional Configure the
behavior for
HTTP traffic.
Use allow to
allow HTTP
traffic; use
redirect to
redirect the
HTTP request
to HTTPS; or
use
disallow if
you want to
drop the
HTTP traffic.

disallow allow,
redirect,
or disallow

ingress.
citrix.com
/default-
response-
code

String Optional Configure
NetScaler to
trigger an
HTTP
response
code when a
request lands
on NetScaler
and if any of
the following
conditions are
met for all the
backend
services
defined in the
ingress
resource: 1.
None of the
content
switching
policies
match. 2. All
the backend
service
endpoints are
down.
Example:
ingress.
citrix.com
/default-
response-
code: '{
response-
code:
"404" } '

NA Possible HTTP
response
codes are 404
and 503.ingress.

citrix.com
/secure-
backend

String/JSON Optional Specify if you
want a secure
HTTPS
connection
between
NetScaler and
the backend
Kubernetes
application. If
the Value
provided is
either true or
false, it
applies for all
the services in
the ingress
YAML. If you
want different
settings for
each service,
provide the
values as
JSON as
following.
Example:
ingress.
citrix.com
/secure-
backend: {
"app1":"
True", "
app2":"
False", "
app3":"
True"}.
Here app1
and app3will
communicate
with backend
via HTTPS.
app2will be
plain HTTP

False As string:
True/False.
As JSON:
'{ "<
Service_Name
>": "True/
False",
... } '.

ingress.
citrix.com
/backend-
secret

String/JSON Optional Specify the
certificate
that you want
to use for
backend com‑
munication
between
NetScaler and
Kubernetes
pods.

NA As string: "
Kubernetes
secret".

As JSON:
'{ "<
Service_Name
>": "<
kubernetes
secret>",
... } '

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 205

NetScaler ingress controller

Annotations Type Required Description Default
Possible
value

ingress.
citrix.com
/backend-
ca-secret

String/JSON Optional Specify the CA
certificate
that you want
to use for
backend com‑
munication
between
NetScaler and
Kubernetes
pods.

NA As string: "
kubernetes
secret" ,

As JSON:
'{ "<
Service_Name
>": "<
kubernetes
secret>",
... } '

ingress.
citrix.com
/
preconfigured
-certkey

JSON Optional Specify
already
existing SSL
certificate
keys on
NetScaler that
needs to be
configured for
content
switching
virtual server.
Example:
ingress.
citrix.com
/
preconfigured
-certkey :
'{ "certs
": [{ "
name": "
certkey1",
"type": "
default" }
, { "name
": "
certkey2",
"type": "
sni" }] }
'. Here

certkey1 is
used as a
non‑SNI
default
certificate and
certkey2 is
used as a SNI
certificate.
See this
section.

NA One or more
NetScaler
sslcertkey
entity names
with
certificate
type default/s‑
ni/ca.

ingress.
citrix.com
/lbvserver

JSON Optional Configure the
settings/para‑
meters of
NetScaler
LBVserver
entity.
Example:
ingress.
citrix.com
/lbvserver
: '{ "app1
":{ "
lbmethod
":"
SRCIPDESTIPHASH
" } } '.
Different use
cases can be
achieved by
setting these
parameters.
See this
section.

NA Valid
NetScaler
entity
parameter in
key:value
format.

ingress.
citrix.com
/
servicegroup

JSON Optional Configure the
settings/para‑
meters of
NetScaler
Servicegroup
entity.
Example:
ingress.
citrix.com
/
servicegroup
: '{ "
appname":{
"cip": "
Enabled","
cipHeader
":"X-
Forwarded-
For" } } '
. Different use
cases can be
achieved by
setting these
parameters.
See this
section.

NA Valid
NetScaler
entity
parameter in
key:value
format.

ingress.
citrix.com
/monitor

JSON Optional Configure the
settings/para‑
meters of
NetScaler
monitor
entity.
Example:
ingress.
citrix.com
/monitor:
'{ "
appname":{
"type":"
http" } }
'. See this
section.

NA Valid
NetScaler
entity
parameter in
key:value
format.

ingress.
citrix.com
/
deployment

String Optional Create Direct
Server Return
(DSR)
configuration
on NetScaler.
Example:
ingress.
citrix.com
/
deployment
: "dsr"

NA dsr

kubernetes
.io/
ingress.
class

String Optional Associate the
ingress
resource to a
particular
ingress
controller.
Example:
kubernetes
.io/
ingress.
class:"
Citrix".
This class is
mantained for
backward
compatibilty.
Use
IngressingressClassName
in spec
instead. See
this section.

NA Ingress
classes
mentioned in
Ingress
Controller
deployment.

ingress.
citrix.com
/path-
match-
method

String Optional Specify the
path
matching for
applications
in the ingress.
Example:
ingress.
citrix.com
/path-
match-
method: "
prefix".
This class is
mantained for
backward
compatibilty.
Use
pathType:
in spec
instead.

prefix prefix or
exact.

ingress.
citrix.com
/ipam-
range

String Optional Select a
particular IP
address range
from a set of
ranges
specified to
the NetScaler
IPAM
controller.
Example:
ingress.
citrix.com
/ipam-
range: '
Dev'

NA Value
matching any
of the range
names
configured in
IPAM
controller.

ingress.
citrix.com
/external-
service

JSON Optional Provide a
domain name
to configure
DNS server on
NetScaler.
See this
section.
Example:
ingress.
citrix.com
/external-
service: '
{ "
external-
svc": { "
domain": "
www.
externalsvc
.com" } }
'

ingress.
citrix.com
/canary-
weight

String Optional Specify the
percentage of
traffic to be
directed to
the canary
version. See
this section.
Example:
ingress.
citrix.com
/canary-
weight: "
10"

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 206

https://github.com/netscaler/netscaler-k8s-ingress-controller/blob/master/simplified-deployment-usecases/TLS/TLS.md#pre-configured-certificates-in-netscaler
https://developer-docs.netscaler.com/en-us/adc-command-reference-int/current-release/lb/lb-vserver.html#set-lb-vserver
https://developer-docs.netscaler.com/en-us/adc-command-reference-int/current-release/basic/serviceGroup.html#set-servicegroup
https://developer-docs.netscaler.com/en-us/adc-command-reference-int/current-release/lb/lb-monitor#set-lb-monitor
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/ingress-classes.html#ingress-v1-and-ingressclass-support
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/how-to/external-load-balance-adc.html

NetScaler ingress controller

Annotations Type Required Description Default
Possible
value

ingress.
citrix.com
/canary-by
-header

String Optional Provide an
HTTP header
key to direct
traffic to the
canary
version. See
this section.
Example:
ingress.
citrix.com
/canary-by
-header: '
some-
header-
info'

NA

ingress.
citrix.com
/canary-by
-header-
value

List Optional Provide HTTP
header values
to direct
traffic to the
canary
version. See
this section.
Example:
ingress.
citrix.com
/canary-by
-header-
value: '["
value1","
value2","
value3"]'

NA List of header
values as
strings.

ingress.
citrix.com
/bot_crd

String/JSON Optional Bind the
policies
created by
BOT CRD to
the
application’s
load
balancing
virtual server.
See this
section.
Example:
ingress.
citrix.com
/bot_crd:
"
botdefense
" binds the
policy to all
the services in
the ingress or
ingress.
citrix.com
/bot_crd:
'{ "
appname":
"
botdefense
" } ' binds
the policy to
only the
front‑end
service.

NA As a string: "
CRD_Instance_Name
". As JSON:
'{ "<
Service_Name
>":"
CRD_Instance_Name
" } '

ingress.
citrix.com
/
ratelimit_crd

String/JSON Optional Bind the
policies
created by
Ratelimit CRD
to the
application’s
load
balancing
virtual server.
See this
section.

NA As a string: "
CRD_Instance_Name
". As JSON:
'{ "<
Service_Name
>":"
CRD_Instance_Name
" } '.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 207

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/canary/canary.html#canary-deployment-based-on-the-http-request-header
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/canary/canary.html#canary-deployment-based-on-the-http-request-header-value
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/crds-annotations.html#ingress-annotation-for-referring-crds
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/crds-annotations.html#ingress-annotation-for-referring-crds

NetScaler ingress controller

Annotations Type Required Description Default
Possible
value

Example:
ingress.
citrix.com
/
ratelimit_crd
: "
ratelimitexample
" binds the
policy to all
the services in
the ingress or
ingress.
citrix.com
/
ratelimit_crd
: '{ "
appname":
"
ratelimitexample
" } ' binds
the policy to
only frontend
service.

ingress.
citrix.com
/auth_crd

String/JSON Optional Bind the
policies
created by
Auth CRD to
the
application’s
load
balancing
virtual server.
See this
section.

NA As a string: "
CRD_Instance_Name
", As JSON:
{ "<
Service_Name
>":"
CRD_Instance_Name
"}

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 208

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/crds-annotations.html#ingress-annotation-for-referring-crds

NetScaler ingress controller

Annotations Type Required Description Default
Possible
value

Example:
ingress.
citrix.com
/auth_crd:
"
authexample
" binds the
policy to all
the services in
the ingress or
ingress.
citrix.com
/auth_crd:
'{ "
appname":
"
authexample
" } ' binds
the policy to
only the
front‑end
service.

ingress.
citrix.com
/waf_crd

String/JSON Optional Bind the
policies
created by
WAF CRD to
the
application’s
load
balancing
virtual server.
See this
section.

NA As a string:
“CRD_Instance_Name”
, As JSON:
'{ "<
Service_Name
>":"
CRD_Instance_Name
" } '

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 209

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/crds-annotations.html#ingress-annotation-for-referring-crds

NetScaler ingress controller

Annotations Type Required Description Default
Possible
value

Example:
ingress.
citrix.com
/waf_crd:
"wafbasic"
binds the
policy to all
the services in
the ingress or
ingress.
citrix.com
/waf_crd:
'{ "
appname":
"wafbasic"
} ' binds

the policy to
only the
front‑end
service

ingress.
citrix.com
/rewrite-
responder_crd

String/JSON Optional Bind the
policies
created by
Rewrite‑
Responder
CRD to the
application’s
load
balancing
virtual server.
See this
section.

NA As a string: "
CRD_Instance_Name
", As JSON:
'{ "<
Service_Name
>":"
CRD_Instance_Name
" } '

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 210

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/crds-annotations.html#ingress-annotation-for-referring-crds

NetScaler ingress controller

Annotations Type Required Description Default
Possible
value

Example:
ingress.
citrix.com
/rewrite-
responder_crd
: "
blockurlpolicy
" Binds the
policy to all
the services in
the ingress or
ingress.
citrix.com
/rewrite-
responder_crd
: '{ "
appname":
"
blockurlpolicy
" } ' binds
the policy to
only the
front‑end
service.

ingress.
citrix.com
/rewrite-
responder_crd

String/JSON Optional Bind the
policies
created by
rewrite‑
responder
CRD to the
application’s
load
balancing
virtual server.
See this
section.

NA As a string: "
CRD_Instance_Name
". As JSON:
'{ "<
Service_Name
>":"
CRD_Instance_Name
" } '.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 211

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/crds-annotations.html#ingress-annotation-for-referring-crds

NetScaler ingress controller

Annotations Type Required Description Default
Possible
value

Example:
ingress.
citrix.com
/rewrite-
responder_crd
: "
blockurlpolicy
" binds the
policy to all
the services in
the ingress or
ingress.
citrix.com
/rewrite-
responder_crd
: '{ "
appname":
"
blockurlpolicy
" } ' binds
the policy to
only the
front‑end
service.

Service annotations

The following are the service annotations supported by NetScaler.

In service annotations, index is the ordered index of the ports in a service specification file. For
example, if there are two ports in the service specification, then the index for the first port is zero and
for the second port is one.

Annotations Type Required Description Default
Possible
value

service.
citrix.com
/frontend-
ip

String Optional Specify an IP
adress that
needs to be
used as
content
switching
virtual server
IP address.
There are
multiple ways
to provide
content
switching
virtual server
IP address.

NA Numeric IP
address, for
example,
‘1.2.3.4’

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 212

NetScaler ingress controller

Annotations Type Required Description Default
Possible
value

service.
citrix.com
/ipam-
range

String Optional Select a
particular IP
address range
from a set of
ranges
specified to
NetScaler
IPAM
controller.
This
annotation is
used for
services of
type
LoadBalancer.
Example:
service.
citrix.com
/ipam-
range: '
Dev'

NA Value
matching any
of the range
names
configured in
IPAM
Controller

service.
citrix.com
/insecure-
redirect

JSON Optional Redirect HTTP
traffic to a
secure port.
Example:
service.
citrix.com
/insecure-
redirect:
'{ "port
-443": 80
} ' or
service.
citrix.com
/insecure-
redirect:
'{ "443-
tcp": 80 }
'

NA

service.
citrix.com
/ssl-
termination
-<index>

String Optional Specify the
SSL
termination.
Example:
service.
citrix.com
/ssl-
termination
-0: 'EDGE'

NA EDGE and
REENCRYPT

service.
citrix.com
/service-
type-<
index>

String Optional Specify a
protocol for
the NetScaler
entities to be
created.
Example:
service.
citrix.com
/service-
type-0: ‘
SSL’.

HTTP TCP, HTTP,
SSL,UDP,ANY
, SSL_TCP,
and
SIP_UDP.

service.
citrix.com
/ssl-
certificate
-data-<
index>

String Optional Specify the
server
certificate
value in the
PEM format.
Example:
service.
citrix.com
/ssl-
certificate
-data-0:
\| <
certificate
>

NA Certificate
Data in PEM
Format

service.
citrix.com
/ssl-key-
data-<
index>

String Optional Specify the
server key
value in the
PEM format.
Example:
service.
citrix.com
/ssl-key-
data-0: \|
<key>

NA Key data in
PEM Format

service.
citrix.com
/ssl-ca-
certificate
-data-<
index>

String Optional Specify the
server CA
certificate
value to verify
the client
certificate in
PEM format.
Example:
service.
citrix.com
/ssl-ca-
certificate
-data-0:
\| <
certificate
>

NA CA certificate
data in PEM
Format

service.
citrix.com
/ssl-
backend-ca
-
certificate
-data-<
index>

String Optional Specify the CA
certificate
value to verify
the server
certificate of
the back end
in PEM
format.
Example:
service.
citrix.com
/ssl-
backend-ca
-
certificate
-data-0:
\| <
certificate
>

NA CA certificate
data in PEM
format

service.
citrix.com
/secret

String Optional Specify a
name of a
secret
resource for
the front‑end
server
certificate.
For more
information
and example,
see SSL
certificate for
services of
type
LoadBalancer.
Example:
service.
citrix.com
/secret: '
hotdrink-
secret'

NA Kubernetes
secret Name

service.
citrix.com
/ca-secret

String Optional Provide a CA
certificate for
client
certificate au‑
thentication.
This
certificate is
bound to the
front‑end SSL
virtual server
in NetScaler.
For more
information
and example,
see SSL
certificate for
services of
type
LoadBalancer.
Example:
service.
citrix.com
/ca-secret
: '
hotdrink-
ca-secret'

NA Kubernetes
secret Name

service.
citrix.com
/backend-
secret

String Optional Use this
annotation if
the back‑end
communica‑
tion between
NetScaler and
your workload
is on an
encrypted
channel, and
you need the
client authen‑
tication in
your
workload.
This
certificate is
sent to the
server during
the SSL
handshake
and it is
bound to the
backend SSL
service group.
For more
information
and example,
see SSL
certificate for
services of
type
LoadBalancer.
Example:
service.
citrix.com
/backend-
secret: '
hotdrink-
secret'

NA Kubernetes
secret Name

service.
citrix.com
/backend-
ca-secret

String Optional Enable server
authentica‑
tion which
authenticates
the back‑end
server
certificate.
For more
information
and example,
see SSL
certificate for
services of
type
LoadBalancer.
Example:
service.
citrix.com
/backend-
ca-secret:
'hotdrink
-ca-secret
'

NA Kubernetes
secret Name

service.
citrix.com
/
preconfigured
-certkey

String Optional Specify the
name of an
existing SSL
certification
key from
NetScaler to
be used as a
front‑end
server
certificate.
Example:
service.
citrix.com
/
preconfigured
-certkey:
'coffee-
cert'

NA NetScaler
sslcertkey
entity name

service.
citrix.com
/
preconfigured
-ca-
certkey

String Optional Specify the
name of a pre‑
configured
certificate key
in NetScaler
to be used as
a CA
certificate for
client
certificate au‑
thentication.
This
certificate is
bound to the
front‑end SSL
virtual server
in NetScaler.
Example:
service.
citrix.com
/
preconfigured
-backend-
certkey: '
coffee-
cert'

NA NetScaler
sslcertkey
entity name

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 213

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html

NetScaler ingress controller

Annotations Type Required Description Default
Possible
value

service.
citrix.com
/
preconfigured
-backend-
certkey

String Optional Specify the
name of a pre‑
configured
certificate key
in NetScaler
to be bound
to the
back‑end SSL
service group.
This
certificate is
sent to the
server during
the SSL
handshake for
server authen‑
tication.
Example:
service.
citrix.com
/
preconfigured
-ca-
certkey: '
coffee-ca-
cert'

NA NetScaler
sslcertkey
entity name

service.
citrix.com
/
preconfigured
-backend-
ca-certkey

String Optional Specify the
name of a pre‑
configured CA
certificate key
in NetScaler
to bound to
the back‑end
SSL service
group for
server authen‑
tication.
Example:
service.
citrix.com
/
preconfigured
-backend-
ca-certkey
: 'coffee-
ca-cert'

NA NetScaler
sslcertkey
entity name

Smart annotations for HTTP, TCP, or SSL profiles

Annotations Type Required Description Default
Possible
value

ingress.
citrix.com
/frontend-
httpprofile

String/JSON Optional Create the
front‑end
HTTP profile
(Client Plane)

NA Example:
ingress.
citrix.com
/frontend-
httpprofile
: '{ "
dropinvalreqs
":"enabled
", "
websocket"
: "
enabled" }
'

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 214

NetScaler ingress controller

Annotations Type Required Description Default
Possible
value

ingress.
citrix.com
/backend-
httpprofile

String/JSON Optional Create the
back‑end
HTTP profile
(Server
Plane).

NA Example:
ingress.
citrix.com
/backend-
httpprofile
: '{ "app
-1": { "
dropinvalreqs
":"enabled
", "
websocket"
: "
enabled" }
} '

ingress.
citrix.com
/frontend-
tcpprofile

String/JSON Optional Create the
front‑end TCP
profile (Client
Plane)

NA Example:
ingress.
citrix.com
/frontend-
tcpprofile
: '{ "ws
":"enabled
", "sack"
: "enabled
" } '

ingress.
citrix.com
/backend-
tcpprofile

String/JSON Optional Create the
back‑end TCP
profile (Server
Plane)

NA Example:ingress
.citrix.
com/
backend-
tcpprofile
: '{ "
citrix-svc
":{ "ws":"
enabled",
"sack" : "
enabled" }
} '

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 215

NetScaler ingress controller

Annotations Type Required Description Default
Possible
value

ingress.
citrix.com
/frontend-
sslprofile

String/JSON Optional Create the
front‑end SSL
profile (Client
Plane). The
front‑end SSL
profile is
required only
if you have
enabled TLS
on the Client
Plane.

NA Example:
ingress.
citrix.com
/frontend-
sslprofile
: '{ "hsts
":"enabled
", "tls12"
: "
enabled" }
'

ingress.
citrix.com
/backend-
sslprofile

String/JSON Optional Create the
back‑end SSL
profile (Server
Plane). The
SSL back‑end
profile is
required only
if you use
ingress.
citrix.com
/secure-
backend.

NA Example:
ingress.
citrix.com
/backend-
sslprofile
: '{ "
citrix-svc
":{ "hsts
":"enabled
", "tls1"
: "enabled
" } } '

Smart annotations for Ingress

Smart annotation is anoptionprovidedbyNetScaler Ingress Controller to efficiently enableNetScaler
features using the NetScaler entity name. The NetScaler Ingress Controller converts the Ingress in Ku‑
bernetes to a set of NetScaler objects. You can efficiently control these objects using smart annota‑
tions.

Note

To use smart annotations, you must have a good understanding of NetScaler features and their
respective entity names. For more information about NetScaler features and entity names, see
NetScaler documentation.

Smart annotation takes JSON format as input. The key and value that you pass in the JSON format

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 216

https://docs.netscaler.com/en-us/citrix-adc/current-release/.html

NetScaler ingress controller

must match the NetScaler NITRO format. For more information about the NetScaler NITRO API, see
NetScaler REST APIs ‑ NITRO documentation.

For example, if you want to enable the SRCIPDESTIPHASH based lb method, you must use the cor‑
responding NITRO key and value format lbmethod, SRCIPDESTIPHASH respectively.

The following table details the smart annotations provided by NetScaler Ingress Controller:

NetScaler Entity Name Smart Annotation Example

lbvserver ingress.citrix.com/
lbvserver

ingress.citrix.com/
lbvserver: '{ "
appname":{ "lbmethod
":"SRCIPDESTIPHASH" }
} '

servicegroup ingress.citrix.com/
servicegroup

ingress.citrix.com/
servicegroup: '{ "
appname":{ "cip": "
Enabled","cipHeader
":"X-Forwarded-For" }
} '

monitor ingress.citrix.com/
monitor

ingress.citrix.com/
monitor: '{ "appname
":{ "type":"http" } }
'

csvserver ingress.citrix.com/
csvserver

ingress.citrix.com/
csvserver: '{ "
stateupdate": "
ENABLED" } '

For information on smart annotations for HTTP, TCP, and SSL profiles, see ConfigureHTTP, TCP, or SSL
profiles on NetScaler.

Sample ingress YAMLwith smart annotations

The following sample Ingress YAML includes smart annotations to enableNetScaler features using the
entities such as, lbvserver, servicegroup, andmonitor:

1 kubectl apply -f - <<EOF
2 apiVersion: networking.k8s.io/v1
3 kind: Ingress

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 217

https://developer-docs.netscaler.com/en-us/adc-nitro-api/current-release.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/profiles.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/profiles.html

NetScaler ingress controller

4 metadata:
5 annotations:
6 ingress.citrix.com/frontend-ip: 192.168.1.1
7 ingress.citrix.com/insecure-port: "80"
8 ingress.citrix.com/lbvserver: '{
9 "appname":{

10 "lbmethod":"LEASTCONNECTION", "persistenceType":"SOURCEIP" }
11 }
12 '
13 ingress.citrix.com/monitor: '{
14 "appname":{
15 "type":"http" }
16 }
17 '
18 ingress.citrix.com/servicegroup: '{
19 "appname":{
20 "usip":"yes" }
21 }
22 '
23 name: citrix
24 spec:
25 rules:
26 - host: citrix.org
27 http:
28 paths:
29 - backend:
30 service:
31 name: appname
32 port:
33 number: 80
34 path: /
35 pathType: Prefix
36 EOF
37 <!--NeedCopy-->

The sample Ingress YAML includes use cases related to the service, citrix-svc, and the following
table explains the smart annotations used in the sample:

Smart Annotation Description

ingress.citrix.com/lbvserver: '{
"appname":{ "lbmethod":"
LEASTCONNECTION", "
persistenceType":"SOURCEIP" } } '

Sets the load balancing method as Least
Connection and also configures Source IP
address persistence.

ingress.citrix.com/servicegroup:
'{ "appname":{ "usip":"yes" } } '

Enables Use Source IP Mode (USIP) on NetScaler
device. When you enable USIP on NetScaler, it
uses the client’s IP address for communication
with the back‑end pods.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 218

https://docs.netscaler.com/en-us/citrix-adc/current-release/load-balancing/load-balancing-customizing-algorithms/leastconnection-method.html
https://docs.netscaler.com/en-us/citrix-adc/current-release/load-balancing/load-balancing-customizing-algorithms/leastconnection-method.html
https://docs.netscaler.com/en-us/citrix-adc/current-release/networking/ip-addressing/enabling-use-source-ip-mode.html
https://docs.netscaler.com/en-us/citrix-adc/current-release/networking/ip-addressing/enabling-use-source-ip-mode.html
https://docs.citrix.com/en-us/citrix-adc/12-1/networking/ip-addressing/enabling-use-source-ip-mode.html

NetScaler ingress controller

Smart Annotation Description

ingress.citrix.com/monitor: '{ "
appname":{ "type":"http" } } '

Creates a custom HTTPmonitor for the service
group.

Note:

When multiple ingresses are sharing the same front‑end IP address and port, you cannot have
conflicting configurations provided throughmultiple ingress configurations.

By default, the content switching virtual server does not depend on the state of the target load bal‑
ancing virtual servers bound to it. The annotation ingress.citrix.com/csvserver: '{ "
stateupdate": "ENABLED" } ' sets the content switching virtual server to consider its state
based on the state of the load balancing virtual server bound to it using the content switching poli‑
cies.

Smart annotations for routes

Similar to Ingress, you can also use smart annotations with OpenShift routes. NetScaler Ingress Con‑
troller converts the routes in OpenShift to a set of NetScaler objects.

The following table details the smart annotations provided by NetScaler Ingress Controller:

NetScaler entity name Smart annotation Example

lbvserver route.citrix.com/lbvserver
route.citrix.com/lbvserver: '{ "appname":{ "lbmethod":"

SRCIPDESTIPHASH" } } '

servicegroup route.citrix.com/servicegroup
route.citrix.com/servicegroup: '{ "appname":{ "cip": "Enabled","

cipHeader":"X-Forwarded-For" } } '

monitor route.citrix.com/monitor route.citrix.com/monitor: '{ "appname":{ "type":"http" } } '

Sample routemanifest with smart annotations

The following example is a route YAML file.

1 kubectl apply -f - <<EOF
2 apiVersion: route.openshift.io/v1
3 kind: Route
4 metadata:
5 name: citrix
6 annotations:
7 route.citrix.com/lbvserver: '{

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 219

https://docs.netscaler.com/en-us/citrix-adc/current-release/load-balancing/load-balancing-custom-monitors.html

NetScaler ingress controller

8 "appname":{
9 "lbmethod":"LEASTCONNECTION", "persistenceType":"SOURCEIP" }

10 }
11 '
12 route.citrix.com/servicegroup: '{
13 "appname":{
14 "usip":"yes" }
15 }
16 '
17 route.citrix.com/monitor: '{
18 "appname":{
19 "type":"http" }
20 }
21 '
22 spec:
23 host: citrix.org
24 port:
25 targetPort: 80
26 to:
27 kind: Service
28 name: appname
29 weight: 100
30 wildcardPolicy: None
31 EOF
32 <!--NeedCopy-->

The sample route manifest includes use cases related to the service citrix-svc and the following
table explains the smart annotations used in the sample route:

Smart annotation Description

route.citrix.com/lbvserver: '{ "
appname":{ "lbmethod":"
LEASTCONNECTION", "
persistenceType":"SOURCEIP" } } '

Sets the load balancing method as Least
Connection and also configures Source IP
address persistence.

route.citrix.com/servicegroup: '{
"appname":{ "usip":"yes" } } '

Enables Use Source IP Mode (USIP) on NetScaler.
When you enable USIP on the NetScaler, it uses
the IP address of the client for communication
with the back‑end pods.

route.citrix.com/monitor: '{ "
appname":{ "type":"http" } } '

Creates a custom HTTPmonitor for the service
group.

Sample YAMLwith the service annotation to redirect insecure traffic

This example shows how to redirect traffic from clientsmaking requests on an insecure port 80 to the
secure port 443.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 220

https://docs.netscaler.com/en-us/citrix-adc/current-release/load-balancing/load-balancing-customizing-algorithms/leastconnection-method.html
https://docs.netscaler.com/en-us/citrix-adc/current-release/load-balancing/load-balancing-customizing-algorithms/leastconnection-method.html
https://docs.netscaler.com/en-us/citrix-adc/current-release/load-balancing/load-balancing-persistence/source-ip-persistence.html
https://docs.netscaler.com/en-us/citrix-adc/current-release/load-balancing/load-balancing-persistence/source-ip-persistence.html
https://docs.netscaler.com/en-us/citrix-adc/current-release/networking/ip-addressing/enabling-use-source-ip-mode.html
https://docs.netscaler.com/en-us/citrix-adc/current-release/load-balancing/load-balancing-custom-monitors.html

NetScaler ingress controller

The following annotation is specified in the service YAML file to redirect traffic:

1 service.citrix.com/insecure-redirect: '{
2 "port-443": 80 }
3 '
4 <!--NeedCopy-->

Sample service definition:

1 kubectl apply -f - <<EOF
2 apiVersion: v1
3 kind: Service
4 metadata:
5 name: frontend-service
6 annotations:
7 service.citrix.com/service-type-0: SSL
8 service.citrix.com/frontend-ip: '192.2.170.26'
9 service.citrix.com/secret: '{

10 "port-443": "web-ingress-secret" }
11 '
12 service.citrix.com/ssl-termination-0: 'EDGE'
13 service.citrix.com/insecure-redirect: '{
14 "port-443": 80 }
15 '
16 spec:
17 type: LoadBalancer
18 selector:
19 app: frontend
20 ports:
21 - port: 443
22 targetPort: 80
23 name: port-443
24 EOF
25 <!--NeedCopy-->

Smart annotations for services

Smart annotations for services are used to configure NetScaler with custom values for NetScaler con‑
figuration parameters. The annotations are used for services of type LoadBalancer and for the
services in NetScaler CPX used for East‑West traffic.

Note:

If you have configured a service with NodePort or ClusterIP for the North‑South traffic, then
NetScaler is configured using the applicable ingress smart annotations rather than service an‑
notations.

Smart annotations for services take JSON format as input. The key and value that you pass in the
JSON format must match the NetScaler NITRO format. For more information about the NetScaler
NITRO API, see NetScaler REST APIs ‑ NITRO Documentation.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 221

https://developer-docs.citrix.com/projects/netscaler-nitro-api/en/latest/

NetScaler ingress controller

Example smart annotation for services:

1 service.citrix.com/lbvserver: '{
2 "80-tcp":{
3 "lbmethod":"SRCIPDESTIPHASH" }
4 }
5 '
6 <!--NeedCopy-->

This annotation sets the load balancingmethod asSRCIPDESTIPHASH in the load balancing virtual
server for the 80-tcp port of the given service.

The following table describes the smart annotations for services:

NetScaler Entity Name Smart Annotation for Service Example

lbvserver service.citrix.com/
lbvserver

service.citrix.com/
lbvserver: '{ "80-tcp
":{ "lbmethod":"
SRCIPDESTIPHASH" } }
'

csvserver service.citrix.com/
csvserver

service.citrix.com/
csvserver: '{ "l2conn
":"on" } '

servicegroup service.citrix.com/
servicegroup

service.citrix.com/
servicegroup: '{ "80-
tcp":{ "usip":"yes" }
} '

monitor service.citrix.com/
monitor

service.citrix.com/
monitor: '{ "80-tcp
":{ "type":"http" } }
'

analyticsprofile service.citrix.com/
analyticsprofile

service.citrix.com/
analyticsprofile: '{
"80-tcp":{ "
webinsight": { "
httpurl":"ENABLED", "
httpuseragent":"
ENABLED" } } } '

You can use the smart annotations for services as follows:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 222

NetScaler ingress controller

• By providing the port-protocol value in the annotation: In the service definition, if you
provide the port-protocol value in the annotation then the annotation is restricted to the
particular port of that service.

• By not providing theport-protocol value in the annotation: If you do not provide theport
-protocol value in the annotation, then the annotation is applicable to all the ports used by
the service.

Sample ingress YAMLwith smart annotations for services

The following YAML is a sample deployment and service definition for a basic apache web‑server
based application. It includes smart annotations for services to enable NetScaler features using the
entities such as lbvserver, csvserver, servicegroup, monitor, and analyticsprofile:

1 kubectl apply -f - <<EOF
2 apiVersion: apps/v1
3 kind: Deployment
4 metadata:
5 name: apache
6 labels:
7 name: apache
8 spec:
9 selector:

10 matchLabels:
11 app: apache
12 replicas: 8
13 template:
14 metadata:
15 labels:
16 app: apache
17 spec:
18 containers:
19 - name: apache
20 image: httpd:latest
21 ports:
22 - name: http
23 containerPort: 80
24 imagePullPolicy: IfNotPresent
25
26 ---
27 #Expose the apache web server as a service
28 apiVersion: apps/v1
29 kind: Service
30 metadata:
31 name: apache
32 annotations:
33 service.citrix.com/csvserver: '{
34 "l2conn":"on" }
35 '
36 service.citrix.com/lbvserver: '{

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 223

NetScaler ingress controller

37 "80-tcp":{
38 "lbmethod":"SRCIPDESTIPHASH" }
39 }
40 '
41 service.citrix.com/servicegroup: '{
42 "80-tcp":{
43 "usip":"yes" }
44 }
45 '
46 service.citrix.com/monitor: '{
47 "80-tcp":{
48 "type":"http" }
49 }
50 '
51 service.citrix.com/frontend-ip: '10.217.212.16'
52 service.citrix.com/analyticsprofile: '{
53 "80-tcp":{
54 "webinsight": {
55 "httpurl":"ENABLED", "httpuseragent":"ENABLED" }
56 }
57 }
58 '
59 NETSCALER_VPORT: '80'
60 labels:
61 name: apache
62 spec:
63 externalTrafficPolicy: Local
64 type: LoadBalancer
65 selector:
66 name: apache
67 ports:
68 - name: http
69 port: 80
70 targetPort: http
71 selector:
72 app: apache
73 ---
74 EOF
75 <!--NeedCopy-->

Examples

Sample ingress YAML for SIP_UDP support in insecure service type annotation

The following sample ingress YAML includes theconfiguration for enablingSIPoverUDPsupportusing
the ingress.citrix.com/insecure-service-type annotation.

1 kubectl apply -f - <<EOF
2 apiVersion: networking.k8s.io/v1
3 kind: Ingress
4 metadata:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 224

NetScaler ingress controller

5 annotations:
6 ingress.citrix.com/frontend-ip: 1.1.1.1
7 ingress.citrix.com/insecure-port: "5060"
8 ingress.citrix.com/insecure-service-type: sip_udp
9 ingress.citrix.com/lbvserver: '{

10 "asterisk17":{
11 "lbmethod":"CALLIDHASH","persistenceType":"CALLID" }
12 }
13 '
14 name: sip-ingress
15 spec:
16 defaultBackend:
17 service:
18 name: asterisk17
19 port:
20 number: 5060
21 EOF
22 <!--NeedCopy-->

ConfigMap support for the NetScaler Ingress Controller

December 31, 2023

TheConfigMapAPI resource holds key‑value pairs of configuration data that canbe consumed in pods
or to store configuration data for system components such as controllers.

ConfigMaps allow you to separate your configurations from your pods and make your workloads
portable. Using ConfigMaps, you can easily change and manage your workload configurations and
reduce the need to hardcode configuration data to pod specifications.

The NetScaler Ingress Controller supports the configuration command line arguments, and environ‑
ment variables mentioned in deploying the NetScaler Ingress Controller. But, you cannot update
these configurations at runtime without rebooting the NetScaler Ingress Controller pod. With Con‑
figMap support, you can update the configuration automatically while keeping the NetScaler Ingress
Controller pod running. You do not need to restart the pod after the update.

Supported environment variables in the NetScaler Ingress Controller

Thevalues for the followingenvironment variables in theNetScaler IngressController canbe specified
in a ConfigMap.

• LOGLEVEL: Specifies the log levels to control the logs generated by the NetScaler Ingress Con‑
troller (debug, info, critical, and so on). The default value is debug.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 225

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/README.md

NetScaler ingress controller

• NS_HTTP2_SERVER_SIDE: Enables HTTP2 for NetScaler service group configurations with pos‑
sible values as ON or OFF.

• NS_PROTOCOL: Specifies the protocol to establish the ADC session (HTTP/HTTPS). The default
value is http.

• NS_PORT: Specifies the port to establish a session. The default value is 80.

• NS_COOKIE_VERSION: Specifies the persistence cookie version (0 or 1). The default value is 0.

• NS_DNS_NAMESERVER: Enables adding DNS nameservers on NetScaler VPX.

• POD_IPS_FOR_SERVICEGROUP_MEMBERS: Specifies to add the IP address of the pod and port
as servicegroupmembers insteadofNodeIPandNodePortwhile configuring servicesof type
LoadBalancer or NodePort on an external tier‑1 NetScaler.

• IGNORE_NODE_EXTERNAL_IP: Specifies to ignore an external IP address and add an internal
IP address for NodeIP while configuring NodeIP for services of type LoadBalancer or
NodePort on an external tier‑1 NetScaler.

• FRONTEND_HTTP_PROFILE: Sets the HTTP options for the front‑end virtual server (client
plane), unless overridden by the ingress.citrix.com/frontend-httpprofile
smart annotation in the ingress definition.

• FRONTEND_TCP_PROFILE: Sets the TCP options for the front‑end virtual server (client side),
unless overridden by theingress.citrix.com/frontend-tcpprofile smart annota‑
tion in the ingress definition.

• FRONTEND_SSL_PROFILE: Sets the SSL options for the front‑end virtual server (client side)
unless overridden by the ingress.citrix.com/frontend-sslprofile smart
annotation in the ingress definition.

• JSONLOG: Set this argument to true if log messages are required in JSON format.

• NS_ADNS_IPS: Enables configuring NetScaler as an ADNS server.

For more information about profile environment variables (FRONTEND_HTTP_PROFILE, FRON‑
TEND_TCP_PROFILE, and FRONTEND_SSL_PROFILE), see Configure HTTP, TCP, or SSL profiles on
NetScaler.

Note:

This is an initial version of the ConfigMap support and currently supports only a few parame‑
ters. Earlier, these parameters were configurable through environment variables except the
NS_HTTP2_SERVER_SIDE parameter.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 226

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/profiles.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/profiles.html

NetScaler ingress controller

Configuring ConfigMap support for the NetScaler Ingress Controller

This example showshow to create aConfigMapandapply theConfigMap to theNetScaler Ingress Con‑
troller. It also shows how to reapply the ConfigMap after you make changes. You can also optionally
delete the changes.

Perform the following to configure ConfigMap support for the NetScaler Ingress Controller.

1. Create a YAML filecic-configmap.yamlwith the required key‑value pairs in the ConfigMap.

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: cic-configmap
5 labels:
6 app: citrix-ingress-controller
7 data:
8 LOGLEVEL: 'info'
9 NS_PROTOCOL: 'http'

10 NS_PORT: '80'
11 NS_COOKIE_VERSION: '0'
12 NS_HTTP2_SERVER_SIDE: 'ON'

2. Deploy the cic-configmap.yaml using the following command.

1 kubectl create -f cic-configmap.yaml

3. Edit thecic.yaml file for deploying theNetScaler Ingress Controller as a stand‑alone pod and
specify the following:

1 Args:
2 - --configmap
3 default/cic-configmap

Note:

It is mandatory to specify the namespace. If the namespace is not specified, ConfigMap is
not considered.

Following is a sample YAML file for deploying the NetScaler Ingress Controller with the Con‑
figMap configuration. For the complete YAML file, see citrix‑k8s‑ingress‑controller.yaml.

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: cic-k8s-ingress-controller
5 spec:
6 selector:
7 matchLabels:
8 app: cic-k8s-ingress-controller
9 replicas: 1

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 227

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/citrix-k8s-ingress-controller.yaml

NetScaler ingress controller

10 template:
11 metadata:
12 name: cic-k8s-ingress-controller
13 labels:
14 app: cic-k8s-ingress-controller
15 annotations:
16 spec:
17 serviceAccountName: cic-k8s-role
18 containers:
19 - name: cic-k8s-ingress-controller
20 image: "quay.io/citrix/citrix-k8s-ingress-controller

:1.36.5"
21 env:
22 # Set NetScaler NSIP/SNIP, SNIP in case of HA (mgmt has

to be enabled)
23 - name: "NS_IP"
24 value: "x.x.x.x"
25 - name: "EULA"
26 value: "yes"
27 args:
28 - --ingress-classes
29 citrix
30 - --feature-node-watch
31 false
32 - --configmap
33 default/cic-configmap
34 imagePullPolicy: Always

4. Deploy the NetScaler Ingress Controller as a stand‑alone pod by applying the YAML.

1 kubectl apply -f cic.yaml

5. If youwant to change the value of an environment variable, edit the values in the ConfigMap. In
this example, the value of NS_HTTP2_SERVER_SIDE is changed to ‘OFF’.

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: cic-configmap
5 labels:
6 app: citrix-ingress-controller
7 data:
8 LOGLEVEL: 'info'
9 NS_PROTOCOL: 'http'

10 NS_PORT: '80'
11 NS_COOKIE_VERSION: '0'
12 NS_HTTP2_SERVER_SIDE: 'OFF'

6. Reapply the ConfigMap using the following command.

1 kubectl apply -f cic-configmap.yaml

7. (Optional) If you need to delete the ConfigMap, use the following command.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 228

NetScaler ingress controller

1 kubectl delete -f cic-configmap.yaml

When you delete the ConfigMap, the environment variable configuration falls back as per the
following order of precedence:
ConfigMap configuration > environment variable configuration > default

(Optional) In case, youwant todefineall keys inaConfigMapasenvironmentvariables in theNetScaler
Ingress Controller, use the following in the NetScaler Ingress Controller deployment YAML file.

1 envFrom:
2 - configMapRef:
3 name: cic-configmap

Ingress configurations

December 31, 2023

Kubernetes Ingress provides you away to route requests to services basedon the request host or path,
centralizing a number of services into a single entry point.

NetScaler Ingress Controller is built around the Kubernetes Ingress and automatically configures one
or more NetScaler based on the Ingress resource configuration.

Host name based routing

The following sample Ingress definition demonstrates how to set up an Ingress to route the traffic
based on the host name:

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: virtual-host-ingress
5 namespace: default
6 spec:
7 rules:
8 - host: foo.bar.com
9 http:

10 paths:
11 - backend:
12 service:
13 name: service1
14 port:
15 number: 80
16 pathType: Prefix
17 path: /

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 229

https://kubernetes.io/docs/concepts/services-networking/ingress/

NetScaler ingress controller

18 - host: bar.foo.com
19 http:
20 paths:
21 - backend:
22 service:
23 name: service2
24 port:
25 number: 80
26 pathType: Prefix
27 path: /
28 <!--NeedCopy-->

After the sample Ingress definition is deployed, all the HTTP request with a host header is load bal‑
anced by NetScaler to service1. And, the HTTP request with a host header is load balancer by
NetScaler to service2.

Path based routing

The following sample Ingress definition demonstrates how to set up an Ingress to route the traffic
based on URL path:

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: path-ingress
5 namespace: default
6 spec:
7 rules:
8 - host: test.example.com
9 http:

10 paths:
11 - backend:
12 service:
13 name: service1
14 port:
15 number: 80
16 path: /foo
17 pathType: Prefix
18 - backend:
19 service:
20 name: service2
21 port:
22 number: 80
23 path: /
24 pathType: Prefix
25 <!--NeedCopy-->

After the sample Ingress definition is deployed, any HTTP requests with host test.example.com
andURL pathwith prefix/foo, NetScaler routes the request toservice1 and all other requests are
routed to service2.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 230

NetScaler ingress controller

NetScaler Ingress Controller follows first match policy to evaluate paths. For effective matching,
NetScaler Ingress Controller orders the paths based on descending order of the path’s length. It also
orders the paths that belong to same hosts across multiple ingress resources.

Wildcard host routing

The following sample Ingress definition demonstrates how to set up an ingress with wildcard host.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: wildcard-ingress
5 namespace: default
6 spec:
7 rules:
8 - host: '*.example.com'
9 http:

10 paths:
11 - backend:
12 service:
13 name: service1
14 port:
15 number: 80
16 path: /
17 pathType: Prefix
18 <!--NeedCopy-->

After the sample Ingress definition is deployed, HTTP requests to all the subdomains of example.
com is routed to service1 by NetScaler.

Note:

Rules with non‑wildcard hosts are given higher priority than wildcard hosts. Among different
wildcard hosts, rules are ordered on the descending order of length of hosts.

Exact pathmatching

Ingresses belonging to networking.k8s.io/v1 APIversion can make use of PathType:
Exact to consider the path for the exact match.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: Path-exact-Ingress
5 namespace: default
6 spec:
7 rules:
8 - host: test.example.com

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 231

NetScaler ingress controller

9 http:
10 paths:
11 - backend:
12 service:
13 name: service1
14 port:
15 name: 80
16 path: /exact
17 pathType: Exact
18 <!--NeedCopy-->

(Deprecated as of Kubernetes 1.22+) By default for Ingresses belonging to extension/v1beta1
, paths are treated as Prefix expressions. Using the annotation ingress.citrix.com/path
-match-method: "exact" in the ingress definition defines the NetScaler Ingress Controller to
consider the path for the exact match.

The following sample Ingress definition demonstrates how to set up Ingress for exact path match‑
ing:

1 apiVersion: extension/v1beta1
2 kind: Ingress
3 metadata:
4 name: path-exact-ingress
5 namespace: default
6 annotations:
7 ingress.citrix.com/path-match-method: "exact"
8 spec:
9 rules:

10 - host:test.example.com
11 http:
12 paths:
13 - path: /exact
14 backend:
15 serviceName: service1
16 servicePort: 80
17 <!--NeedCopy-->

After the sample Ingress definition is deployed, HTTP requests with path /exact is routed by
NetScaler to service1 but not to /exact/somepath.

Non‑Hostname routing

Followingexample showspathbased routing for thedefault traffic thatdoesnotmatchanyhostbased
routes. This ingress rule applies to all inbound HTTP traffic through the specified IP address.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: default-path-ingress
5 namespace: default

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 232

NetScaler ingress controller

6 spec:
7 rules:
8 - http:
9 paths:

10 - backend:
11 service:
12 name: service1
13 port:
14 number: 80
15 path: /foo
16 pathType: Prefix
17 - backend:
18 service:
19 name: service2
20 port:
21 number: 80
22 path: /
23 pathType: Prefix
24 <!--NeedCopy-->

All incoming traffic that does notmatch the ingress ruleswith host name ismatchedhere for the paths
for routing.

Default back end

Default back end is a service that handles all traffic that is not matched against any of the Ingress
rules.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: default-ingress
5 namespace: default
6 spec:
7 defaultBackend:
8 service:
9 name: testsvc

10 port:
11 number: 80
12
13 <!--NeedCopy-->

Note:

A global default back end can be specified if NetScaler CPX is load balancing the traffic. You can
create a default back end per frontend-ip:port combination in case of NetScaler VPX or
MPX is the ingress device.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 233

NetScaler ingress controller

Ingress class support

December 31, 2023

What is Ingress class?

In a Kubernetes cluster, there might be multiple ingress controllers and you need to have a way to
associate a particular ingress resource with an ingress controller.

You can specify the ingress controller that should handle the ingress resource by using the
kubernetes.io/ingress.class annotation in your ingress resource definition.

NetScaler Ingress Controller and Ingress classes

The NetScaler Ingress Controller supports accepting multiple ingress resources, which have
kuberneters.io/ingress.class annotation. Each ingress resource can be associated with
only one ingress.class. However, the Ingress Controller might need to handle various ingress
resources from different classes.

You can associate the Ingress Controller with multiple ingress classes using the --ingress-
classes argument under the spec section of the YAML file.

If ingress-classes is not specified for the Ingress Controller, then it accepts all ingress resources
irrespective of the presence of the kubernetes.io/ingress.class annotation in the ingress
object.

If ingress-classes is specified, then the Ingress Controller accepts only those ingress resources
that match the kubernetes.io/ingress.class annotation. The Ingress controller does not
process an Ingress resource without the ingress.class annotation in such a case.

Note: Ingress class names are case‑insensitive.

Sample YAML configurations with Ingress classes

Following is the snippet from a sample YAML file to associate ingress-classes with the Ingress
Controller. This configuration works in both cases where the Ingress Controller runs as a standalone
pod or runs as a sidecar with NetScaler CPX. In the given YAML snippet, the following ingress classes
are associated with the Ingress Controller.

• my-custom-class

• Citrix

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 234

NetScaler ingress controller

1 spec:
2 serviceAccountName: cic-k8s-role
3 containers:
4 - name: cic-k8s-ingress-controller
5 image:"quay.io/citrix/citrix-k8s-ingress-controller:latest"
6 # specify the ingress classes names to be supportedbyIngress

Controller in args section.
7 # First line should be --ingress-classes, andeverysubsequent line

should be
8 # the name of allowed ingress class. In the givenexampletwo

classes named
9 # "citrix" and "my-custom-class" are accepted. Thiswill be case-

insensitive.
10 args:
11 - --ingress-classes
12 Citrix
13 my-custom-class
14 <!--NeedCopy-->

Following is the snippet from an Ingress YAML file where the Ingress class association is depicted. In
the given example, an Ingress resource namedweb-ingress is associatedwith the ingress classmy
-custom-class. If the NetScaler Ingress Controller is configured to accept my-custom-class,
it processes this Ingress resource.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 annotations:
5 kubernetes.io/ingress.class: my-custom-class
6 name: web-ingress
7 <!--NeedCopy-->

Ingress V1 and IngressClass support

With the Kubernetes version 1.19, the Ingress resource is generally available.
As a part of this change, a new resource named as IngressClass is added to the ingress API. Using
this resource, you can associate specific Ingress controllers to Ingresses. Formore information on the
IngressClass resource, see the Kubernetes documentation.

The following is a sample IngressClass resource.

1 apiVersion: networking.k8s.io/v1
2 kind: IngressClass
3 metadata:
4 name: citrix
5 spec:
6 controller: citrix.com/ingress-controller
7
8 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 235

https://kubernetes.io/docs/concepts/services-networking/ingress/#ingress-class

NetScaler ingress controller

AnIngressClassresourcemust refer to the ingress class associatedwith the controller that should
implement the Ingress rules as shown as follows:

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: minimal-ingress
5 spec:
6 ingressClassName: citrix
7 rules:
8 - host: abc.com
9 http:

10 paths:
11 - path: /
12 pathType: Prefix
13 backend:
14 service:
15 name: test
16 port:
17 number: 80
18 <!--NeedCopy-->

The NetScaler Ingress Controller uses the following rules to match the Ingresses.

• If the NetScaler Ingress Controller is started without specifying the --ingress-classes ar‑
gument:

– If the Kubernetes version is lesser than 1.19 (IngressClass V1 resource is supported)

* Matches any ingress object

– If the Kubernetes version is greater than or equal to 1.19 (IngressClass V1 resource is sup‑
ported)

* Matches any ingress object in which thespec.ingressClassName field is not set.

* Matches any ingress if the spec.ingressClassName field of the Ingress object is
set and a v1.IngressClass resource exists with the same name and the spec.
controller field of the resource is citrix.com/ingress-controller.

• If the NetScaler Ingress Controller is started with one or more ingress classes set using the --
ingress-classes argument.

– If the Kubernetes version is lesser than 1.19 (IngressClass V1 resource is supported)

* Matches any ingress with the ingress class annotation kubernetes.io/ingress
.classmatching to that of the configured ingress classes.

– If the Kubernetes version is greater than or equal to 1.19 (IngressClass V1 resource is sup‑
ported).

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 236

NetScaler ingress controller

* Matches any ingress in which the ingress class annotation kubernetes.io/
ingress.class matches with the configured ingress classes. This annotation is
deprecated but it has higher precedence over thespec.IngressClassName field
to support backward compatibility.

* Matches any ingress object, if a v1.IngressClass resource exists with the follow‑
ing attributes:

· The name of the resource matches the --ingress-classes argument value.

· The spec.controller field of the resource is set as the citrix.com/
ingress-controller.

· The name of the resource matches with the spec.ingressClassName field
of the Ingress object.

* Matches any ingress object where the spec.ingressClassName field is not set
and if a v1.IngressClass resource exists with the following attributes:

· The name of the resourcesmatches the--ingress-classes argument value.

· Thespec.controller field of the resource is set ascitrix.com/ingress
-controller.

· The resource is configured as the default class using the ingressclass.
kubernetes.io/is-default-class annotation. For more information,
see the Kubernetes documentation.

Note:

• If both the annotation and spec.ingressClassName is defined, the annotation is
matched before the spec.ingressClassName. If the annotation does not match, the
matching operation for the spec.ingressClassName field is not performed.

• When you are using Helm charts to install the NetScaler Ingress Controller, if the
IngressClass resource is supported and the NetScaler Ingress Controller is deployed
with the --ingress-classes argument, the v1.IngressClass resource is created
by default.

Updating the Ingress status for the Ingress resources with the specified IP address

To update the Status.LoadBalancer.Ingress field of the Ingress resources managed by the
NetScaler Ingress Controller with the allocated IP addresses, specify the command line argument
--update-ingress-status yes when you start the NetScaler Ingress Controller. This feature
is only supported for the NetScaler Ingress Controller deployed as a stand‑alone pod for managing
NetScaler VPX or MPX. For NetScaler CPXs deployed as sidecars, this feature is not supported.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 237

https://kubernetes.io/docs/concepts/services-networking/ingress/#default-ingress-class

NetScaler ingress controller

Following is an example YAML with the --update-ingress-status yes command line argu‑
ment enabled.

1 args:
2 - --feature-node-watch false
3 - --ipam citrix-ipam-controller
4 - --update-ingress-status yes
5 imagePullPolicy: Always
6 <!--NeedCopy-->

Ingress status update for sidecar deployments

In Kubernetes, Ingress can be used as a single entry point for exposing multiple applications to the
outside world. The Ingress would have an Address (Status.LoadBalancer.IP) field which is
updated after the successful ingress creation. This field is updated with a public IP address or host
name throughwhich the Kubernetes application can be reached. In cloud deployments, this field can
also be the IP address or host name of a cloud load‑balancer.

In cloud deployments, NetScaler CPX along with the ingress controller is exposed using a service of
type LoadBalancer which in turn creates a cloud load‑balancer. The cloud load balancer then
exposes the NetScaler CPX along with the ingress controller. So, the Ingress resources exposed with
the NetScaler CPX should be updated using the public IP address or host name of the cloud load bal‑
ancer.

This is applicable even on on‑prem deployments. In dual‑tier ingress deployments, in which the
NetScaler CPX is exposed as service type LoadBalancer to the tier‑1 NetScaler VPX ingress, the
ingress resources operated by the NetScaler CPX is updated with the VIP address.

This topic provides information about how to enable the ingress status update for NetScaler CPXwith
the NetScaler Ingress Controller as sidecar deployments.

Note: The ingress status update for the sidecar feature is supported only on services of type
LoadBalancer.

Sample ingress output after an ingress status update

The following is a sample ingress output after the ingress status update:

1 $ kubectl get ingress
2
3 NAME HOSTS ADDRESS

PORTS AGE
4 sample-ingress sample.citrix.com sample.abc.somexampledomain.

com 80 1d

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 238

NetScaler ingress controller

Enable ingress status update for the sidecar deployments

You can enable the ingress status update feature for side car deployments by specifying the following
argument in theNetScaler CPXYAML file. Youmust add theargument to theargs sectionofNetScaler
CPX in the deployment YAML file for NetScaler CPX with the NetScaler Ingress Controller.

1 args:
2 - --cpx-service <namespace>/<name-of-the-type-load-balancer-service

-exposing-cpx>

The following table describes the argument for the ingress update in detail

Keyword/variable Description

--cpx-service Specifies the argument for enabling this feature.

<namespace>/<name-of-the-type-
load-balancer-service-exposing-
cpx>

Specifies the format in which the argument
value to be provided.

<namespace> Specifies the namespace in which the service is
created.

<name-of-the-type-load-balancer-
service-exposing-cpx>

Specifies the name of the service that exposes
NetScaler CPX.

Note:

The ingress status update for the sidecar feature is supported only on services of type
LoadBalancer. The service defined in the argument --cpx-service default/some-
cpx-service should be a Kubernetes service of type LoadBalancer.

Service class for services of type LoadBalancer

December 31, 2023

When services of type LoadBalancer are deployed, all such services are processed by the NetScaler
Ingress Controller and configured on NetScalers. However, there may be situations where you want
to associate only specific services to a NetScaler Ingress Controller if multiple Ingress controllers are
deployed.

For Ingress resources this functionality is already available using the Ingress class feature. Similar
to the Ingress class functionality for Ingress resources, service class functionality is now added for
services of type LoadBalancer.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 239

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/ingress-classes.html

NetScaler ingress controller

You can associate a NetScaler Ingress Controller with multiple service classes using the --service
-classes argument under thespec section of the YAML file. If a service class is not specified for the
ingress controller, then it accepts all services of the typeLoadBalancer irrespective of thepresence
of the service.citrix.com/class annotation in the service.

If the service class is specified to theNetScaler IngressController, then it accepts only those servicesof
the typeLoadBalancer thatmatch theservice.citrix.com/class annotation. In this case,
theNetScaler IngressController doesnotprocess a typeLoadBalancer service if it is not associated
with the service.citrix.com/class annotation.

Sample YAML configurations with service classes

Following is a snippet from a sample YAML file to associate service-classes with the Ingress
Controller. In this snippet, the following service classes are associated with the Ingress Controller.

• svc-class1
• svc-class2

1 spec:
2 serviceAccountName: cic-k8s-role
3 containers:
4 - name: cic-k8s-ingress-controller
5 # specify the service classes to be supported by NetScaler Ingress

Controller in args section.
6 # First line should be --service-classes, and every subsequent line

should be
7 # the name of allowed service class. In the given example two classes

named
8 # "svc-class1" and "svc-class2" are accepted. This will be case-

insensitive.
9 args:

10 - --service-classes
11 svc-class1
12 svc-class2
13 <!--NeedCopy-->

Following is a snippet from a type LoadBalancer service definition YAML file where the service class
association is depicted. In this example, an Apache service is associated with the service class svc-
class1. If the NetScaler Ingress Controller is configured to accept svc-class1, it configures the
service on the NetScaler.

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: apache
5 annotations:
6 service.citrix.com/class: 'svc-class1'
7 labels:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 240

NetScaler ingress controller

8 name: apache
9 spec:

10 type: LoadBalancer
11 selector:
12 name: apache
13 ports:
14 - name: http
15 port: 80
16 targetPort: http
17 selector:
18 app: apache
19 <!--NeedCopy-->

Configure HTTP, TCP, or SSL profiles on NetScaler

December 31, 2023

Configurations such as, HTTP, TCP, or SSL for a NetScaler appliance can be specified using individual
entities such as HTTP profile, TCP profile, or SSL profile respectively. The profile is a collection of set‑
tings pertaining to the individual protocols, for example, HTTP profile is a collection of HTTP settings.
It offers ease of configuration and flexibility. Instead of configuring the settings on each entity you can
configure them in a profile and bind the profile to all the entities that the settings apply to.

NetScaler Ingress Controller enables you to configure HTTP, TCP, or SSL related configuration on the
Ingress NetScaler using profiles.

Understand NetScaler configuration in Kubernetes environment

In a Kubernetes environment, the Ingress NetScaler uses Content Switching (CS) virtual server as the
front end for external traffic. That is, it is the entity that receives the requests from the client. After
processing the request, the CS virtual server passes the request data to a load balancing (LB) entity.
The LB virtual server and the associated service group processes the request data and then forwards
it to the appropriate app (microservice).

You need to have a separate front end configuration for the entities that receive the
traffic from the client (highlighted as Client Plane in the diagram) and a back end
configuration for the entities that forward the traffic from the NetScaler to the microservices in
Kubernetes (highlighted as Server Plane in the diagram).

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 241

https://docs.citrix.com/en-us/citrix-adc/13/system/http-configurations.html#sample-http-configurations
https://docs.citrix.com/en-us/citrix-adc/13/system/tcp-configurations.html
https://docs.citrix.com/en-us/citrix-adc/13/ssl/ssl-profiles.html
https://docs.citrix.com/en-us/citrix-adc/13/content-switching.html
https://docs.citrix.com/en-us/citrix-adc/13/load-balancing.html

NetScaler ingress controller

TheNetScaler IngressController provides individual smart annotations for the front endandback‑end
configurations that you can use based on your requirement.

HTTP profile

AnHTTPprofile is acollectionofHTTPsettings. AdefaultHTTPprofile (nshttp_default_profile
) is configured to set the HTTP configurations that are applied by default, globally to all services and
virtual servers.

The NetScaler Ingress Controller provides the following two smart annotations for HTTP profile. You
can use these annotations to define the HTTP settings for the NetScaler. When you deploy an ingress
that includes theseannotations, theNetScaler IngressController creates anHTTPprofile derived from
the default HTTP profile (nshttp_default_profile) configured on the NetScaler. Then, it ap‑
plies the parameters that you have provided in the annotations to the new HTTP profile and applies
the profile to the NetScaler.

Smart annotation Description Sample

ingress.citrix.com/
frontend-httpprofile

Use this annotation to create
the front‑end HTTP profile
(Client Plane)

ingress.citrix.com/
frontend-httpprofile:
'{ "dropinvalreqs":"

enabled", "websocket"
: "enabled" } '

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 242

https://docs.citrix.com/en-us/citrix-adc/13/system/http-configurations.html#sample-http-configurations

NetScaler ingress controller

Smart annotation Description Sample

ingress.citrix.com/
backend-httpprofile

Use this annotation to create
the back‑end HTTP profile
(Server Plane).

ingress.citrix.com/
backend-httpprofile:
'{ "app-1": { "
dropinvalreqs":"
enabled", "websocket"
: "enabled" } } '

Note: Ensure that you
manually enable the HTTP
related global parameters on
the NetScaler. For example, to
use HTTP2 at the back end
(Server Plane), ensure that you
can enable
HTTP2Serverside global
parameter in the NetScaler. For
more information, see
Configurating HTTP2.

TCP profile

A TCP profile is a collection of TCP settings. A default TCP profile (nstcp_default_profile) is
configured to set the TCP configurations that is applied by default, globally to all services and virtual
servers.

TheNetScaler IngressControllerprovides the following twosmartannotations forTCPprofile. Youcan
use these annotations to define the TCP settings for the NetScaler. When you deploy an ingress that
includes these annotations, the NetScaler Ingress Controller creates a TCP profile derived from the
default TCP profile (nstcp_default_profile) configured on the NetScaler. Then, it applies the
parameters that you have provided in the annotations to the new TCP profile and applies the profile
to the NetScaler.

Smart annotation Description Sample

ingress.citrix.com/
frontend-tcpprofile

Use this annotation to create
the front‑end TCP profile
(Client Plane)

ingress.citrix.com/
frontend-tcpprofile:
'{ "ws":"enabled", "
sack" : "enabled" } '

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 243

https://docs.citrix.com/en-us/citrix-adc/13/system/http-configurations/configuring-http2.html
https://docs.citrix.com/en-us/citrix-adc/13/system/tcp-configurations.html

NetScaler ingress controller

Smart annotation Description Sample

ingress.citrix.com/
backend-tcpprofile

Use this annotation to create
the back‑end TCP profile
(Server Plane)

ingress.citrix.com/
backend-tcpprofile: '
{ "citrix-svc":{ "ws
":"enabled", "sack" :
"enabled" } } '

SSL profile

An SSL profile is a collection of settings for SSL entities. It offers ease of configuration and flexibility.
Instead of configuring the settings on each entity, you can configure them in a profile and bind the
profile to all the entities that the settings apply to.

Prerequisites

On theNetScaler, by default, SSL profile is not enable on the Ingress NetScaler. Ensure that youmanu‑
ally enable SSL profile on the NetScaler. Enabling the SSL profile overrides all the existing SSL related
setting on the NetScaler, for detailed information on SSL profiles, see SSL profiles.

SSL profiles are classified into two categories:

• Front end profiles: containing parameters applicable to the front‑end entity. That is, they apply
to the entity that receives requests from a client.

• Back‑end profiles: containing parameters applicable to the back‑end entity. That is, they apply
to the entity that sends client requests to a server.

OnceyouenableSSLprofileson theNetScaler, adefault frontendprofile (ns_default_ssl_profile_frontend
) is applied to theSSLvirtual serverandadefaultback‑endprofile (ns_default_ssl_profile_backend
) is applied to the service or service group on the NetScaler.

TheNetScaler IngressController provides the following twosmart annotations for SSLprofile. Youcan
use theseannotations tocustomize thedefault frontendprofile (ns_default_ssl_profile_frontend
) and back‑end profile (ns_default_ssl_profile_backend) based on your requirement:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 244

https://docs.citrix.com/en-us/citrix-adc/13/ssl/ssl-profiles.html
https://docs.citrix.com/en-us/citrix-adc/13/ssl/ssl-profiles.html

NetScaler ingress controller

Smart annotation Description Sample

ingress.citrix.com/
frontend-sslprofile

Use this annotation to create
the front end SSL profile (Client
Plane). The front end SSL
profile is required only if you
have enabled TLS on the Client
Plane.

ingress.citrix.com/
frontend-sslprofile:
'{ "hsts":"enabled",
"tls12" : "enabled" }
'

ingress.citrix.com/
backend-sslprofile

Use this annotation to create
the back‑end SSL profile
(Server Plane). The SSL back
end profile is required only if
you use the
ingress.citrix.com/secure‑
backend annotation for the
back‑end.

ingress.citrix.com/
backend-sslprofile: '
{ "citrix-svc":{ "
hsts":"enabled", "
tls1" : "enabled" } }
'

Important: SSL profile does not enable you to configure SSL certificate.

Front‑end profile configuration using annotations

HTTP, TCP, and SSL front‑end profiles are attached to the client‑side content switching virtual server
or SSL virtual server. Since there canbemultiple ingresses that use the samefrontend-ipandalso
use the same content switching virtual server in the front‑end, there can be possible conflicts that can
arise from the front‑end profiles annotation specified in multiple ingresses that share the front‑end
IP address.

The following are the guidelines for front‑end profiles annotations for HTTP, TCP, and SSL.

• For all ingresses with the same front‑end IP address, it is recommended to have the same value
for the front‑end profile is specified in all ingresses.

• If there are multiple ingresses that share front‑end IP address, one can also create a separate
ingress for each front‑end IP address with empty rules (referred as the front‑end ingress) where
one can specify the front‑end IP annotation as shown in the following example. Youdonot need
to specify the front‑end profile annotation in each ingress definition.

– To create a front‑end ingress for an HTTP type virtual server, see the following example:

1 #Sample ingress manifest for the front-end configuration for
an HTTP virtual server

2 #The values for the parameters are for demonstration purpose
only.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 245

https://developer-docs.citrix.com/projects/citrix-k8s-ingress-controller/en/latest/configure/annotations/
https://developer-docs.citrix.com/projects/citrix-k8s-ingress-controller/en/latest/configure/annotations/

NetScaler ingress controller

3
4
5 apiVersion: networking.k8s.io/v1
6 kind: Ingress
7 metadata:
8 name: frontend-ingress
9 annotations:

10 # /* The CS virtual server is derived from the combination
of

11 insecure-port/secure-port, frontend-ip, and
12 secure-service-type/insecure-service-type annotations. */
13 ingress.citrix.com/insecure-port: "80"
14 ingress.citrix.com/frontend-ip: "x.x.x.x"
15 ingress.citrix.com/frontend-httpprofile:'{
16 "dropinvalreqs":"enabled", "markconnreqInval" : "enabled" }
17 '
18 ingress.citrix.com/frontend-tcpprofile: '{
19 "ws":"enabled", "sack" :
20 "enabled" }
21 '
22 spec:
23 rules:
24 # Empty rule
25 - host:

– To create a front‑end ingress for SSL type service, see the following example:

1 #Sample ingress manifest for the front-end configuration for
an SSL virtual server

2 #The values for the parameters are for demonstration purpose
only.

3
4
5 apiVersion: networking.k8s.io/v1
6 kind: Ingress
7 metadata:
8 name: frontend-ingress
9 annotations:

10 #The CS virtual server is derived from the combination of
11 #insecure-port/secure-port, frontend-ip, and
12 #secure-service-type/insecure-service-type annotations.
13 ingress.citrix.com/insecure-port: "80"
14 ingress.citrix.com/secure-port: "443"
15 ingress.citrix.com/frontend-ip: "x.x.x.x"
16 ingress.citrix.com/frontend-sslprofile:
17 '{
18 "tls13":"enabled", "hsts" : "enabled" }
19 '
20 ingress.citrix.com/frontend-tcpprofile: '{
21 "ws":"enabled", "sack" :
22 "enabled" }
23 '
24 spec:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 246

NetScaler ingress controller

25 rules:
26 - host:
27 #Presense of tls is considered as a secure service
28 tls:
29 - hosts:

• If there are different values for the same front‑end profile annotations inmultiple ingresses, the
following order is used to bind the profiles to the virtual server.

– If any ingress definition has a front‑end annotation with pre‑configured profiles, that is
bound to the virtual server.

– Merge all the (key, values) from different ingresses of the same front‑end IP address and
use the resultant (key, value) for the front‑end profiles smart annotation.

– If there is a conflict for the same key due to different values from different ingresses, a
value is randomly chosen and other values are ignored. Youmust avoid having conflicting
values.

• If there is no front‑endprofiles annotation specified in anyof the ingresseswhich share the front‑
end IPaddress, then theglobal values fromtheConfigMap that isFRONTEND_HTTP_PROFILE
, FRONTEND_TCP_PROFILE, or FRONTEND_SSL_PROFILE is used for the HTTP, TCP, and
SSL front‑end profiles respectively.

Global front‑end profile configuration using ConfigMap variables

The ConfigMap variable is used for the front‑end profile if it is not overridden by front‑end profiles
smart annotation in one or more ingresses that shares a front‑end IP address. If you need to
enable or disable a feature using any front‑end profile for all ingresses, you can use the variables
FRONTEND_HTTP_PROFILE, FRONTEND_TCP_PROFILE, or FRONTEND_SSL_PROFILE for
HTTP, TCP, and SSL profiles respectively. For example, if you want to enable TLS 1.3 for all SSL
ingresses, you can use FRONTEND_SSL_PROFILE to set this value instead of using the smart
annotation in each ingress definition. See the ConfigMap documentation to know how to use
ConfigMap with NetScaler Ingress Controller.

Configuration using FRONTEND_HTTP_PROFILE

The FRONTEND_HTTP_PROFILE variable is used for setting the HTTP options for the front‑end
virtual server (client plane), unless overridden by the ingress.citrix.com/frontend-
httpprofile smart annotation in the ingress definition.

To use an existing profile on NetScaler or use a built‑in HTTP profile.

1 apiVersion: v1
2 kind: ConfigMap

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 247

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/configure/profiles.md

NetScaler ingress controller

3 metadata:
4 name: cic-configmap
5 labels:
6 app: citrix-ingress-controller
7 data:
8 FRONTEND_HTTP_PROFILE: |
9 preconfigured: my_http_profile

10 <!--NeedCopy-->

In this example, my_http_profile is a pre‑existing HTTP profile in NetScaler.

Alternatively, you can set the profile parameters as specified as follows. See the HTTP profile NITRO
documentation for all possible key‑values.

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: cic-configmap
5 labels:
6 app: citrix-ingress-controller
7 data:
8 FRONTEND_HTTP_PROFILE: |
9 config:

10 dropinvalreqs: 'ENABLED'
11 websocket: 'ENABLED'
12 <!--NeedCopy-->

Configuration using FRONTEND_TCP_PROFILE

The FRONTEND_TCP_PROFILE variable is used for setting the TCP options for the front‑end virtual
server (client side), unless overridden by the ingress.citrix.com/frontend-tcpprofile
smart annotation in the ingress definition.

To use an existing profile on NetScaler or use a built‑in TCP profile:

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: cic-configmap
5 labels:
6 app: citrix-ingress-controller
7 data:
8 FRONTEND_TCP_PROFILE: |
9 preconfigured: my_tcp_profile

10 <!--NeedCopy-->

In this example, my_tcp_profile is a pre‑existing TCP profile in NetScaler.

Alternatively, you can set the profile parameters as follows. See the NetScaler TCP profile NITRO doc‑
umentation for all possible key values.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 248

https://developer-docs.citrix.com/projects/citrix-adc-nitro-api-reference/en/latest/configuration/ns/nshttpprofile/
https://developer-docs.citrix.com/projects/citrix-adc-nitro-api-reference/en/latest/configuration/ns/nshttpprofile/
https://developer-docs.citrix.com/projects/citrix-adc-nitro-api-reference/en/latest/configuration/ns/nstcpprofile/
https://developer-docs.citrix.com/projects/citrix-adc-nitro-api-reference/en/latest/configuration/ns/nstcpprofile/

NetScaler ingress controller

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: cic-configmap
5 labels:
6 app: citrix-ingress-controller
7 data:
8 FRONTEND_TCP_PROFILE: |
9 config:

10 sack: 'ENABLED'
11 nagle: 'ENABLED'
12
13 <!--NeedCopy-->

Configuration using FRONTEND_SSL_PROFILE

The FRONTEND_SSL_PROFILE variable is used for setting the SSL options for the front‑end virtual
server (client side) unless overridden by the ingress.citrix.com/frontend-sslprofile
smart annotation in the ingress definition.

Note:
For the SSL profile to work correctly, you must enable the default profile in NetScaler using the set
ssl parameter -defaultProfile ENABLED command. Make sure that NetScaler Ingress

Controller is restarted after enabling the default profile. The default profile is automatically enabled
when NetScaler CPX is used as an ingress device. For more information about the SSL default profile,
see the SSL profile documentation.

To use an existing profile on NetScaler or use a built‑in SSL profile,

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: cic-configmap
5 labels:
6 app: citrix-ingress-controller
7 data:
8 FRONTEND_SSL_PROFILE: |
9 preconfigured: my_ssl_profile

10 <!--NeedCopy-->

In this example, my_ssl_profile is the pre‑existing SSL profile in NetScaler.

Note:

Default front end profile (ns_default_ssl_profile_frontend) is not supported using
the FRONTEND_SSL_PROFILE.preconfigured variable.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 249

https://docs.citrix.com/en-us/citrix-adc/current-release/ssl/ssl-profiles/ssl-enabling-the-default-profile.html

NetScaler ingress controller

Alternatively, you can set the profile parameters as shown in the following example. See the SSL pro‑
file NITRO documentation for information on all possible key‑values.

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: cic-configmap
5 labels:
6 app: citrix-ingress-controller
7 data:
8 FRONTEND_SSL_PROFILE: |
9 config:

10 tls13: 'ENABLED'
11 hsts: 'ENABLED'
12 <!--NeedCopy-->

The following example shows binding SSL cipher groups to the SSL profile. The order is as specified
in the list with the higher priority is provided to the first in the list and so on. You can use any SSL
ciphers available in NetScaler or user‑created cipher groups in this field. For information about the
list of cyphers available in the NetScaler, see Ciphers in NetScaler.

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: cic-configmap
5 labels:
6 app: citrix-ingress-controller
7 data:
8 FRONTEND_SSL_PROFILE: |
9 config:

10 tls13: 'ENABLED'
11 ciphers:
12 - TLS1.3-AES256-GCM-SHA384
13 - TLS1.3-CHACHA20-POLY1305-SHA256
14 <!--NeedCopy-->

Back‑end configuration

Any ingress definition that includes service details, spec:rules:host, spec:backend entry,
and so on are considered as back‑end configuration.

Sample backend ingress manifest without TLS configuration

1 #The values for the parameters are for demonstration purpose only.
2 apiVersion: networking.k8s.io/v1
3 kind: Ingress
4 metadata:
5 annotations:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 250

https://developer-docs.citrix.com/projects/citrix-adm-nitro-api-reference/en/latest/configuration/instances/Citrix-ADC/ns_sslprofile/
https://developer-docs.citrix.com/projects/citrix-adm-nitro-api-reference/en/latest/configuration/instances/Citrix-ADC/ns_sslprofile/
https://docs.citrix.com/en-us/citrix-adc/current-release/ssl/ciphers-available-on-the-citrix-adc-appliances.html

NetScaler ingress controller

6 # /* The CS virtual server is derived from the combination of
insecure-port/secure-port, frontend-ip, and secure-service-type/
insecure-service-type annotations. */

7 ingress.citrix.com/backend-httpprofile: '{
8 "apache":{
9 "markhttp09inval": "disabled" }

10 }
11 '
12 ingress.citrix.com/backend-tcpprofile: '{
13 "apache":{
14 "sack":"enabled" }
15 }
16 '
17 ingress.citrix.com/frontend-ip: 'VIP_IP'
18 ingress.citrix.com/insecure-port: "80"
19 name: apache-ingress
20 spec:
21 rules:
22 - host: www.apachetest.com
23 http:
24 paths:
25 - backend:
26 service:
27 name: apache
28 port:
29 number: 80
30 path: /
31 pathType: Prefix
32 <!--NeedCopy-->

Sample backend ingress manifest with TLS configuration

1 #The values for the parameters are for demonstration purpose only.
2
3 apiVersion: networking.k8s.io/v1
4 kind: Ingress
5 metadata:
6 annotations:
7 # /* The CS virtual server is derived from the combination of

insecure-port/secure-port, frontend-ip, and secure-service-type/
insecure-service-type annotations. */

8 ingress.citrix.com/backend-httpprofile: '{
9 "hotdrink":{

10 "markhttp09inval": "disabled" }
11 }
12 '
13 ingress.citrix.com/backend-sslprofile: '{
14 "hotdrink":{
15 "snienable": "enabled" }
16 }
17 '

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 251

NetScaler ingress controller

18 ingress.citrix.com/backend-tcpprofile: '{
19 "hotdrink":{
20 "sack":"enabled" }
21 }
22 '
23 ingress.citrix.com/frontend-ip: 'VIP_IP'
24 ingress.citrix.com/secure-backend: '{
25 "hotdrink":"true" }
26 '
27 ingress.citrix.com/secure-port: "443"
28 name: hotdrink-ingress
29 spec:
30 rules:
31 - host: hotdrinks.beverages.com
32 http:
33 paths:
34 - backend:
35 service:
36 name: hotdrink
37 port:
38 number: 443
39 path: /
40 pathType: Prefix
41 tls:
42 - secretName: hotdrink.secret
43 <!--NeedCopy-->

Using built‑in or existing user‑defined profiles on the Ingress NetScaler

You can use the individual smart annotations to configure the built‑in profiles or existing user‑defined
profiles on the Ingress NetScaler for the front end and back‑end configurations based on your require‑
ment. Formore information on built‑in profiles, see Built‑in TCP Profiles and Built‑in HTTP profiles.

For the front end configuration, you can provide the name of the built‑in or existing user‑defined pro‑
files on the Ingress NetScaler. The following is a sample ingress annotation:

1 ingress.citrix.com/frontend-httpprofile: "http_preconf_profile1"

Where, ‘http_preconf_profile1’is the profile that exists on the Ingress NetScaler.

For the back‑end configuration, you must provide the name of the built‑in or existing profile on the
Ingress NetScaler and the back‑end service name. The following is a sample ingress annotation:

1 ingress.citrix.com/backend-httpprofile: '{
2 "citrix-svc": "http_preconf_profile1" }
3 '

Where, ‘http_preconf_profile1’is the profile that exists on the Ingress NetScaler and citrix-svc is
the back‑end service name.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 252

https://docs.citrix.com/en-us/citrix-adc/13/system/tcp-configurations.html#built-in-tcp-profiles
https://docs.citrix.com/en-us/citrix-adc/13/system/http-configurations.html#built-in-http-profiles

NetScaler ingress controller

Sample HTTP profile

1 ingress.citrix.com/frontend-httpprofile: "http_preconf_profile"
2 ingress.citrix.com/backend-httpprofile: '{
3 "citrix-svc": "http_preconf_profile" }
4 '

Sample TCP profile

1 ingress.citrix.com/frontend-tcpprofile: "tcp_preconf_profile"
2 ingress.citrix.com/backend-tcpprofile: '{
3 "citrix-svc":"tcp_preconf_profile" }
4 '

Sample SSL profile

1 ingress.citrix.com/frontend-sslprofile: "ssl_preconf_profile"
2 ingress.citrix.com/backend-sslprofile: '{
3 "citrix-svc":"ssl_preconf_profile" }
4 '

Example for applying HTTP, SSL, and TCP profiles

This example shows how to apply HTTP, SSL, or TCP profiles.

To create SSL, TCP, and HTTP profiles and bind them to the defined Ingress resource, perform the
following steps:

1. Define the front‑end ingress resource with the required profiles. In this Ingress resource, back‑
end and TLS is not defined.

A sample YAML (ingress1.yaml) is provided as follows:

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: ingress-vpx1
5 annotations:
6 kubernetes.io/ingress.class: "vpx"
7 ingress.citrix.com/insecure-termination: "allow"
8 ingress.citrix.com/frontend-ip: "10.221.36.190"
9 ingress.citrix.com/frontend-tcpprofile: '{

10 "ws":"disabled", "sack" : "disabled" }
11 '
12 ingress.citrix.com/frontend-httpprofile: '{
13 "dropinvalreqs":"enabled", "markconnreqInval" : "enabled" }

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 253

NetScaler ingress controller

14 '
15 ingress.citrix.com/frontend-sslprofile: '{
16 "hsts":"enabled", "tls13" : "enabled" }
17 '
18 spec:
19 tls:
20 - hosts:
21 rules:
22 - host:
23 <!--NeedCopy-->

2. Deploy the front‑end ingress resource.

kubectl create ‑f ingress1.yaml

3. Define the secondary ingress resourcewith the same front‑end IP address andTLS and theback‑
end defined which creates the load balancing resource definition.

A sample YAML (ingress2.yaml) is provided as follows:

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: ingress-vpx2
5 annotations:
6 kubernetes.io/ingress.class: "vpx"
7 ingress.citrix.com/insecure-termination: "allow"
8 ingress.citrix.com/frontend-ip: "10.221.36.190"
9 spec:

10 tls:
11 - secretName: <hotdrink-secret>
12 rules:
13 - host: hotdrink.beverages.com
14 http:
15 paths:
16 - path:
17 backend:
18 serviceName: frontend-hotdrinks
19 servicePort: 80
20 <!--NeedCopy-->

4. Deploy the back‑end ingress resource.

1 kubectl create -f ingress2.yaml

5. Once the YAMLs are applied the corresponding entities, profiles, and ingress resources are cre‑
ated and they were bound to the ingress resource.

1 # show cs vserver <k8s150-10.221.36.190_443_ssl>
2
3 k8s150-10.221.36.190_443_ssl (10.221.36.190:443) - SSL Type:

CONTENT
4 State: UP

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 254

NetScaler ingress controller

5 Last state change was at Thu Apr 22 20:14:44 2021
6 Time since last state change: 0 days, 00:10:56.850
7 Client Idle Timeout: 180 sec
8 Down state flush: ENABLED
9 Disable Primary Vserver On Down : DISABLED

10 Comment: uid=
QEYQI2LDW5WR4A6P3NSZ37XICKOJKV4HPEM2H4PSK4HWA3JQWCLQ====

11 TCP profile name: k8s150-10.221.36.190_443_ssl
12 HTTP profile name: k8s150-10.221.36.190_443_ssl
13 Appflow logging: ENABLED
14 State Update: DISABLED
15 Default: Content Precedence: RULE
16 Vserver IP and Port insertion: OFF
17 L2Conn: OFF Case Sensitivity: ON
18 Authentication: OFF
19 401 Based Authentication: OFF
20 Push: DISABLED Push VServer:
21 Push Label Rule: none
22 Persistence: NONE
23 Listen Policy: NONE
24 IcmpResponse: PASSIVE
25 RHIstate: PASSIVE
26 Traffic Domain: 0
27
28 1) Content-Switching Policy: k8s150-ingress-vpx1_tier-2-

adc_443_k8s150-frontend-hotdrinks_tier-2-adc_80_svc
Priority: 200000004 Hits: 0

29 Done

Example: Adding SNI certificate to an SSL virtual server

This example shows how to add a single SNI certificate.

Note:

For the SSL profile to work correctly, you must enable the default profile in NetScaler using
the set ssl parameter -defaultProfile ENABLED command. Make sure that
NetScaler Ingress Controller is restarted after enabling default profile. For more information
about the SSL default profile, see documentation.

1. Define the front‑end ingress resource with the required profiles. In this Ingress resource, back‑
end and TLS is not defined.

A sample YAML (ingress1.yaml) is provided as follows:

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: ingress-vpx1
5 annotations:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 255

https://docs.citrix.com/en-us/citrix-adc/current-release/ssl/ssl-profiles/ssl-enabling-the-default-profile.html

NetScaler ingress controller

6 kubernetes.io/ingress.class: "vpx"
7 ingress.citrix.com/insecure-termination: "allow"
8 ingress.citrix.com/frontend-ip: "10.221.36.190"
9 ingress.citrix.com/frontend-tcpprofile: '{

10 "ws":"disabled", "sack" : "disabled" }
11 '
12 ingress.citrix.com/frontend-httpprofile: '{
13 "dropinvalreqs":"enabled", "markconnreqInval" : "enabled" }
14 '
15 ingress.citrix.com/frontend-sslprofile: '{
16 "snienable": "enabled", "hsts":"enabled", "tls13" : "enabled" }
17 '
18 spec:
19 tls:
20 - hosts:
21 rules:
22 - host:
23
24 <!--NeedCopy-->

2. Deploy the front‑end ingress resource.

1 kubectl create -f ingress1.yaml

3. Define the secondary ingress resourcewith the same front‑end IP address defining back‑end as
well as SNI certificates. If hosts are specified then the certkey specified as the secret name is
added as the SNI certificate.

A sample YAML (ingress2.yaml) is provided as follows:

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: ingress-vpx2
5 annotations:
6 kubernetes.io/ingress.class: "vpx"
7 ingress.citrix.com/insecure-termination: "allow"
8 ingress.citrix.com/frontend-ip: "10.221.36.190"
9 spec:

10 tls:
11 - hosts:
12 - hotdrink.beverages.com
13 secretName: hotdrink-secret
14 rules:
15 - host: hotdrink.beverages.com
16 http:
17 paths:
18 - path: /
19 backend:
20 serviceName: web
21 servicePort: 80
22 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 256

NetScaler ingress controller

4. Deploy the secondary ingress resource.

1 kubectl create -f ingress2.yaml

If multiple SNI certificates need to be bound to the front‑end VIP, following is a sample YAML file.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: ingress-vpx-frontend
5 annotations:
6 kubernetes.io/ingress.class: "vpx"
7 ingress.citrix.com/insecure-termination: "allow"
8 ingress.citrix.com/frontend-ip: "10.221.36.190"
9 spec:

10 tls:
11 - hosts:
12 - hotdrink.beverages.com
13 secretName: hotdrink-secret
14 - hosts:
15 - frontend.agiledevelopers.com
16 secretName: <frontend-secret>
17 rules:
18 - host: hotdrink.beverages.com
19 http:
20 paths:
21 - path: /
22 backend:
23 serviceName: web
24 servicePort: 80
25 - host: frontend.agiledevelopers.com
26 http:
27 paths:
28 - path: /
29 backend:
30 serviceName: frontend-developers
31 servicePort: 80

Example: Binding SSL cipher group

This example shows how to bind SSL cipher group.

Note:

For the SSL profile to work correctly, you must enable the default profile in NetScaler using
the set ssl parameter -defaultProfile ENABLED command. Make sure that
NetScaler Ingress Controller is restarted after enabling default profile.

SetdefaultSSLprofileonNetScalerusing thecommandset ssl parameter -defaultProfile
ENABLED before deploying NetScaler Ingress Controller. If you have already deployed NetScaler

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 257

NetScaler ingress controller

Ingress Controller, then redeploy it. For more information about the SSL default profile, see
documentation.

For information on supported Ciphers on the NetScaler appliances, see Ciphers available on the
NetScaler appliances.

For information about securing cipher, see securing cipher.

A sample YAML (cat frontend_ingress.yaml) is provided as follows:

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: ingress-vpx
5 annotations:
6 kubernetes.io/ingress.class: "citrix"
7 ingress.citrix.com/insecure-termination: "allow"
8 ingress.citrix.com/frontend-ip: "10.221.36.190"
9 ingress.citrix.com/frontend-tcpprofile: '{

10 "ws":"disabled", "sack" : "disabled" }
11 '
12 ingress.citrix.com/frontend-httpprofile: '{
13 "dropinvalreqs":"enabled", "markconnreqInval" : "enabled" }
14 '
15 ingress.citrix.com/frontend-sslprofile: '{
16 "snienable": "enabled", "hsts":"enabled", "tls13" : "enabled", "

ciphers" : [{
17 "ciphername": "test", "cipherpriority" :"1" }
18] }
19 '
20 spec:
21 tls:
22 - hosts:
23 rules:
24 - host:
25 <!--NeedCopy-->

Log levels

December 31, 2023

The logs generated by NetScaler Ingress Controller are available as part of kubernetes logs. You can
specify NetScaler Ingress Controller to log in the following log levels:

• CRITICAL
• ERROR
• WARNING
• INFO

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 258

https://docs.citrix.com/en-us/citrix-adc/current-release/ssl/ssl-profiles/ssl-enabling-the-default-profile.html
https://docs.citrix.com/en-us/citrix-adc/current-release/ssl/ciphers-available-on-the-citrix-adc-appliances.html
https://docs.citrix.com/en-us/citrix-adc/current-release/ssl/ciphers-available-on-the-citrix-adc-appliances.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/how-to/secure-ingress.html#using-cipher-groups
https://kubernetes.io/docs/concepts/cluster-administration/logging/

NetScaler ingress controller

• DEBUG

By default, NetScaler Ingress Controller is set to log inINFO log level. If youwant to specify NetScaler
Ingress Controller to log in a particular log level then you need to specify the log level in the NetScaler
Ingress Controller deployment YAML file before deploying the NetScaler Ingress Controller. You can
specify the log level in the spec section of the YAML file as follows:

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: citrixingresscontroller
5 labels:
6 app: citrixingresscontroller
7 spec:
8 serviceAccountName: cpx
9 containers:

10 - name: citrixingresscontroller
11 image: "quay.io/citrix/citrix-k8s-ingress-controller:1.36.5"
12 env:
13 # Set kube api-server URL
14 - name: "kubernetes_url"
15 value: "https://10.x.x.x:6443"
16 # Set NetScaler Management IP
17 - name: "NS_IP"
18 value: "10.x.x.x"
19 # Set log level
20 - name: "LOGLEVEL"
21 value: "DEBUG"
22 - name: "EULA"
23 value: "yes"
24 args:
25 - --feature-node-watch
26 true
27 imagePullPolicy: Always
28 <!--NeedCopy-->

Modify the log levels

Tomodify the log level configuredon theNetScaler Ingress Controller instance, youneed todelete the
instance and update the log level value in the following section and redeploy the NetScaler Ingress
Controller instance:

1 # Set log level
2 - name: "LOGLEVEL"
3 value: "XXXX"
4 <!--NeedCopy-->

Once you update the log level, save the YAML file and deploy it using the following command:

1 kubectl create -f citrix-k8s-ingress-controller.yaml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 259

NetScaler ingress controller

TCP profile support for services of type LoadBalancer

December 31, 2023

This topic contains information on how to apply TCP profiles for services of type LoadBalancer.
TCP profile support for service of type LoadBalancer is similar to TCP profile support on Ingress.
For information on TCP profile support on Ingress, see TCP profile support on Ingress.

A TCP profile is a collection of TCP settings. Instead of configuring the settings on each entity, you can
configure TCP settings in a profile and bind the profile to all the required entities.

The NetScaler Ingress Controller provides the following service annotations for TCP profile for ser‑
vices of type LoadBalancer. You can use these annotations to define the TCP settings for the
NetScaler.

Service annotation Description

service.citrix.com/frontend-
tcpprofile

Use this annotation to create the front‑end TCP
profile (Client Plane).

service.citrix.com/backend-
tcpprofile

Use this annotation to create the back‑end TCP
profile (Server Plane).

User‑defined TCP profiles

Using service annotations for TCP, you can create customprofiles with name same as cs virtual server
or service groupandbind to the corresponding virtual server(frontend-tcpprofile) and service
group (backend-tcpprofile).

Service annotation Sample

service.citrix.com/frontend-tcpprofile
service.citrix.com/frontend-tcpprofile: '{ "ws":"enabled", "sack" : "

enabled" } '

service.citrix.com/backend-tcpprofile
service.citrix.com/backend-tcpprofile: '{ "ws":"enabled", "sack" : "

enabled" } '

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 260

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/profiles.html#tcp-profile

NetScaler ingress controller

Built‑in TCP profiles

Built‑in TCP profiles do not create any profile and bind a given profile name in annotation to the cor‑
responding virtual server(frontend‑tcpprofile) and service group(backend‑tcpprofile).

Following are examples for built‑in TCP profiles.

1 service.citrix.com/frontend-tcpprofile: "tcp_preconf_profile"
2 service.citrix.com/backend-tcpprofile: '{
3 "citrix-svc":"tcp_preconf_profile" }

Example: Service of Type load balancer with the TCP profile configuration

In this example, TCP profiles are configured for a sample application tea-beverage. This applica‑
tion is deployedandexposedusing a serviceof type LoadBalancer using the tea‑profile‑example.yaml
file.

For step by step instruction for exposing services of type LoadBalancer, see service of type
LoadBalancer.

Following is a snippet of the service configuration with TCP profile.

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: tea-beverage
5 annotations:
6 service.citrix.com/secure_backend: '{
7 "443-tcp": "True" }
8 '
9 service.citrix.com/service_type: 'SSL'

10 service.citrix.com/backend-tcpprofile: '{
11 "ws":"ENABLED", "sack" : "enabled" }
12 '
13 service.citrix.com/frontend-tcpprofile: '{
14 "ws":"ENABLED", "sack" : "enabled" }
15 '
16 spec:
17 type: LoadBalancer
18 loadBalancerIP: 10.105.158.194
19 ports:
20 - name: tea-443
21 port: 443
22 targetPort: 443
23 selector:
24 name: tea-beverage

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 261

https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/example/tcp-profile-typelb/tea-profile-example.yaml
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html

NetScaler ingress controller

Note:

The TCP profile is supported for single port services.

SSL certificate for services of type LoadBalancer through the
Kubernetes secret resource

December 31, 2023

This section provides information on how to use the SSL certificate stored as
a Kubernetes secret with services of type LoadBalancer. The certificate is applied if the annotation
service.citrix.com/service-type is SSL or SSL_TCP.

Using the NetScaler Ingress Controller default certificate

If the SSL certificate is not provided, you can use the default NetScaler Ingress Controller certificate.

Youmust provide the secret name youwant to use and the namespace fromwhich it should be taken
as arguments in the NetScaler Ingress Controller YAML file.

Default NetScaler Ingress Controller

1 --default-ssl-certificate <NAMESPACE>/<SECRET_NAME>

Service annotations for SSL certificate as Kubernetes secrets

NetScaler Ingress Controller provides the following service annotations to use SSL certificates stored
as Kubernetes secrets for services of type LoadBalancer.

Service annotation Description

service.citrix.com/secret Use this annotation to specify the name of the
secret resource for the front‑end server
certificate. It must contain a certificate and key.
You can also provide a list of intermediate CA
certificates in the certificate section followed by
the server certificate. These intermediate CAs
are automatically linked and sent to the client
during the SSL handshake.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 262

NetScaler ingress controller

Service annotation Description

service.citrix.com/ca-secret Use this annotation to provide a CA certificate for
client certificate authentication. This certificate
is bound to the front‑end SSL virtual server in
NetScaler.

service.citrix.com/backend-secret Use this annotation if the back‑end
communication between NetScaler and your
workload is on an encrypted channel, and you
need the client authentication in your workload.
This certificate is sent to the server during the
SSL handshake and it is bound to the back end
SSL service group.

service.citrix.com/backend-ca-
secret

Use this annotation to enable server
authentication which authenticates the
back‑end server certificate. This configuration
binds the CA certificate of the server to the SSL
service on the NetScaler.

service.citrix.com/preconfigured-
certkey

Use this annotation to specify the name of the
preconfigured cert key in the NetScaler to be
used as a front‑end server certificate.

service.citrix.com/preconfigured-
ca-certkey

Use this annotation to specify the name of the
preconfigured cert key in the NetScaler to be
used as a CA certificate for client certificate
authentication. This certificate is bound to the
front‑end SSL virtual server in NetScaler.

service.citrix.com/preconfigured-
backend-certkey

Use this annotation to specify the name of the
preconfigured cert key in the NetScaler to be
bound to the back‑end SSL service group. This
certificate is sent to the server during the SSL
handshake for server authentication.

service.citrix.com/preconfigured-
backend-ca-certkey

Use this annotation to specify the name of the
preconfigured CA cert key in the NetScaler to
bound to back‑end SSL service group for server
authentication.

Examples: Front‑end secret and Front‑end CA secret

Following are some examples for the service.citrix.com/secret annotation:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 263

NetScaler ingress controller

The following annotation is applicable to all ports in the service.

1 service.citrix.com/secret: hotdrink-secret

You canuse the followingnotation to specify the certificate applicable to specific ports by giving either
portname or port‑protocol as key.

1 # port-protocol : secret
2
3 service.citrix.com/secret: '{
4 "443-tcp": "hotdrink-secret", "8443-tcp": "hotdrink-secret" }
5 '
6
7 # portname: secret
8
9 service.citrix.com/secret: '{

10 "https": "hotdrink-secret" }
11 '

Following are some examples for the service.citrix.com/ca-secret annotation.

You need to specify the following annotation to attach the generated CA secret which is used for client
certificate authentication for a service deployed in Kubernetes.

The following annotation is applicable to all ports in the service.

1 service.citrix.com/ca-secret: hotdrink-ca-secret

You canuse the followingnotation to specify the certificate applicable to specific ports by giving either
portname or port‑protocol as key.

1 # port-protocol: secret
2 service.citrix.com/ca-secret: '{
3 "443-tcp": "hotdrink-ca-secret", "8443-tcp": "hotdrink-ca-secret" }
4 '
5
6 # portname: secret
7
8 service.citrix.com/ca-secret: '{
9 "https": "hotdrink-ca-secret" }

10 '

Examples: back‑end secret and back‑end CA secret

Following are some examples for the service.citrix.com/backend-secret annotation.

1 # port-protocol: secret
2 service.citrix.com/backend-secret: '{
3 "443-tcp": "hotdrink-secret", "8443-tcp": "hotdrink-secret" }
4 '
5

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 264

NetScaler ingress controller

6 # portname: secret
7
8 service.citrix.com/backend-secret: '{
9 "tea-443": "hotdrink-secret", "tea-8443": "hotdrink-secret" }

10 '
11
12 # applicable to all ports
13
14 service.citrix.com/backend-secret: "hotdrink-secret"

Following are some examples for the service.citrix.com/backend-ca-secret annota‑
tion.

1 # port-proto: secret
2 service.citrix.com/backend-ca-secret: '{
3 "443-tcp": "coffee-ca", "8443-tcp": "tea-ca" }
4 '
5
6 # portname: secret
7
8 service.citrix.com/backend-ca-secret: '{
9 "coffee-443": "coffee-ca", "tea-8443": "tea-ca" }

10 '
11
12 # applicable to all ports
13
14 service.citrix.com/backend-ca-secret: "hotdrink-ca-secret"

BGP advertisement of external IP addresses for type LoadBalancer
services and Ingresses using NetScaler CPX

December 31, 2023

Kubernetes service of type LoadBalancer support is provided by cloud load balancers in a cloud
environment.
Cloud service providers enable this support by automatically creates a load balancer and assign an IP
address which is displayed as part of the service status. Any traffic destined to the external IP address
is load balanced on NodeIP and NodePort by the cloud load balancer. Once the traffic reaches the
Kubernetes cluster, kube‑proxy performs the routing to the actual application pods using iptables or
IPvirtual server rules. However, foron‑premenvironments thecloud loadbalancerautoconfiguration
is not available.

You canexpose the services of typeLoadBalancerusing theNetScaler IngressController andTier‑1
NetScaler devices such as NetScaler VPX or MPX. The NetScaler VPX or MPX residing outside the Ku‑
bernetes cluster load balances the incoming traffic to the Kubernetes services. For more information

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 265

NetScaler ingress controller

on such a deployment, see Expose services of type LoadBalancer.

However, it may not be always feasible to use an external ADC device to expose the service of type
LoadBalancer in an on‑premenvironment. Some times, it is desirable tomanage all related resources
from the Kubernetes cluster itself without any external component. The NetScaler Ingress Controller
provides a way to expose the service of type LoadBalancer using NetScaler CPX that runs within the
Kubernetes cluster. The existing BGP fabric to route the traffic to the Kubernetes nodes is leveraged
to implement this solution.

In this deployment, NetScaler CPX is deployed as a daemonset on theKubernetes nodes in hostmode.
NetScaler CPXestablishes aBGPpeering sessionwith your network routers, anduses that peering ses‑
sion toadvertise the IP addressesof external cluster services. If your routers haveECMPcapability, the
traffic is load‑balanced tomultiple CPX instances by the upstream router, which in turn load‑balances
to actual application pods. When you deploy the NetScaler CPX with this mode, NetScaler CPX adds
iptables rules for each service of type LoadBalancer on Kubernetes nodes. The traffic destined to the
external IP address is routed to NetScaler CPX pods.

The following diagram explains a deploymentwhere NetScaler CPX is exposing a service of type Load‑
Balancer:

As shown in the diagram, NetScaler CPX runs as a daemon set and runs aBGP session over port 179 on
the node IP address pointedby theKubernetes node resource. For every service of type LoadBalancer
added to the Kubernetes API server, the NetScaler Ingress Controller configures the NetScaler CPX
to advertise the external IP address to the BGP router configured. A /32 prefix is used to advertise
the routes to the external router and the node IP address is used as a gateway to reach the external
IP address. Once the traffic reaches to the Kubernetes node, the iptables rule steers the traffic to
NetScaler CPX which in turn load balance to the actual service pods.

With this deployment, you can also use Kubernetes ingress resources and advertise the Ingress virtual

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 266

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html

NetScaler ingress controller

IP (VIP) address to the router. You can specify the NS_VIP environment variable while deploying the
NetScaler Ingress Controller which acts as the VIP for all ingress resources. When an Ingress resource
is added, NetScaler CPX advertises the NS_VIP to external routers through BGP to attract the traffic.
Once traffic comes to theNS_VIP, NetScaler CPX performs the content switching and load balancing
as specified in the ingress resource.

Note:

For this solution towork, the NetScaler Ingress Controllermust run as a root user andmust have
the NET_ADMIN capability.

Deploy NetScaler CPX solution for services of type LoadBalancer

This procedure explains how to deploy NetScaler CPX as a daemonset in the host network to expose
services of type LoadBalancer.

This configuration includes the following tasks:

• Deploy NetScaler CPX with the NetScaler Ingress Controller as sidecar

• BGP configuration

• Service configuration

Prerequisites

• Youmust configure theupstreamrouter forBGP routingwithECMPsupport andaddKubernetes
nodes as neighbors.

• If the router supports load balancing, it is better to use a stable ECMP hashing algorithm for
load‑balancing with a higher entropy for even load‑balancing.

Perform the following:

1. Download the rbac.yaml file and deploy the RBAC rules for NetScaler CPX and the NetScaler
Ingress Controller.

1 kubectl apply -f rbac.yaml

2. Download the citrix‑k8s‑cpx‑ingress.yml using the following command.

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-
controller/master/docs/configure/cpx-bgp-router/citrix-k8s-cpx-
ingress.yml

3. Edit the citrix-k8s-cpx-ingress.yaml file and specify the required values.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 267

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/configure/cpx-bgp-router/rbac.yaml
https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/docs/configure/cpx-bgp-router/citrix-k8s-cpx-ingress.yml

NetScaler ingress controller

• The argument – configmap specifies the ConfigMap location for the NetScaler Ingress
Controller in the form of namespace/name.

• The argument --ipam citrix-ipam-controller can be specified if you are run‑
ning the for automatic IP address allocation.

• (Optional) nodeSelector to select the nodes where you need to run the NetScaler CPX
daemonset. By default, it is run on all worker nodes.

4. Apply the citrix-k8s-cpx-ingress.yaml file to create a daemonset which starts
NetScaler CPX and the NetScaler Ingress Controller.

1 kubectl apply -f citrix-k8s-cpx-ingress.yml

5. Create a ConfigMap (configmap.yaml) with the BGP configuration which is passed as an argu‑
ment to the NetScaler Ingress Controller. For detailed information on BGP configuration, see
BGP configuration.

Youmust have the following information to configure BGP routing:

• The router IP address for NetScaler CPX to connect
• The autonomous system (AS number) of the router
• The AS number for NetScaler CPX

Following is a sample ConfigMap with the BGP configuration.

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: config
5 labels:
6 app: cic
7 data:
8 NS_BGP_CONFIG: |
9 bgpConfig:

10 - bgpRouter:
11 localAS: 100
12 neighbor:
13 - address: 10.102.33.33
14 remoteAS: 100
15 advertisementInterval: 10
16 ASOriginationInterval: 10

6. Apply the ConfigMap created in step 5 to apply the BGP configuration.

kubectl apply ‑f configmap.yaml

7. Create a YAML file with the required configuration for service of type LoadBalancer.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 268

NetScaler ingress controller

Note:

For detailed information, see service configuration. The service configuration section ex‑
plains different ways to get an external IP address for the service and also how to use the
service annotation provided by NetScaler to configure different NetScaler functionalities.

Following is an example for configuration of service of type LoadBalancer.

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: kuard-service
5 annotations:
6 # This uses IPAM to allocate an IP from range 'Dev'
7 # service.citrix.com/ipam-range: 'Dev'
8 service.citrix.com/frontend-ip: 172.217.163.17
9 service.citrix.com/service-type-0: 'HTTP'

10 service.citrix.com/service-type-1: 'SSL'
11 service.citrix.com/lbvserver: '{
12 "80-tcp":{
13 "lbmethod":"ROUNDROBIN" }
14 }
15 '
16 service.citrix.com/servicegroup: '{
17 "80-tcp":{
18 "usip":"yes" }
19 }
20 '
21 service.citrix.com/ssl-termination: edge
22 service.citrix.com/monitor: '{
23 "80-tcp":{
24 "type":"http" }
25 }
26 '
27 service.citrix.com/frontend-httpprofile: '{
28 "dropinvalreqs":"enabled", "websocket" : "enabled" }
29 '
30 service.citrix.com/backend-httpprofile: '{
31 "dropinvalreqs":"enabled", "websocket" : "enabled" }
32 '
33 service.citrix.com/frontend-tcpprofile: '{
34 "ws":"enabled", "sack" : "enabled" }
35 '
36 service.citrix.com/backend-tcpprofile: '{
37 "ws":"enabled", "sack" : "enabled" }
38 '
39 service.citrix.com/frontend-sslprofile: '{
40 "hsts":"enabled", "tls12" : "enabled" }
41 '
42 service.citrix.com/backend-sslprofile: '{
43 "tls12" : "enabled" }
44

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 269

NetScaler ingress controller

45 service.citrix.com/ssl-certificate-data-1: |
46 -----BEGIN-----
47 [...]
48 -----END-----
49 service.citrix.com/ssl-key-data-1: |
50 spec:
51 type: LoadBalancer
52 selector:
53 app: kuard
54 ports:
55 - port: 80
56 targetPort: 8080
57 name: http
58 - port: 443
59 targetPort: 8443
60 name: https

8. Apply the service of type LoadBalancer.

1 kubectl apply -f service-example.yaml

Once the service is applied, the NetScaler Ingress Controller creates a load balancing virtual server
with BGP route health injection enabled. If the load balancing virtual server state is UP, the route for
the external IP address is advertised to the neighbor router with a /32 prefix with the node IP address
as the gateway.

BGP configuration

BGP configuration is performedusing the ConfigMapwhich is passed as an argument to theNetScaler
Ingress Controller.

Youmust have the following information to configure BGP routing:

• The router IP address so that NetScaler CPX can connect to it
• The autonomous system (AS number) of the router
• The AS number for NetScaler CPX

In the following ConfigMap for the BGP configuration, the bgpConfig field represents the BGP con‑
figuration.

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: config
5 labels:
6 app: cic
7 data:
8 NS_BGP_CONFIG: |
9 bgpConfig:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 270

NetScaler ingress controller

10 - bgpRouter:
11 localAS: 100
12 neighbor:
13 - address: x.x.x.x
14 remoteAS: 100
15 advertisementInterval: 10
16 ASOriginationInterval: 10
17 <!--NeedCopy-->

The following table explains the various fields of the bgpConfig field.

Field Description Type Default value Required

nodeSelector If the
nodeSeclector
field is present,
then the BGP
router
configuration is
applicable for
nodes which
matches the
nodeSelector
field.
nodeSelector
accepts comma
separated
key=value
pairs where each
key represents a
label name and
the value is the
label value. For
example:
nodeSelector:
datacenter=ds1,rack‑
rack1

string No

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 271

NetScaler ingress controller

Field Description Type Default value Required

bgpRouter Specifies the BGP
configuration.
For information
on different fields
of the
bgpRouter, see
the following
table.

bgpRouter Yes

The following table explains the fields for the bgpRouter field.

Field Description Type Default value Required

localAS AS number for
the NetScaler CPX

integer Yes

neighbor Neighbor router
BGP
configuration.

neighbor Yes

The following table explains the neighbor field.

Field Description Type Default value Required

address IP address for
the neighbor
router.

string Yes

remoteAS AS number of
the neighbor
router.

integer Yes

advertisementIntervalThis field sets
a minimum
interval
between the
sending of
BGP routing
updates (in
seconds).

integer 10 seconds Yes

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 272

NetScaler ingress controller

Field Description Type Default value Required

ASOriginationIntervalThis field sets
the interval of
sending AS
origination
routing
updates (in
seconds).

integer 10 seconds Yes

Different neighbors for different nodes

By default, every node in the cluster connects to all the neighbors listed in the configuration. But, if
theKubernetes cluster is spreadacrossdifferentdata centers or differentnetworks, differentneighbor
configurations for different nodes may be required. You can use the nodeSelector field to select
the nodes required for the BGP routing configurations.

An example ConfigMap with the nodeSelector configuration is given as follows:

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: config
5 labels:
6 app: cic
7 data:
8 NS_BGP_CONFIG: |

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 273

NetScaler ingress controller

9 bgpConfig:
10 - nodeSelector: datacenter=ds1
11 bgpRouter:
12 localAS: 100
13 neighbor:
14 - address: 10.102.33.44
15 remoteAS: 100
16 advertisementInterval: 10
17 ASOriginationInterval: 10
18 - nodeSelector: datacenter=ds2
19 bgpRouter:
20 localAS: 100
21 neighbor:
22 - address: 10.102.28.12
23 remoteAS: 100
24 advertisementInterval: 10
25 ASOriginationInterval: 10
26 <!--NeedCopy-->

In this example, the router with the IP address 10.102.33.44 is used as a neighbor by nodes with the
label datacenter=ds1. The router with the IP address 10.102.28.12 is used by the nodes with the
label datacenter=ds2.

Service configuration

External IP address configuration

An external IP address for the service of type LoadBalancer can be obtained by using one of the fol‑
lowing methods.

• Specifying the service.citrix.com/frontend-ip annotation in the service specifica‑
tion as follows.

1 metadata:
2 annotations:
3 service.citrix.com/frontend-ip: 172.217.163.17

• Specifying an IP address in the spec.loadBalancerIP field of the service specification as
follows.

1 spec:
2 loadBalancerIP: 172.217.163.17

• By automatically assigning a virtual IP address to the service using the IPAM controller provided
by NetScaler. If one of the other two methods is specified, then that method takes precedence
over the IPAM controller. The IPAM solution is designed in such a way that you can easily in‑
tegrate the solution with ExternalDNS providers such as Infoblox. For more information, see
Interoperability with ExternalDNS. For deploying and using the , see the documentation.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 274

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html

NetScaler ingress controller

Service annotation configuration

The NetScaler Ingress Controller provides many service annotations to leverage the various function‑
alities of the NetScaler. For example, the default service type for the load balancing virtual server
is TCP, but you can override this configuration by the service.citrix.com/service-type
annotation.

1 metadata:
2 annotations:
3 service.citrix.com/service-type-0: 'HTTP'
4 service.citrix.com/service-type-1: 'SSL'

With the help of various annotations provided by the NetScaler Ingress Controller, you can leverage
various ADC functionalities like SSL offloading, HTTP rewrite and responder policies, and other cus‑
tom resource definitions (CRDs).

For more information on all annotations for service of type LoadBalancer, see
service annotations.

For using secret resources for SSL certificates for Type LoadBalancer services, see SSL certificate for
services of type LoadBalancer.

External traffic policy configuration

Bydefault, theNetScaler Ingress Controller adds all the service pods as aback‑end for the loadbalanc‑
ing virtual service in NetScaler CPX. This step ensures better high availability and equal distribution
to the service pod instances. All nodes running NetScaler CPX advertises the routes to the upstream
server and attracts the traffic from the router. This behavior can be changed by setting the spec
.externalTrafficPolicy of the service to Local. When the external traffic policy is set to
Local, only the pods running in the same node is added as a back‑end for the load balancing vir‑
tual server as shown in the following diagram. In this mode, only those nodes which have the service
pods advertise the external IP address to the router and CPX sends the traffic only to the local pods.
If you do not want the traffic hopping across the nodes for performance reasons, you can use this
feature.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 275

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/annotations.html#service-annotations
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/service-type-lb-ssl-secret.html

NetScaler ingress controller

Using Ingress resources

The NetScaler Ingress Controller provides an nt variable NS_VIP, which is the external IP Address for
all ingress resources. Whenever an ingress resource is added, NetScaler CPX advertises the ingress IP
address to the external routers.
The NetScaler Ingress Controller provides various annotations for ingress. For more information, see
the Ingress annotation documentation.

Perform the following steps for the Ingress Configuration:

1. Download the rbac.yaml file and deploy the RBAC rules for NetScaler CPX and the NetScaler
Ingress Controller.

1 kubectl apply -f rbac.yaml

2. Download the citrix‑k8s‑cpx‑ingress.yml using the following command.

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-
controller/master/docs/configure/cpx-bgp-router/citrix-k8s-cpx-
ingress.yml

3. Edit the citrix-k8s-cpx-ingress.yml file and specify the required values.

• The argument – configmap specifies the ConfigMap location for the NetScaler Ingress
Controller in the form of namespace or name.

• The environment variable NS_VIP to specify the external IP to be used for all Ingress re‑
sources. (This is a required parameter).

4. Apply the citrix-k8s-cpx-ingress.yml file to create a daemonset which starts
NetScaler CPX and the NetScaler Ingress Controller.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 276

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/annotations.html#ingress-annotations
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/configure/cpx-bgp-router/rbac.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/configure/cpx-bgp-router/citrix-k8s-cpx-ingress.yml

NetScaler ingress controller

1 kubectl apply -f citrix-k8s-cpx-ingress.yml

5. Configure BGP using ConfigMap as shown in the previous section.

6. Deploy a sample ingress resource as follows. This step advertises the IP address specified in the
NS_VIP environment variable to the external router configured in ConfigMap.

1 kubectl apply -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/docs/configure/cpx-bgp-router/
ingress-example.yaml

7. Access the application using NS_VIP:<port>. By default, Ingress uses port 80 for insecure
communication and port 443 for secure communication (If TLS section is provided).

Note: Currently, the ingress.citrix.com/frontend-ip annotation is not supported for BGP
advertisements.

Helm Installation

You can use Helm charts to install the NetScaler CPX as BGP router. For more information, see the
Citrix Helm chart documentation.

Troubleshooting

• By default. NetScaler CPX uses the IP address range range 192.168.1.0/24 for internal commu‑
nication, the IP address 192.168.1.1 as internal gateway to the host, and the IP address IP ad‑
dress 192.168.1.2 as NSIP. The ports 9080 and 9443 are used as management ports between
the NetScaler Ingress Controller and NetScaler CPX for HTTP and HTTPS. If the 192.168.1.0/24
network falls within the range of PodCIDR, you can allocate a different set of IP addresses for
internal communication. The NS_IP and NS_GATEWAY environment variables control which
IP address is used by NetScaler CPX for NSIP and gateway respectively. The same IP address
must also be specified as part of the NetScaler Ingress Controller environment variable NS_IP
to establish the communication between the NetScaler Ingress Controller and NetScaler CPX.

• By default, BGP on NetScaler CPX runs on port 179 and all the BGP traffic coming to the TCP
port 179 is handled by NetScaler CPX. If there is a conflict, for example if you are using Calico’s
external BGP peering capability to advertise your cluster prefixes over BGP, you can change the
BGP port with the environment variable to the NetScaler Ingress Controller BGP_PORT.

• Use source IP (USIP) mode of NetScaler does not work due to the constraints in Kubernetes. If
the source IP address is requiredby the service, you can enable theCIP (client IP header) feature
on the HTTP/SSL service‑type services by using the following annotations.

service.citrix.com/servicegroup: ‘{“cip”:”ENABLED”, “cipheader”:”x‑forwarded‑for”}’

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 277

https://github.com/citrix/citrix-helm-charts

NetScaler ingress controller

NetScaler CPX integration with MetalLB in layer 2mode for on‑premises
Kubernetes clusters

December 31, 2023

Kubernetes service of type LoadBalancer support is provided by cloud load balancers in a cloud
environment. Cloud service providers enable this support by automatically creates a load balancer
and assign an IP address which is displayed as part of the service status. Any traffic destined to the
external IP address is load balanced on NodeIP and NodePort by the cloud load balancer.

NetScaler provides different options to support the typeLoadBalancer services in an on‑premises
environment including:

• Using an external NetScaler VPX or NetScaler MPX as a tier‑1 load balancer to load balance the
incoming traffic to Kubernetes services.

For more information on such a deployment, see Expose services of type LoadBalancer.

• Expose applications running in a Kubernetes cluster using the NetScaler CPX daemonset run‑
ning inside the Kubernetes cluster along with a router supporting ECMP over BGP. ECMP router
load balances the traffic tomultiple NetScaler CPX instances. NetScaler CPX instances load bal‑
ances the actual application pods. Formore information on such a deployment, see BGP adver‑
tisement of external IP addresses for type LoadBalancer services and Ingresses using NetScaler
CPX.

• Expose the NetScaler CPX services as an external IP servicewith a node external IP address. You
can use this option if an external ADC as tier‑1 is not feasible, and a BGP router does not ex‑
ist. In this deployment, Kubernetes routes the traffic coming to thespec.externalIP of the
NetScaler CPX service on service ports to NetScaler CPX pods. Ingress resources can be config‑
ured using the NetScaler Ingress Controller to perform SSL (Secure Sockets Layer) offloading
and load balancing applications. However, this deployment has the major drawback of not be‑
ing reliable if there is a node failure.

• UseMetalLBwhich is a load‑balancer implementation for baremetal Kubernetes clusters in the
layer 2 mode with NetScaler CPX to achieve ingress capability.

This documentation showshowyoucan leverageMetalLBalongwithNetScaler CPX toachieve ingress
capability in bare‑metal clusters when the other solutions are not feasible. MetalLB in layer 2 mode
configures one node to send all the traffic to the NetScaler CPX service. MetalB automatically moves
the IP address to a different node if there is a node failure. Thus providing better reliability than the
ExternalIP service.

Note: MetalLB is still in the beta version. See the official documentation to know about the project
maturity and any limitations.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 278

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/cpx-service-type-lb.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/cpx-service-type-lb.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/cpx-service-type-lb.html
https://metallb.universe.tf/

NetScaler ingress controller

Perform the following steps to deploy NetScaler CPX integration with MetalLB in layer 2 mode for on‑
premises Kubernetes clusters.

1. Install and configure MetalLB
2. Configure MetalLB configuration for layer 2
3. Install NetScaler CPX service

Install and configure MetalLB

First, you should install MetalLB in layer 2 mode. For more information on different types of installa‑
tions for MetalLB, see the MetalLB documentation.

Perform the following steps to install MetalLB:

1. Create a namespace for deploying MetalLB.

1 kubectl apply -f https://raw.githubusercontent.com/metallb/metallb
/v0.9.5/manifests/namespace.yaml

2. Deploy MetalLB using the following command.

1 kubectl apply -f https://raw.githubusercontent.com/metallb/metallb
/v0.9.5/manifests/metallb.yaml

3. Perform the following step if you are performing the installation for the first time.

1 kubectl create secret generic -n metallb-system memberlist --from-
literal=secretkey="$(openssl rand -base64 128)"

4. Verify theMetalLB installation and ensure that the speaker and controller is in the running state
using the following command:

1 kubectl get pods -n metallb-system

These steps deploy MetalLB to your cluster, under the metallb-system namespace.

The MetalLB deployment YAML file contains the following components:

• Themetallb‑system/controller deployment: This component is the cluster‑wide controller that
handles IP address assignments.

• The metallb‑system/speaker daemonset. This component communicates using protocols of
your choice to make the services reachable.

• Service accounts for the controller and speaker, along with the RBAC permissions that the com‑
ponents need to function.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 279

https://metallb.universe.tf/installation/

NetScaler ingress controller

MetalLB configuration for Layer 2

Once MetalLB is installed, you should configure the MetalLB for layer 2 mode. MetalLB takes a range
of IP addresses to be allocated to the type LoadBalancer services as external IP. In this deployment,
a NetScaler CPX service acts as a front‑end for all other applications. Hence, a single IP address is
sufficient.

Create a ConfigMap for MetalLB using the following commandwheremetallb‑config.yaml is the YAML
file with the MetalLB configuration.

1 kubectl create – f metallb-config.yaml

Following is a sample MetalLB configuration for layer2 mode. In this example, 192.168.1.240‑
192.168.1.240 is specified as the IP address range.

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 namespace: metallb-system
5 name: config
6 data:
7 config: |
8 address-pools:
9 - name: default

10 protocol: layer2
11 addresses:
12 - 192.168.1.240-192.168.1.240
13 <!--NeedCopy-->

NetScaler CPX service installation

Once themetal LB is successfully installed, you can install theNetScaler CPXdeployment anda service
of type LoadBalancer.

To install NetScaler CPX, you can either use the YAML file or Helm charts.

To install NetScaler CPX using the YAML file, perform the following steps:

1. Download the NetScaler CPX deployment manifests.

1 wget https://github.com/citrix/citrix-k8s-ingress-controller/blob/
master/deployment/baremetal/citrix-k8s-cpx-ingress.yml

2. Edit the NetScaler CPX deployment YAML:

• Set the replica count as needed. It is better to have more than one replica for high avail‑
ability.

• Change the service type to LoadBalancer.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 280

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/configure/metal-lb-manifests/metallb-config.yaml

NetScaler ingress controller

3. Apply the edited YAML file using the Kubectl command.

1 kubectl apply – f citrix-k8s-cpx-ingress.yaml

4. View the service using the following command:

1 kubectl get svc cpx-service -output yaml

You can see thatMetalLBallocates anexternal IP address to theNetScaler CPX service as follows:

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: cpx-service
5 namespace: default
6 spec:
7 clusterIP: 10.107.136.241
8 externalTrafficPolicy: Cluster
9 healthCheckNodePort: 31916

10 ports:
11 - name: http
12 nodePort: 31528
13 port: 80
14 protocol: TCP
15 targetPort: 80
16 - name: https
17 nodePort: 31137
18 port: 443
19 protocol: TCP
20 targetPort: 443
21 selector:
22 app: cpx-ingress
23 sessionAffinity: None
24 type: LoadBalancer
25 status:
26 loadBalancer:
27 ingress:
28 - ip: 192.168.1.240
29
30 <!--NeedCopy-->

Deploy a sample application

Perform the following steps to deploy a sample application and verify the deployment.

1. Create a sample deployment using the sample‑deployment.yaml file.

1 kubectl create – f sample-deployment.yaml

2. Expose the application with a service using the sample‑service.yaml file.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 281

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/configure/metal-lb-manifests/sample-deployment.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/configure/metal-lb-manifests/sample-service.yaml

NetScaler ingress controller

1 kubectl create – f sample-service.yaml

3. Once the service is created, you can add an ingress resource using the sample‑ingress.yaml.

1 kubectl create – f sample-ingress.yaml

You can test the Ingress by accessing the application using a cpx-service external IP address as
follows:

1 curl -v http://192.168.1.240 -H ‘ host: testdomain.com ’

Additional references

For more information on configuration and troubleshooting for MetalLB see the following links:

• Metal LB troubleshooting
• Configuring routing for metal LB in layer 2 mode

Advanced content routing for Kubernetes Ingress using the HTTPRoute
CRD

December 31, 2023

Kubernetes native Ingress offers basic host and path‑based routing which is supported by the
NetScaler Ingress Controller.
Citrix also provides an alternative approach using content routing CRDs for supporting advanced
routing capabilities. Content Routing CRDs include Listener CRD and HTTPRoute CRD. These CRDs
provide advanced content routing features such as regex based expression and content switching
based on query parameters, cookies, HTTP headers, and other NetScaler custom expressions.

With the Ingress version networking.k8s.io/v1, Kubernetes introduces support for resource
backends. A resource backend is an ObjectRef to another Kubernetes resource within the same
namespace as an Ingress object.

Now, NetScaler supports configuring the HTTP route CRD resource as a resource backend in Ingress.
Bydefault, Ingress supports only limited content routing capabilities like path andhost‑based routing.
With this feature, you can extend advanced content routing capabilities to Ingress and configure var‑
ious content switching options. For a given domain, you can use the HTTPRoute custom resource
to configure content switchingwithout losing the third party compatibility support of the Kubernetes
Ingress API.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 282

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/configure/metal-lb-manifests/sample-ingress.yaml
https://metallb.universe.tf/configuration/troubleshooting/
https://itnext.io/configuring-routing-for-metallb-in-l2-mode-7ea26e19219e
https://kubernetes.io/docs/concepts/services-networking/ingress/#resource-backend
https://kubernetes.io/docs/concepts/services-networking/ingress/#resource-backend

NetScaler ingress controller

Note:

• This feature supports the Kubernetes Ingress version networking.k8s.io/v1 that is
available on Kubernetes 1.19 and later versions.

• If the Ingress path routing and HTTPRoute are used for the same domain, all the content
routing policies from the HTTPRoute resource get lower priority than the Ingress based
content routing policies. So, it is recommended to configure all the content switching poli‑
cies of theHTTPRoute resource for a given domain if advanced content routing is required.

Configure advanced content routing for Kubernetes Ingress using the HTTPRoute CRD

This procedure shows how to deploy an HTTPRoute resource as a resource backend to support ad‑
vanced content routing.

Prerequisites

• Ensure that the ingress API version networking.k8s.io/v1 is available in the Kubernetes
cluster.

• Ensure that the HTTPRoute CRD is deployed.

Deploy the Ingress resource

Define the Ingress resourcewith the resource back‑end pointing to aHTTPRoute custom resource in
a YAML file. Specify all the front‑end configurations such as certificates, front‑end profiles, front‑end
IP address, and ingress class as part of the Ingress resource.

Following is a sample Ingress resource named as sample-ingress.yaml.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 283

NetScaler ingress controller

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: kuard-ingress
5 annotations:
6 ingress.citrix.com/frontend-ip: "x.x.x.x"
7 kubernetes.io/ingress.class: citrix
8 ingress.citrix.com/insecure-termination: "redirect"
9 spec:

10 tls:
11 - secretName: web-ingress-secret
12 rules:
13 - host: kuard.example.com
14 http:
15 paths:
16 - pathType: ImplementationSpecific
17 backend:
18 resource:
19 apiGroup: citrix.com
20 kind: HTTPRoute
21 name: kuard-example-route
22 <!--NeedCopy-->

After defining the Ingress resource in a YAML file, deploy the YAML file using the following command.
Here, sample-ingress.yaml is the YAML file definition.

1 kubectl apply -f sample-ingress.yaml

In this example, content switching policies for the domain kuard.example.com are defined
as part of the HTTPRoute custom resource called kuard-example-route. Certificates,
frontend-ip, and ingress class are specified as part of the Ingress resource. Back‑end
annotations such as load balancing method and service group configurations are specified as part of
the HTTPRoute custom resource.

Deploy the HTTPRoute resource

Define the HTTP route configuration in a YAML file. In the YAML file, use HTTPRoute in the kind field
and in thespec section add theHTTPRouteCRDattributes based on your requirement for theHTTP
route configuration.

For more information about API description and examples, see the HTTPRoute documentation.

Following is a sample HTTPRoute resource configuration. This example shows how to use query
parameters based content switching for the various Kubernetes back‑endmicroservices.

1 apiVersion: citrix.com/v1
2 kind: HTTPRoute
3 metadata:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 284

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/content-routing.html#httproute-crd

NetScaler ingress controller

4 name: kuard-example-route
5 spec:
6 hostname:
7 - kuard.example.com
8 rules:
9 - name: kuard-blue

10 match:
11 - queryParams:
12 - name: version
13 contains: v2
14 action:
15 backend:
16 kube:
17 service: kuard-blue
18 port: 80
19 - name: kuard-green
20 match:
21 - queryParams:
22 - name: version
23 contains: v3
24 action:
25 backend:
26 kube:
27 service: kuard-green
28 port: 80
29 - name: kuard-default
30 match:
31 - path:
32 prefix: /
33 action:
34 backend:
35 kube:
36 service: kuard-purple
37 port: 80
38 <!--NeedCopy-->

After you have defined the HTTP routes in the YAML file, deploy the YAML file. In this example,
httproute is the YAML definition.

1 kubectl apply -f httproute.yaml

Profile support for the Listener CRD

December 31, 2023

You can use individual entities such as HTTP profile, TCP profile, and SSL profile to configure HTTP,
TCP, and SSL respectively for the Listener CRD. Profile support for the Listener CRD helps you to cus‑
tomize the default protocol behavior. You can also select the SSL ciphers for the SSL virtual server.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 285

https://docs.citrix.com/en-us/citrix-adc/current-release/system/http-configurations.html#sample-http-configurations
https://docs.citrix.com/en-us/citrix-adc/current-release/system/tcp-configurations.html
https://docs.citrix.com/en-us/citrix-adc/current-release/ssl/ssl-profiles.html

NetScaler ingress controller

HTTP profile

AnHTTPprofile is acollectionofHTTPsettings. AdefaultHTTPprofile callednshttp_default_profile
is configured to set the HTTP configurations. These configurations are applied, by default, globally
to all services and virtual servers. You can customize the HTTP configurations for a Listener resource
by specifying spec.policies.httpprofile. If specified, NetScaler Ingress Controller creates
a new HTTP profile with the default values derived from the default HTTP profile and configures the
values specified.

It helps to derive the default values from the default HTTP profile and configures the values speci‑
fied.

The following example YAML shows how to enable websocket for a given front‑end virtual server.

1 apiVersion: citrix.com/v1
2 kind: Listener
3 metadata:
4 name: test-listener
5 namespace: default
6 spec:
7 vip: x.x.x.x
8 port: 80
9 protocol: http

10 policies:
11 httpprofile:
12 config:
13 websocket: "ENABLED"
14 <!--NeedCopy-->

For information about all the possible key‑value pairs for the HTTP profile see, HTTP profile.

Note:

The ‘name’is auto‑generated.

You can also specify a built‑in HTTP profile or a pre‑configured HTTP profile and bind it to the front‑
end virtual server as shown in the following example.

1 apiVersion: citrix.com/v1
2 kind: Listener
3 metadata:
4 name: test-listener
5 namespace: default
6 spec:
7 vip: x.x.x.x
8 port: 80
9 protocol: http

10 policies:
11 httpprofile:
12 preconfigured: 'nshttp_default_strict_validation'
13 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 286

https://docs.citrix.com/en-us/citrix-adc/current-release/system/http-configurations.html#sample-http-configurations
https://developer-docs.citrix.com/projects/citrix-adc-nitro-api-reference/en/latest/configuration/ns/nshttpprofile/

NetScaler ingress controller

TCP profile

A TCPprofile is a collection of TCP settings. A default TCPprofile callednstcp_default_profile
is configured to set the TCP configurations. These configurations are applied, by default, globally to
all services and virtual servers. You can customize the TCP settings by specifying spec.policies
.tcpprofile. When you specify spec.policies.tcpprofile, NetScaler Ingress Controller
creates a TCP profile that is derived from the default TCP profile and applies the values provided in
the specification, and binds it to the front‑end virtual server.

For information about all the possible key‑value pairs for a TCP profile, see TCP profile.

Note:

The name is auto‑generated.

The following example shows how to enable tcpfastopen and HyStart for the front‑end virtual
server.

1 apiVersion: citrix.com/v1
2 kind: Listener
3 metadata:
4 name: test-listener
5 namespace: default
6 spec:
7 vip: x.x.x.x
8 port: 80
9 protocol: http

10 policies:
11 tcpprofile:
12 config:
13 tcpfastopen: "ENABLED"
14 hystart: "ENABLED"
15 <!--NeedCopy-->

You can also specify a built‑in TCP profile or a pre‑configured TCP profile name as shown in the follow‑
ing example:

1 apiVersion: citrix.com/v1
2 kind: Listener
3 metadata:
4 name: test-listener
5 namespace: default
6 spec:
7 vip: x.x.x.x
8 port: 80
9 protocol: http

10 policies:
11 tcpprofile:
12 preconfigured: 'nstcp_default_Mobile_profile'
13 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 287

https://developer-docs.citrix.com/projects/citrix-adc-nitro-api-reference/en/latest/configuration/ns/nstcpprofile/

NetScaler ingress controller

SSL profile

An SSL profile is a collection of settings for SSL entities. SSL profile makes configuration easier and
flexible. You can configure the settings in a profile and bind that profile to a virtual server instead of
configuring the settings on each entity. An SSL profile allows you to customize many SSL parameters
such as TLS protocol and ciphers. For more information about SSL profile, see SSL profile infrastruc‑
ture.

Note:

By default, NetScaler creates a legacy SSL profile. The legacy SSL profile hasmany drawbacks in‑
cluding non‑support for advanced protocols such as SSLv3. Hence, it is recommended to enable
the default SSL profiles in NetScaler before NetScaler Ingress Controller is launched.

To enable the advanced SSL profile, use the following command in the NetScaler command line:

set ssl parameter ‑defaultProfile ENABLED

Thecommandenables thedefault SSLprofile for all theexistingSSLvirtual servers and theSSL service
groups.

You can specify spec.policies.sslprofile to customize the SSL profile. When specified,
NetScaler Ingress Controller creates an SSL profile derived from the default SSL front‑end profile:
ns_default_ssl_profile_frontend.

For information about key‑value pairs supported in the SSL profile, see SSL profile.

Note:

The name is auto‑generated.

The following example shows how to enable TLS1.3 and HSTS for the front‑end virtual server.

1 apiVersion: citrix.com/v1
2 kind: Listener
3 metadata:
4 name: test-listener
5 namespace: default
6 spec:
7 vip: x.x.x.x
8 port: 443
9 certificates:

10 - secret:
11 name: my-cert
12 protocol: https
13 policies:
14 sslprofile:
15 config:
16 tls13: "ENABLED"
17 hsts: "ENABLED"

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 288

https://docs.citrix.com/en-us/citrix-adc/current-release/ssl/ssl-profiles/ssl-enabling-the-default-profile.html
https://docs.citrix.com/en-us/citrix-adc/current-release/ssl/ssl-profiles/ssl-enabling-the-default-profile.html
https://developer-docs.citrix.com/projects/citrix-adc-nitro-api-reference/en/latest/configuration/ssl/sslprofile/

NetScaler ingress controller

18
19 <!--NeedCopy-->

You can specify a built‑in or pre‑configured SSL profile name as shown in the following example:

1 apiVersion: citrix.com/v1
2 kind: Listener
3 metadata:
4 name: test-listener
5 namespace: default
6 spec:
7 vip: x.x.x.x
8 port: 443
9 certificates:

10 - secret:
11 name: my-cert
12 protocol: https
13 policies:
14 sslprofile:
15 preconfigured: 'ns_default_ssl_profile_secure_frontend'
16 <!--NeedCopy-->

SSL ciphers

The Ingress NetScaler has built‑in cipher groups. By default, virtual servers use a DEFAULT cipher
group for anSSL transaction. Touse cipherswhich are not part of theDEFAULT cipher group, youmust
explicitly bind them to an SSL profile. You can usespec.policies.sslciphers to provide a list
of ciphers, list of built‑in cipher groups, or the list of user‑defined cipher groups.

Note:

The order of priority of ciphers is the same order defined in the list. The first one in the list gets
the first priority and likewise.

The following example shows how to provide a list of built‑in cipher suites.

1 apiVersion: citrix.com/v1
2 kind: Listener
3 metadata:
4 name: test-listener
5 namespace: default
6 spec:
7 vip: x.x.x.x
8 port: 443
9 certificates:

10 - secret:
11 name: my-cert
12 protocol: https
13 policies:
14 sslciphers:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 289

https://docs.citrix.com/en-us/citrix-adc/current-release/ssl/ciphers-available-on-the-citrix-ADC-appliances.html
https://docs.citrix.com/en-us/citrix-adc/current-release/ssl/ciphers-available-on-the-citrix-ADC-appliances.html
https://docs.citrix.com/en-us/citrix-adc/current-release/ssl/ciphers-available-on-the-citrix-ADC-appliances/configure-user-defined-cipher-groups-on-the-adc-appliance.html

NetScaler ingress controller

15 - 'TLS1.2-ECDHE-RSA-AES128-GCM-SHA256'
16 - 'TLS1.2-ECDHE-RSA-AES256-GCM-SHA384'
17 - 'TLS1.2-ECDHE-RSA-AES-128-SHA256'
18 - 'TLS1.2-ECDHE-RSA-AES-256-SHA384'
19 <!--NeedCopy-->

For information about the list of cipher suites available in NetScaler, see SSL profile infrastructure.

Ensure that NetScaler has a user‑defined cipher group for using a user‑defined cipher group. Perform
the following steps to configure a user‑defined cipher group:

1. Create a user‑defined cipher group. For example, MY-CUSTOM-GROUP.
2. Bind all the required ciphers to the user‑defined cipher group.
3. Note down the user‑defined cipher group name.

For detailed instructions, see Configure a user‑defined cipher group.

Note: The order of priority of ciphers is the same order defined in the list. The first one in the list gets
the first priority and likewise.

The following example showshow toprovide a list of built‑in cipher groups and/or user defined cipher
group. The user‑defined cipher groupsmust be present in NetScaler before you apply it to Listener.

1 apiVersion: citrix.com/v1
2 kind: Listener
3 metadata:
4 name: test-listener
5 namespace: default
6 spec:
7 vip: x.x.x.x
8 port: 443
9 certificates:

10 - secret:
11 name: my-cert
12 protocol: https
13 policies:
14 sslciphers:
15 - 'SECURE'
16 - 'HIGH'
17 - 'MY-CUSTOM-CIPHERS'
18 <!--NeedCopy-->

In the preceding example, SECURE and HIGH are built‑in cipher groups in NetScaler. MY-CUSTOM-
CIPHERS is the pre‑configured user‑defined cipher groups.

Note: If you have specified the pre‑configured SSL profile, you must bind the ciphers manually
through NetScaler and spec.policies.sslciphers is not applied on the pre‑configured SSL
profile.

Note: The built‑in cipher groups can be used in Tier‑1 and Tier‑2 NetScaler. The user‑defined cipher
group can be used only in a Tier‑1 NetScaler.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 290

https://docs.citrix.com/en-us/citrix-adc/current-release/ssl/ciphers-available-on-the-citrix-adc-appliances.html
https://docs.citrix.com/en-us/citrix-adc/current-release/ssl/ciphers-available-on-the-citrix-ADC-appliances/configure-user-defined-cipher-groups-on-the-adc-appliance.html#configure-a-user-defined-cipher-group-by-using-the-cli

NetScaler ingress controller

Analytics profile

Analytics profile enables NetScaler to export the type of transactions or data to an external platform.
If you are using NetScaler Observability Exporter to collect metrics and transactions data and export
it to endpoints such Elasticsearch or Prometheus, you can configure the analytics profile to select the
type of data that needs to be exported.

Note:

For the Analytics profile to be functional, you must configure the NetScaler Observability Ex‑
porter. Analytics configuration support using ConfigMap.

The following example shows how to enable webinsight and tcpinsight in the analytics pro‑
file.

1 apiVersion: citrix.com/v1
2 kind: Listener
3 metadata:
4 name: test-listener
5 namespace: default
6 spec:
7 vip: x.x.x.x
8 port: 443
9 certificates:

10 - secret:
11 name: my-cert
12 protocol: https
13 policies:
14 analyticsprofile:
15 config:
16 - type: webinsight
17 - type: tcpinsight
18 <!--NeedCopy-->

The following example shows how to select the additional parameters for the type of webinsight
which you want to be exported to NetScaler Observability Exporter. For information about the valid
key‑value pair, see Analytics Profile.

1 apiVersion: citrix.com/v1
2 kind: Listener
3 metadata:
4 name: test-listener
5 namespace: default
6 spec:
7 vip: x.x.x.x
8 port: 443
9 certificates:

10 - secret:
11 name: my-cert
12 protocol: https

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 291

https://github.com/citrix/citrix-observability-exporter
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/config-map-coe.html
https://developer-docs.citrix.com/projects/citrix-adc-nitro-api-reference/en/latest/configuration/analytics/analyticsprofile/

NetScaler ingress controller

13 policies:
14 analyticsprofile:
15 config:
16 - type: webinsight
17 parameters:
18 httpdomainname: "ENABLED"
19 httplocation: "ENABLED"
20 <!--NeedCopy-->

The following example shows how to use pre‑configured analytics profiles.

1 apiVersion: citrix.com/v1
2 kind: Listener
3 metadata:
4 name: test-listener
5 namespace: default
6 spec:
7 vip: x.x.x.x
8 port: 443
9 certificates:

10 - secret:
11 name: my-cert
12 protocol: https
13 policies:
14 analyticsprofile:
15 preconfigured:
16 - 'custom-websingiht-analytics-profile'
17 - 'custom-tcpinsight-analytics-profile'
18 <!--NeedCopy-->

IP address management using the for Ingress resources

December 31, 2023

IPAM controller is an application provided by NetScaler for IP address management and it runs in
parallel to the NetScaler Ingress Controller in the Kubernetes cluster. Automatically allocating IP ad‑
dresses to services of type LoadBalancer froma specified IP address range using the IPAMcontroller is
already supported. Now, you can also assign IP addresses to Ingress resources from a specified range
using the IPAM controller.

You can specify IP address ranges in the YAML filewhile deploying the IPAM controller using YAML. The
NetScaler Ingress Controller configures the IP address allocated to the Ingress resource as a virtual IP
address (VIP) in NetScaler MPX or VPX.

The IPAM controller requires the VIP CustomResourceDefinition (CRD) provided by NetScaler. The VIP
CRD is used for internal communication between the NetScaler Ingress Controller and the IPAM con‑
troller.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 292

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

NetScaler ingress controller

Assign IP address for Ingress resource using the IPAM controller

This topic provides information on how to use the IPAM controller to assign IP addresses for Ingress
resources.

To configure an Ingress resource with an IP address from the IPAM controller, perform the following
steps:

1. Deploy the VIP CRD
2. Deploy the NetScaler Ingress Controller
3. Deploy the IPAM controller
4. Deploy the application and Ingress resource

Step 1: Deploy the VIP CRD

Perform the following step to deploy the NetScaler VIP CRD which enables communication between
the NetScaler Ingress Controller and the IPAM controller.

1 kubectl create -f https://raw.githubusercontent.com/citrix/citrix-k8s-
ingress-controller/master/crd/vip/vip.yaml

For more information on VIP CRD, see the VIP CustomResourceDefinition.

Step 2: Deploy the NetScaler Ingress Controller

Perform the following steps to deploy the NetScaler Ingress Controller with the IPAM controller argu‑
ment.

1. Download the citrix-k8s-ingress-controller.yaml file using the following com‑
mand:

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-
controller/master/deployment/baremetal/citrix-k8s-ingress-
controller.yaml

2. Edit the NetScaler Ingress Controller YAML file:

• Specify the values of the environment variables as per your requirements. For more in‑
formation on specifying the environment variables, see the Deploy NetScaler Ingress Con‑
troller. Here, you don’t need to specify NS_VIP.

• Specify the IPAM controller as an argument using the following:

args:
‑ –ipam
citrix‑ipam‑controller

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 293

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/vip.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html

NetScaler ingress controller

Here is a snippet of a sample NetScaler Ingress Controller YAML file with the IPAM controller
argument:

Note:

This YAML is for demonstrationpurposeonly andnot the full version. Always, use the latest
version of the YAML and edit as per your requirements. For the latest version see the citrix‑
k8s‑ingress‑controller.yaml file.

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: cic-k8s-ingress-controller
5 spec:
6 serviceAccountName: cic-k8s-role
7 containers:
8 - name: cic-k8s-ingress-controller
9 image: "quay.io/citrix/citrix-k8s-ingress-controller

:1.36.5"
10 env:
11 - name: "NS_IP"
12 value: "x.x.x.x"
13 - name: "NS_USER"
14 valueFrom:
15 secretKeyRef:
16 name: nslogin
17 key: username
18 - name: "NS_PASSWORD"
19 valueFrom:
20 secretKeyRef:
21 name: nslogin
22 key: password
23 - name: "EULA"
24 value: "yes"
25 - name: POD_NAME
26 valueFrom:
27 fieldRef:
28 apiVersion: v1
29 fieldPath: metadata.name
30 - name: POD_NAMESPACE
31 valueFrom:
32 fieldRef:
33 apiVersion: v1
34 fieldPath: metadata.namespace
35 args:
36 - --ipam citrix-ipam-controller
37 imagePullPolicy: Always

3. Deploy theNetScaler Ingress Controller using the edited YAML file with the following command:

1 kubectl create -f citrix-k8s-ingress-controller.yaml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 294

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/citrix-k8s-ingress-controller.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/citrix-k8s-ingress-controller.yaml

NetScaler ingress controller

For more information on how to deploy the NetScaler Ingress Controller, see the Deploy
NetScaler Ingress Controller.

Step 3: Deploy the IPAM controller

Perform the following steps to deploy the IPAM controller.

1. Create a file named citrix-ipam-controller.yamlwith the following configuration:

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: citrix-ipam-controller
5 namespace: kube-system
6 spec:
7 replicas: 1
8 selector:
9 matchLabels:

10 app: citrix-ipam-controller
11 template:
12 metadata:
13 labels:
14 app: citrix-ipam-controller
15 spec:
16 serviceAccountName: citrix-ipam-controller
17 containers:
18 - name: citrix-ipam-controller
19 image: quay.io/citrix/citrix-ipam-controller:1.0.3
20 env:
21 # This IPAM controller takes envirnment variable VIP_RANGE

. IPs in this range are used to assign values for IP
range

22 - name: "VIP_RANGE"
23 value: '[["10.217.6.115-10.217.6.117"], {
24 "one-ip": ["5.5.5.5"] }
25 , {
26 "two-ip": ["6.6.6.6", "7.7.7.7"] }
27]'
28 # The IPAM controller can also be configured with name

spaces for which it would work through the environment
variable

29 # VIP_NAMESPACES, This expects a set of namespaces passed
as space separated string

30 imagePullPolicy: Always

The manifest contains two environment variables, VIP_RANGE and VIP_NAMESPACES. You
can specify the appropriate routable IP range with a valid CIDR under the VIP_RANGE. If nec‑
essary, you can also specify a set of namespaces under VIP_NAMESPACES so that the IPAM
controller allocates addresses only for services or Ingress resources from specific namespaces.

2. Deploy the IPAM controller using the following command:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 295

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html

NetScaler ingress controller

kubectl create ‑f citrix‑ipam‑controller.yaml

Step 4: Deploy Ingress resources

Perform the following steps to deploy a sample application and Ingress resource.

1. Deploy the Guestbook application using the following command:

1 kubectl apply -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/example/guestbook/guestbook-all-
in-one.yaml

2. Create the guestbook‑ingress YAML file with Ingress resource definition to send traffic to the
front‑end of the guestbook application.

The following is a sample YAML:

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: guestbook-ingress
5 annotations:
6 annotations:
7 ingress.citrix.com/ipam-range: "two-ip"
8 #ingress.citrix.com/frontend-ip: "5.5.5.5"
9 kubernetes.io/ingress.class: "cic-vpx"

10 spec:
11 rules:
12 - host: www.guestbook.com
13 http:
14 paths:
15 - path: /
16 backend:
17 serviceName: frontend
18 servicePort: 80

3. Deploy the Ingress resource.

1 kubectl create -f guestbook-ingress.yaml

For Ingress without any frontend‑ip annotation, the order of IP assignment is as follows:

• If the default NS_VIP environment variable is provided, NetScaler Ingress Controller makes a
request to IPAM controller only if the range‑name (ingress.citrix.com/ipam-range:)
is provided in the ingress. If the annotation is not provided, NS_VIP is used for that ingress.

• If the default NS_VIP environment variable is not provided, NetScaler Ingress Controller al‑
ways make a request to IPAM controller for IP assignment.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 296

NetScaler ingress controller

Multiple IP address allocations

For Ingress resources, an IP address can be allocated multiple times since multiple ingress resources
may be handled by a single csvserver. If the specified IP range has only a single IP address, it is allo‑
cated multiple times. But, if the named IP range consists of multiple IP addresses, only one of them
is constantly allocated.

To facilitate multiple allocations, the IPAM controller keeps track of allocated IP addresses. The IPAM
controller places an IP address into the freepool onlywhenall allocations of that IP address by Ingress
resources are released.

Allocations by different resources

Both servicesof typeLoadBalancer and Ingress resources canuse the IPAMcontroller for IPallocations
at the same time. If an IP address is allocated by one type of resource, it is not available for a resource
of another type. But, the same IP address may be used bymultiple ingress resources.

Apply CRDs through annotations

December 31, 2023

You can now apply CRDs such as Rewrite and Responder, Ratelimit, Auth, WAF, and Bot for ingress
resources and services of type load balancer by referring them using annotations. Using this feature,
when there aremultiple services in an Ingress resource, you can apply the rewrite and responder pol‑
icy for a specific service or all the services based on your requirements.

The following are the two benefits of this feature:

• You can apply a CRD at a per‑ingress, per‑service level. For example, the same service referred
through an internal VIP may have different set of rewrite‑responder policies compared to the
one exposed outside.

• Operations team can create CRD instances without specifying the service names. The applica‑
tion developers can choose the right policies based on their requirements.

Note:

CRD instances should be created without service names.

Ingress annotation for referring CRDs

An Ingress resource can refer a Rewrite and Responder CRD directly using the ingress.citrix.
com/rewrite-responder annotation.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 297

NetScaler ingress controller

The following are different ways of referring the rewrite‑responder CRD using annotations.

• You can apply the Rewrite and Responder CRD for all the services referred in the given ingress
using the following format:

1 ingress.citrix.com/rewrite-responder_crd: <Rewritepolicy Custom-
resoure-instance-name>

Example:

1 ingress.citrix.com/rewrite-responder_crd: "blockurlpolicy"

In this example, the Rewrite and Responder policy is applied for all the services referred in the given
ingress.

• You can apply the Rewrite and Responder CRD to a specified Kubernetes service in an Ingress
resource using the following format:

1 ingress.citrix.com/rewrite-responder_crd: '{
2 <Kubernetes-service-name>: <Rewritepolicy Custom-resoure-instance

-name> }
3 '

Example:

1 ingress.citrix.com/rewrite-responder_crd: '{
2 "frontendsvc": "blockurlpolicy", "backendsvc": "

addresponseheaders" }
3 '

In this example, the rewrite policy blockurlpolicy is applied on the traffic coming
to the frontendsvc service and the addresponseheaders policy is applied to the
backendsvc service coming through the current ingress.

You can also apply the Auth, Bot, WAF, and Ratelimit CRDs using ingress annotations:

The following table explains the annotations and examples for Auth, Bot, WAF, and Ratelimit CRDs.

Annotation Examples Description

ingress.citrix.com/
bot_crd

ingress.citrix.com/
bot_crd: '{ "frontend
": "botdefense" } '

Applies the botdefense
policy to the traffic incoming to
the front‑end service.

ingress.citrix.com/
auth_crd

ingress.citrix.com/
auth_crd: '{ "
frontend": "
authexample" } '

Applies the authexample
policy to the front‑end service.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 298

NetScaler ingress controller

Annotation Examples Description

ingress.citrix.com/
waf_crd

ingress.citrix.com/
waf_crd: "wafbasic"

Applies the WAF policy
wafbasic to all services in
the Ingress

ingress.citrix.com/
ratelimit_crd

ingress.citrix.com/
ratelimit_crd: "
throttlecoffeeperclientip
"

Applies the rate limit policy
throttlecoffeeperclientip
to all services in the Ingress.

Service of type LoadBalancer annotation for referring Rewrite and Responder CRD

A service of type LoadBalancer can refer a Rewrite and Responder CRD using annotations.

The following is the format for the annotation:

1 service.citrix.com/rewrite-responder: <Rewritepolicy Custom-resoure-
instance-name>

Listener CRD support for Ingress through annotation

December 31, 2023

Ingress is a standard Kubernetes resource that specifies HTTP routing capability to back‑end Kuber‑
netes services. NetScaler Ingress Controller provides various annotations to fine‑tune the Ingress pa‑
rameters for both front‑end andback‑end configurations. For example, using theingress.citrix
.com/frontend-ip annotation you can specify the front‑end listener IP address configured in
NetScaler by NetScaler Ingress Controller. Similarly, there are other front‑end annotations to fine‑
tuneHTTPandSSLparameters. When there aremultiple Ingress resources and if they share front‑end
IP and port, specifying these annotations in each Ingress resource is difficult.

Sometimes, there is a separation of responsibility between network operations professionals (Ne‑
tOps) and developers. NetOps are responsible for coming up with front‑end configurations like front‑
end IP, certificates, and SSL parameters. Developers are responsible for HTTP routing and back‑end
configurations. NetScaler Ingress Controller already provides content routing CRDs such as listener
CRD for front‑end configurations and HTTProute for back‑end routing logic.
Now, Listener CRD can be applied for Ingress resources using an annotation provided by NetScaler.

Through this feature, you can use the Listener CRD for your Ingress resource and separate the creation
of the front‑end configuration from the Ingress definition. Hence, NetOps can separately define the

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 299

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/content-routing.html

NetScaler ingress controller

Listener resource to configure front‑end IP, certificates, and other front‑end parameters (TCP, HTTP,
and SSL). Any configuration changes can be applied to the listener resources without changing each
Ingress resource. In NetScaler, a listener resource corresponds to content switching virtual servers,
SSL virtual servers, certkeys and front‑end HTTP, SSL, and TCP profiles.

Note:

Whileusing this feature, youmust ensure that all ingresseswith the same front‑end IPandport re‑
fer to the sameListener resource. For Ingresses that use the same front‑end IP andport combina‑
tions, one Ingress referring to a listener resource and another Ingress referring to the ingress
.citrix.com/frontend-ip annotation is not supported.

Restrictions

When Listener is used for the front‑end configurations, the following annotations are ignored and
there may not be any effect:

• ingress.citrix.com/frontend-ip
• Ingress.citrix.com/frontend-ipset-name
• ingress.citrix.com/secure-port
• ingress.citrix.com/insecure-port
• ingress.citrix.com/insecure-termination
• ingress.citrix.com/secure-service-type
• ingress.citrix.com/insecure-service-type
• ingress.citrix.com/csvserver
• ingress.citrix.com/frontend-tcpprofile
• ingress.citrix.com/frontend-sslprofile
• ingress.citrix.com/frontend-httpprofile

Deploying a Listener CRD resource for Ingress

Using the ingress.citrix.com/listener annotation, you can specify the name and name‑
space of the Listener resource for the ingress in the form of namespace/name. The namespace is
not required if the Listener resource is in the same namespace as that of Ingress.

Following is an example for the annotation:

1 ingress.citrix.com/listener: default/listener1

Here,default is thenamespaceof theListener resourceandlistener1 is thenameof theListener
resource which specifies the front‑end parameters.

Perform the following steps to deploy a Listener resource for the Ingress:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 300

NetScaler ingress controller

1. Create a Listener resource (listener.yaml) as follows:

1 apiVersion: citrix.com/v1
2 kind: Listener
3 metadata:
4 name: my-listener
5 namespace: default
6 spec:
7 ingressClass: citrix
8 vip: '192.168.0.1' # Virtual IP address to be used, not required

when CPX is used as ingress device
9 port: 443

10 protocol: https
11 redirectPort: 80
12 secondaryVips:
13 - "10.0.0.1"
14 - "1.1.1.1"
15 policies:
16 httpprofile:
17 config:
18 websocket: "ENABLED"
19 tcpprofile:
20 config:
21 sack: "ENABLED"
22 sslprofile:
23 config:
24 ssl3: "ENABLED"
25 sslciphers:
26 - SECURE
27 - MEDIUM
28 analyticsprofile:
29 config:
30 - type: webinsight
31 parameters:
32 allhttpheaders: "ENABLED"
33 csvserverConfig:
34 rhistate: 'ACTIVE'

Here, the Listener resource my-listener in the default namespace specifies the front‑end
configuration suchasVIP, secondaryVIPs, HTTPprofile, TCPprofile, SSLprofile, andSSLciphers.
It creates a content switching virtual server in NetScaler on port 443 for HTTPS traffic, and all
HTTP traffic on port 80 is redirected to HTTPS.

Note:

The vip field in the Listener resource is not required when NetScaler CPX is used as an
ingress device. For NetScaler VPX, VIP is the same as the pod IP address which is automat‑
ically configured by NetScaler Ingress Controller.

2. Apply the Listener resource.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 301

NetScaler ingress controller

1 kubectl apply -f listener.yaml

3. Create an Ingress resource (ingress.yaml) by referring to the Listener resource.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: my-ingress
5 namespace: default
6 annotations:
7 ingress.citrix.com/listener: my-listener
8 kubernetes.io/ingress.class: "citrix"
9 spec:

10 tls:
11 - secretName: my-secret
12 hosts:
13 - example.com
14 rules:
15 - host: example.com
16 http:
17 paths:
18 - path: /
19 pathType: Prefix
20 backend:
21 service:
22 name: kuard
23 port:
24 number: 80

Here, the ingress resource my-ingress refers to the Listener resource my-listener in the
default namespace for front‑end configurations.

4. Apply the ingress resource.

1 kubectl apply -f ingress.yaml

Certificatemanagement

There are twoways in which you can specify the certificates for Ingress resources. You can specify the
certificates as part of the Ingress resource or provide the certificates as part of the Listener resource.

Certificatemanagement through Ingress resource

In this approach, all certificatesare specifiedaspartof the regular ingress resourceas follows. Listener
resource does not specify certificates. In this mode, you need to specify certificates as part of the
Ingress resource.

1 apiVersion: networking.k8s.io/v1

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 302

NetScaler ingress controller

2 kind: Ingress
3 metadata:
4 name: my-ingress
5 namespace: default
6 annotations:
7 ingress.citrix.com/listener: my-listener
8 kubernetes.io/ingress.class: "citrix"
9 spec:

10 tls:
11 - secretName: my-secret
12 hosts:
13 - example.com
14 rules:
15 - host: example.com
16 http:
17 paths:
18 - path: /
19 pathType: Prefix
20 backend:
21 service:
22 name: kuard
23 port:
24 number: 80

Certificatemanagement through Listener resource

In this approach, certificates are provided as part of the Listener resource. You do not have to specify
certificates as part of the Ingress resource.

The following Listener resource example shows certificates.

1 apiVersion: citrix.com/v1
2 kind: Listener
3 metadata:
4 name: my-listener
5 namespace: default
6 spec:
7 ingressClass: citrix
8 certificates:
9 - secret:

10 name: my-secret
11 # Secret named 'my-secret' in current namespace bound as default

certificate
12 default: true
13 - secret:
14 # Secret 'other-secret' in demo namespace bound as SNI

certificate
15 name: other-secret
16 namespace: demo
17 vip: '192.168.0.1' # Virtual IP address to be used, not required when

CPX is used as ingress device

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 303

NetScaler ingress controller

18 port: 443
19 protocol: https
20 redirectPort: 80

In the Ingress resource, secrets are not specified as shown in the following example.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: my-ingress
5 namespace: default
6 annotations:
7 ingress.citrix.com/listener: my-listener
8 kubernetes.io/ingress.class: "citrix"
9 spec:

10 tls:
11 # TLS field is empty as the certs are specified in Listener
12 rules:
13 - host: example.com
14 http:
15 paths:
16 - path: /
17 pathType: Prefix
18 backend:
19 service:
20 name: kuard
21 port:
22 number: 80

Configuring consistent hashing algorithm using NetScaler Ingress
Controller

December 31, 2023

Load balancing algorithms define the criteria that the NetScaler appliance uses to select the service
to which to redirect each client request. Different load balancing algorithms use different criteria and
consistent hashing is one the load balancing algorithms supported by NetScaler.
Consistent hashing algorithms are often used to load balance when the back‑end is a caching server
to achieve stateless persistency.
Consistent hashing can ensure that when a cache server is removed, only the requests cached in that
specific server is rehashed and the rest of the requests are not affected. For more information on the
consistent hashing algorithm, see the NetScaler documentation.

You can now configure the consistent hashing algorithm on NetScaler using NetScaler Ingress Con‑
troller. This configuration is enabled with in the NetScaler Ingress Controller using a ConfigMap.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 304

https://docs.citrix.com/en-us/citrix-adc/current-release/load-balancing/load-balancing-customizing-algorithms/hashing-methods.html#consistent-hashing-algorithms

NetScaler ingress controller

Configure hashing algorithm

A new parameter NS_LB_HASH_ALGO is introduced in the NetScaler Ingress Controller ConfigMap
for hashing algorithm support.
Supported environment variables for consistent hashing algorithm using ConfigMap under the
NS_LB_HASH_ALGO parameter:

• hashFingers: Specifies the number of fingers to be used for the hashing algorithm. Possible
values are from1 to 1024. Increasing the number of fingers provides better distribution of traffic
at the expense of extra memory.

• hashAlgorithm: Specifies the supported algorithm. Supported algorithms are default,
jarh, prac.

The following example shows a sample ConfigMap for configuring consistent hashing algorithmusing
NetScaler Ingress Controller. In this example, the hashing algorithm is used as Prime Re‑Shuffled
Assisted CARP (PRAC) and the number of fingers to be used in PRAC is set as 50.

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: cic-configmap
5 labels:
6 app: citrix-ingress-controller
7 data:
8 NS_LB_HASH_ALGO: |
9 hashFingers: 50

10 hashAlgorithm: 'prac'

Add DNS records using NetScaler Ingress Controller

December 31, 2023

A DNS address record is a mapping of the domain name to the IP address.
When you want to use NetScaler as a DNS resolver, you can add the DNS records on NetScaler using
NetScaler Ingress Controller.

For more information on creating DNS records on NetScaler, see the NetScaler documentation.

Adding DNS records for Ingress resources

You need to enable the following environment variable during the NetScaler Ingress Controller de‑
ployment to add DNS records for an Ingress resource.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 305

https://docs.citrix.com/en-us/citrix-adc/current-release/dns/configure-dns-resource-records/create-address-records.html

NetScaler ingress controller

NS_CONFIG_DNS_REC: This variable is configured at the boot time and cannot be changed at run‑
time. Possible values are true or false. The default value is false and you need to set it as true to
enable the DNS server configuration. When you set the value as true, an address record is created
on NetScaler.

Adding DNS records for services of type LoadBalancer

You need to perform the following tasks to add DNS records for services of type LoadBalancer:

• Enable the NS_SVC_LB_DNS_REC environment variable by setting the value as True for
adding DNS records for a service of type LoadBalancer.

• Specify the DNS host name using the service.citrix.com/dns-hostname annotation.

Whenyoucreatea serviceof typeLoadBalancerwith theservice.citrix.com/dns-hostname
annotation, NetScaler Ingress Controller adds the DNS record on NetScaler. The DNS record is config‑
ured using the domain name specified in the annotation and the external IP address assigned to the
service.

Whenyoudeletea serviceof typeLoadBalancerwith theservice.citrix.com/dns-hostname
annotation, NetScaler Ingress Controller removes the DNS records from the NetScaler.
NetScaler IngressController also removes the stale entries ofDNS recordsduringbootup if the service
is not available.

The following example shows a sample service of type LoadBalancer with the annotation configura‑
tion to add DNS records to NetScaler:

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: guestbook
5 annotations:
6 service.citrix.com/dns-hostname: "guestbook.com"
7 spec:
8 loadBalancerIP: "192.2.212.16"
9 type: LoadBalancer

10 ports:
11 - port: 9006
12 targetPort: 80
13 protocol: TCP
14 selector:
15 app: guestbook
16 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 306

NetScaler ingress controller

Open policy agent support for Kubernetes with NetScaler

December 31, 2023

Open policy agent (OPA) is an open source, general‑purpose policy engine that unifies policy enforce‑
ment across different technologies and systems. OPA provides a high‑level declarative language that
lets you specify policy as code and simple APIs to offload policy decision‑making from your software.
Using OPA, you can decouple policy decision‑making from policy enforcement. You can use OPA to
enforce policies through NetScaler in a Kubernetes environment.

With OPA, you can create a centralized policy‑decision making system for an environment involving
multiple NetScalers or multiple devices which are distributed. The advantage of this approach is you
have tomake changes only on theOPA server for any decision specific changes applicable tomultiple
devices.

For more information on OPA, see the OPA documentation.

TheOPA integrationonNetScaler canbesupported throughHTTPcallout,whereOPAcanbeusedwith
orwithout authentication. AnHTTP callout is anHTTP or HTTPS request that theNetScaler appliance
generates and sends to an external application as part of the policy evaluation.

For more information on the HTTP callout support, see the HTTP callout documentation.

For more information regarding authentication support, see the Authentication and authorization
policies for Kubernetes with NetScaler.

The following diagram provides an overview of how to integrate OPA with the NetScaler cloud native
solution.

OPA integration

In the OPA integration diagram, each number represents the corresponding task in the following
list:

1. Creating the required Kubernetes objects using Kubernetes commands. This step should in‑
clude creating the CRD to send the HTTP callout to the OPA server.

2. Configuring NetScaler. NetScaler is automatically configured by NetScaler Ingress Controller
based on the created Kubernetes objects.

3. Sending user request for resources from client. The user might get authenticated if authentica‑
tion CRDs are created.

4. Sending HTTP callout to OPA server in JSON format from NetScaler carrying authorization pa‑
rameters.

5. Sending authorization decision fromOPA server based on the rules defined in REGO, the policy
language for OPA.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 307

https://www.openpolicyagent.org/docs/latest/
https://docs.citrix.com/en-us/netscaler-k8s-ingress-controller/how-to/http-callout.html
https://docs.citrix.com/en-us/netscaler-k8s-ingress-controller/crds/auth.html
https://docs.citrix.com/en-us/netscaler-k8s-ingress-controller/crds/auth.html

NetScaler ingress controller

6. Sending response to the client based on the authorization decision.

Example use cases

Example 1: Allow or deny access to resources based on the client source IP address

Following is an example HTTP callout policy to the OPA server using rewrite policy CRD to allow or
deny access to resources based on the client source IP address and the corresponding OPA rules.

In the example, the OPA server responds with "result": true if the client source IP address is
192.2.162.0/24, else it responds with "result":false.

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: calloutexample
5 spec:
6 responder-policies:
7 - servicenames:
8 - frontend
9 responder-policy:

10 respondwith:
11 http-payload-string: '"HTTP/1.1 401 Access denied\r\n\r\n"' #

Access is denied if the respose from OPA server contains
false.

12 respond-criteria: 'sys.http_callout("callout_name").CONTAINS("
false")'

13 comment: 'Invalid access'
14 httpcallout_policy:
15 - name: callout_name
16 server_ip: "192.2.156.160" #OPA Server IP
17 server_port: 8181 #OPA Server Port
18 http_method: 'POST'
19 host_expr: "\"192.2.156.160\""
20 url_stem_expr: "\"/v1/data/example/allow\"" #URL stem expression

to be used
21 body_expr: '"{
22 \"input\": {
23 \"clientinfo\": [{
24 \"id\": \"ci\", \"ip\": [\""+ CLIENT.IP.SRC +"\"] }
25] }
26 }
27 "' #JSON to OPA server carrying client IP
28 headers:
29 - name: Content-Type
30 expr: '"application/json"'
31 return_type: TEXT
32 result_expr: "HTTP.RES.BODY(100)"
33
34 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 308

NetScaler ingress controller

Following are the rules defined through the Rego policy language on the OPA server for the HTTP
callout policy for this example:

1 package example
2
3 default allow = false # unless

otherwise defined, allow is false
4
5 allow = true {
6 # allow is true if...
7 count(violation) != 0 # the ip

matches regex.
8 }
9

10
11 violation[client.id] {
12 # a client is in the violation set if...
13 client := input.clientinfo[_]
14 regex.match("192.2.162.", client.ip[_]) # the client is

not part of 192.2.162.0/24 network.
15 }

Example 2: Allow or deny access based on user group after authentication

Following is an example HTTP callout policy to the OPA server using rewrite policy CRD to allow
or deny access to resources based on user group after authentication and the corresponding OPA
rules.

In this example, theOPA server respondswith"result":true if the user is part of thebeverages
group, else it responds with "result":false.

Following is the HTTP callout policy to the OPA server through the rewrite policy CRD.

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: calloutexample
5 spec:
6 responder-policies:
7 - servicenames:
8 - frontend
9 responder-policy:

10 respondwith:
11 http-payload-string: '"HTTP/1.1 401 Access denied\r\n\r\n"' #

Access is denied if the respose from OPA server contains
false.

12 respond-criteria: 'sys.http_callout("callout_name").CONTAINS("
false")'

13 comment: 'Invalid access'
14
15 httpcallout_policy:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 309

NetScaler ingress controller

16 - name: callout_name
17 server_ip: "192.2.156.160" #OPA Server IP
18 server_port: 8181 #OPA Server Port
19 http_method: 'POST'
20 host_expr: "\"192.2.156.160\""
21 url_stem_expr: "\"/v1/data/example/allow\"" #URL stem expression

to be used
22 body_expr: '"{
23 \"input\": {
24 \"users\": [{
25 \"name\": \""+ AAA.USER.NAME +"\", \"group\": [\""+ AAA.USER.GROUPS

+"\"] }
26] }
27 }
28 "' #JSON to OPA server carrying username and group information
29 headers:
30 - name: Content-Type
31 expr: '"application/json"'
32 return_type: TEXT
33 result_expr: "HTTP.RES.BODY(100)"
34 <!--NeedCopy-->

Following are the rules defined through the Rego language on the OPA server for this example:

1 package example
2
3 default allow = false # unless

otherwise defined, allow is false
4
5 allow = true {
6 # allow is true if...
7 count(isbeveragesuser) != 0 # the user is

part of beverages group.
8 }
9

10
11 isbeveragesuser[user.name] {
12 # a user is beverages user...
13 user := input.users[_]
14 user.group[_] == "beverages" # if it is part

of beverages group.
15 }

You can perform authentication using the request header (401 based) or through forms based.

Following is a sample authenticationpolicy using request header‑basedauthentication. In this policy,
local authentication is used.

1 apiVersion: citrix.com/v1beta1
2 kind: authpolicy
3 metadata:
4 name: localauth
5 spec:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 310

NetScaler ingress controller

6 servicenames:
7 - frontend
8
9 authentication_mechanism:

10 using_request_header: 'ON'
11
12 authentication_providers:
13
14 - name: "local-auth-provider"
15 basic_local_db:
16 use_local_auth: 'YES'
17
18 authentication_policies:
19
20 - resource:
21 path: []
22 method: []
23 provider: ["local-auth-provider"]
24
25 authorization_policies:
26
27 - resource:
28 path: []
29 method: []
30 claims: []
31 <!--NeedCopy-->

Following is a sample authentication policy using form‑based authentication. In this policy, local‑
based authentication is used.

1 apiVersion: citrix.com/v1beta1
2 kind: authpolicy
3 metadata:
4 name: localauth
5 spec:
6 servicenames:
7 - frontend
8
9 authentication_mechanism:

10 using_forms:
11 authentication_host: "fqdn_authenticaton_host"
12 authentication_host_cert:
13 tls_secret: authhost-tls-cert-secret
14 vip: "192.2.156.156"
15
16 authentication_providers:
17
18 - name: "local-auth-provider"
19 basic_local_db:
20 use_local_auth: 'YES'
21
22 authentication_policies:
23

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 311

NetScaler ingress controller

24 - resource:
25 path: []
26 method: []
27 provider: ["local-auth-provider"]
28
29
30 authorization_policies:
31
32 - resource:
33 path: []
34 method: []
35 claims: []
36
37 <!--NeedCopy-->

Example 3: Allow or deny access based on authentication attributes obtained during
authentication

Following is an exampleHTTP callout policy to theOPA server using the rewrite policy CRD to allowor
deny access based on authentication attributes obtained during authentication and the correspond‑
ing OPA rules.

In the example, the OPA server responds with "result":true' if the user memberof attribute
contains grp1, else it responds with "result":false.

The following is the sample HTTP callout policy to the OPA server through the rewrite policy CRD:

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: calloutexample
5 spec:
6 responder-policies:
7 - servicenames:
8 - frontend
9 responder-policy:

10 respondwith:
11 http-payload-string: '"HTTP/1.1 401 Access denied\r\n\r\n"' #

Access is denied if the respose from OPA server contains
false.

12 respond-criteria: 'sys.http_callout("callout_name").CONTAINS("
false")'

13 comment: 'Invalid access'
14
15 httpcallout_policy:
16 - name: callout_name
17 server_ip: "192.2.156.160" #OPA Server IP
18 server_port: 8181 #OPA Server Port
19 http_method: 'POST'
20 host_expr: "\"192.2.156.160\""

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 312

NetScaler ingress controller

21 url_stem_expr: "\"/v1/data/example/allow\"" #URL stem expression
to be used

22 body_expr: '"{
23 \"input\": {
24 \"users\": [{
25 \"name\": \""+ AAA.USER.NAME +"\", \"attr\": [\""+ aaa.user.attribute

("memberof") +"\"] }
26] }
27 }
28 "' #JSON to OPA server carrying username and "memberof" attribute

information
29 headers:
30 - name: Content-Type
31 expr: '"application/json"'
32 return_type: TEXT
33 result_expr: "HTTP.RES.BODY(100)"
34 <!--NeedCopy-->

Following are the rules defined through the Rego language on the OPA server for this example:

1 package example
2
3 default allow = false # unless

otherwise defined, allow is false
4
5 allow = true {
6 # allow is true if...
7 count(isbeveragesuser) != 0 # the user is

part of grp1.
8 }
9

10
11 isbeveragesuser[user.name] {
12 # a user is part of allow group...
13 user := input.users[_]
14 regex.match("CN=grp1", user.attr[_]) # if it is part

of grp1 group. }

You can perform authentication using request header (401 based) or through forms based. In this
example, LDAPauthentication is used, where the usermemberof attribute is obtained from the LDAP
server during authentication.

Following is a sample authentication policy using request header‑based authentication.

1 apiVersion: citrix.com/v1beta1
2 kind: authpolicy
3 metadata:
4 name: ldapauth
5 spec:
6 servicenames:
7 - frontend
8
9 authentication_mechanism:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 313

NetScaler ingress controller

10 using_request_header: 'ON'
11
12 authentication_providers:
13 - name: "ldap-auth-provider"
14 ldap:
15 server_ip: "192.2.156.160"
16 base: 'dc=aaa,dc=local'
17 login_name: accountname
18 sub_attribute_name: CN
19 server_login_credentials: ldapcredential
20 attributes_to_save: memberof #memberof attribute to be

obtained from LDAP server for user
21
22 authentication_policies:
23 - resource:
24 path: []
25 method: []
26 provider: ["ldap-auth-provider"]
27
28 authorization_policies:
29 - resource:
30 path: []
31 method: []
32 claims: []
33 <!--NeedCopy-->

Following is a sample authentication policy using form‑based authentication.

1 apiVersion: citrix.com/v1beta1
2 kind: authpolicy
3 metadata:
4 name: authhotdrinks
5 spec:
6 servicenames:
7 - frontend
8
9 authentication_mechanism:

10 using_forms:
11 authentication_host: "fqdn_authenticaton_host"
12 authentication_host_cert:
13 tls_secret: authhost-tls-cert-secret
14 vip: "192.2.156.156"
15
16 authentication_providers:
17 - name: "ldap-auth-provider"
18 ldap:
19 server_ip: "192.2.156.160"
20 base: 'dc=aaa,dc=local'
21 login_name: accountname
22 sub_attribute_name: CN
23 server_login_credentials: ldapcredential
24 attributes_to_save: memberof #memberof attribute to be

obtained from LDAP server for user

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 314

NetScaler ingress controller

25
26 authentication_policies:
27
28 - resource:
29 path: []
30 method: []
31 provider: ["ldap-auth-provider"]
32 <!--NeedCopy-->

Exportingmetrics directly to Prometheus

December 31, 2023

NetScaler Ingress Controller now supports exporting metrics directly from NetScaler to Prometheus.
With NetScaler Ingress Controller, you can automate the configurations required on NetScaler for ex‑
porting metrics directly.

Onceyouexport themetrics, youcanvisualize theexportedNetScalermetrics for easier interpretation
and understanding using tools such as Grafana.

Configuring direct export of metrics fromNetScaler CPX to Prometheus

To enable NetScaler Ingress Controller to configure NetScaler CPX to support direct export of metrics
to Prometheus, you need to perform the following steps:

1. Create a Kubernetes secret to enable read‑only access for a user. This step is required for
NetScaler CPX to export metrics to Prometheus.

1 kubectl create secret generic prom-user --from-literal=username=<
prometheus-username> --from-literal=password=<prometheus-
password>

2 <!--NeedCopy-->

2. Deploy NetScaler CPX with NetScaler Ingress Controller using the following Helm commands:

1 helm repo add netscaler https://netscaler.github.io/netscaler-helm
-charts/

2
3 helm install my-release netscaler/netscaler-cpx-with-ingress-

controller --set license.accept=yes,nsic.
prometheusCredentialSecret=<Secret-for-read-only-user-creation
>,analyticsConfig.required=true,analyticsConfig.timeseries.
metrics.enable=true,analyticsConfig.timeseries.port=5563,
analyticsConfig.timeseries.metrics.mode=prometheus,
analyticsConfig.timeseries.metrics.enableNativeScrape=true

4

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 315

NetScaler ingress controller

5 <!--NeedCopy-->

The new parameters specified in the command are explained as follows:

• nsic.prometheusCredentialSecret: Specifies the Kubernetes secret name for
creating the read only user for native Prometheus support.

• analyticsConfig.timeseries.metrics.enableNativeScrape: Set this
value to true for directly exporting metrics to Prometheus

3. Add the appropriate Prometheus scrape job under scrape_configs in the Prometheus con‑
figuration depending on the Prometheus deployment.

• If your Prometheus server is outside the Kubernetes cluster, add a scrape job under
scrape_configs in the Prometheus configuration. For a sample Prometheus scrape
job, see the Prometheus integration documentation.

• If your Prometheus server is within the same Kubernetes cluster, add a new Prometheus
job to configure Prometheus for directly exporting from a NetScaler CPX pod. For more
information, see kubernetes_sd_config. A sample Prometheus job is given as follows:

1 - job_name: 'kubernetes-cpx'
2 scheme: http
3 metrics_path: /nitro/v1/config/systemfile
4 params:
5 args: ['filename:metrics_prom_ns_analytics_time_series_profile

.log,filelocation:/var/nslog']
6 format: ['prometheus']
7 basic_auth:
8 username: # Prometheus username set in nsic.

prometheusCredentialSecret
9 password: # Prometheus password set in nsic.

prometheusCredentialSecret
10 scrape_interval: 30s
11 kubernetes_sd_configs:
12 - role: pod
13 relabel_configs:
14 - source_labels: [

__meta_kubernetes_pod_annotation_netscaler_prometheus_scrape]
15 action: keep
16 regex: true
17 - source_labels: [__address__,

__meta_kubernetes_pod_annotation_netscaler_prometheus_port]
18 action: replace
19 regex: ([^:]+)(?::\d+)?;(\d+)
20 replacement: $1:$2
21 target_label: __address__
22 - source_labels: [__meta_kubernetes_namespace]
23 action: replace
24 target_label: kubernetes_namespace
25 - source_labels: [__meta_kubernetes_pod_name]

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 316

https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://docs.netscaler.com/en-us/citrix-adc/current-release/observability/prometheus-integration#prometheus-configuration
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#kubernetes_sd_config

NetScaler ingress controller

26 action: replace
27 target_label: kubernetes_pod_name
28
29 <!--NeedCopy-->

Note:

Formore informationonPrometheus integration, see theNetScaler Prometheus integrationdoc‑
umentation.

Configuring direct export of metrics fromNetScaler VPX or NetScaler MPX to
Prometheus

To enable NetScaler Ingress Controller to configure NetScaler VPX or NetScaler MPX to support direct
export of metrics to Prometheus, you need to perform the following steps:

1. Deploy NetScaler Ingress Controller as a stand‑alone pod using the Helm command:

1 helm repo add netscaler https://netscaler.github.io/netscaler-
helm-charts/

2
3 helm install my-release netscaler/citrix-cloud-native --set

cic.enabled=true,cic.nsIP=<NSIP>,cic.license.accept=yes,cic
.adcCredentialSecret=<Secret-for-NetScaler-credentials>,cic
.analyticsConfig.required=true,cic.analyticsConfig.
timeseries.metrics.enable=true,cic.analyticsConfig.
timeseries.port=5563,cic.analyticsConfig.timeseries.metrics
.mode=prometheus,cic.analyticsConfig.timeseries.metrics.
enableNativeScrape=true

4 <!--NeedCopy-->

2. Create a system user with read only access for NetScaler VPX. For more details on the user cre‑
ation, see the NetScaler Prometheus integration documentation.

3. Add a scrape job under scrape_configs in the prometheus configuration for enabling
Prometheus to scrape from NetScaler VPX. For a sample Prometheus scrape job, see
Prometheus configuration.

Note:

The scrape configuration section specifies a set of targets and configuration parameters describ‑
ing how to scrape them. For more information on NetScaler specific parameters used in the
configuration, see the NetScaler documentation.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 317

https://docs.netscaler.com/en-us/citrix-adc/current-release/observability/prometheus-integration
https://docs.netscaler.com/en-us/citrix-adc/current-release/observability/prometheus-integration
https://docs.netscaler.com/en-us/citrix-adc/current-release/observability/prometheus-integration#configure-read-only-prometheus-access-for-a-non-super-user
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://docs.netscaler.com/en-us/citrix-adc/current-release/observability/prometheus-integration#prometheus-configuration
https://docs.netscaler.com/en-us/citrix-adc/current-release/observability/prometheus-integration#install-and-configure-prometheus-for-metrics-export-from-netscaler

NetScaler ingress controller

Configure static route on Ingress NetScaler VPX or MPX

December 31, 2023

In a Kubernetes cluster, pods run on an overlay network. The overlay network can be Flannel, Calico,
Weave, and so on. The pods in the cluster are assigned with an IP address from the overlay network
which is different from the host network.

The Ingress NetScaler VPX or MPX outside the Kubernetes cluster receives all the Ingress traffic to the
microservices deployed in the Kubernetes cluster. You need to establish network connectivity be‑
tween the Ingress NetScaler instance and the pods for the ingress traffic to reach themicroservices.

Oneof theways toachievenetworkconnectivitybetweenpodsandNetScaler VPXorMPX instanceout‑
side the Kubernetes cluster is to configure routes on the NetScaler instance to the overlay network.

You can either do this manually or NetScaler Ingress Controller provides an option to automatically
configure the network.

Note:

Ensure that the NetScaler instance (MPX or VPX) has SNIP configured on the host network. The
host network is the network on which the Kubernetes nodes communicate with each other.

Manually configure route on the NetScaler instance

Perform the following:

1. On the master node in the Kubernetes cluster, get the podCIDR using the following command:

1 # kubectl get nodes -o jsonpath="{
2 range .items[*] }
3 {
4 'podNetwork: ' }
5 {
6 .spec.podCIDR }
7 {
8 '\t' }
9 {

10 'gateway: ' }
11 {
12 .status.addresses[0].address }
13 {
14 '\n' }
15 {
16 end }
17 "
18
19 podNetwork: 10.244.0.0/24 gateway: 10.106.162.108

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 318

NetScaler ingress controller

20 podNetwork: 10.244.2.0/24 gateway: 10.106.162.109
21 podNetwork: 10.244.1.0/24 gateway: 10.106.162.106

If you are using Calico CNI then use the following command to get the podCIDR:

1 # kubectl get nodes -o jsonpath="{
2 range .items[*] }
3 {
4 'podNetwork: ' }
5 {
6 .metadata.annotations.projectcalico\.org/IPv4IPIPTunnelAddr }
7 {
8 '\tgateway: ' }
9 {

10 .metadata.annotations.projectcalico\.org/IPv4Address }
11 {
12 '\n' }
13 "
14
15 podNetwork: 192.168.109.0 gateway: 10.106.162.108/24
16 podNetwork: 192.168.174.0 gateway: 10.106.162.109/24
17 podNetwork: 192.168.76.128 gateway: 10.106.162.106/24

2. Log on to the NetScaler instance.

3. Add route on the NetScaler instance using the podCIDR information. Use the following com‑
mand:

1 add route <pod_network> <podCIDR_netmask> <gateway>

For example,

1 add route 192.244.0.0 255.255.255.0 192.106.162.108
2
3 add route 192.244.2.0 255.255.255.0 192.106.162.109
4
5 add route 192.244.1.0 255.255.255.0 192.106.162.106

Automatically configure route on the NetScaler instance

In the citrix‑k8s‑ingress‑controller.yaml file, you can use an argument,feature-node-watch to
automatically configure route on the associated NetScaler instance.

Set the feature-node-watch argument to true to enable automatic route configuration.

You can specify this argument in the citrix‑k8s‑ingress‑controller.yaml file as follows:

spec:
serviceAccountName: cic‑k8s‑role
containers:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 319

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/citrix-k8s-ingress-controller.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/citrix-k8s-ingress-controller.yaml

NetScaler ingress controller

‑ name: cic‑k8s‑ingress‑controller
image: “quay.io/citrix/citrix‑k8s‑ingress‑controller:1.36.5”
feature‑node‑watch argument configures route(s) on the Ingress NetScaler
to provide connectivity to the pod network. By default, this feature is disabled.
args:
‑ –feature‑node‑watch
true

By default, the feature-node-watch argument is set to false. Set the argument to true to
enable the automatic route configuration.
For automatic route configuration, you must provide permissions to listen to the events of nodes re‑
source type. You can provide the required permissions in the citrix‑k8s‑ingress‑controller.yaml file as
follows:

1 kind: ClusterRole
2 apiVersion: rbac.authorization.k8s.io/v1
3 metadata:
4 name: cic-k8s-role
5 rules:
6 - apiGroups: [""]
7 resources: ["services", "endpoints", "ingresses", "pods", "secrets"

, "nodes"]
8 verbs: ["*"]
9 <!--NeedCopy-->

Establish network between Kubernetes nodes and Ingress NetScaler
using node controller

December 31, 2023

InKubernetes environments, when youexpose the services for external access through the Ingress de‑
vice you need to appropriately configure the network between the Kubernetes nodes and the Ingress
device.

Configuring the network is challenging as the pods use private IP addresses based on the CNI frame‑
work. Without proper network configuration, the Ingress device cannot access these private IP ad‑
dresses. Also, manually configuring the network to ensure such reachability is cumbersome in Kuber‑
netes environments.

Also, if the Kubernetes cluster and the Ingress NetScaler are in different subnets, you cannot establish
a route between them using Static routing. This scenario requires an overlaymechanism to establish
a route between the Kubernetes cluster and the Ingress NetScaler.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 320

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/citrix-k8s-ingress-controller.yaml
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/staticrouting.html

NetScaler ingress controller

NetScaler provides a node controller that you can use to create a VXLAN based overlay network be‑
tween the Kubernetes nodes and the Ingress NetScaler as shown in the following diagram:

Note:

NetScaler Node Controller does notwork in a setupwhere aNetScaler cluster is configured as an
ingress device. NetScaler Node Controller requires to establish a Virtual Extensible LAN (VXLAN)
tunnel between NetScaler and Kubernetes nodes to configure routes and creating a VXLAN on a
NetScaler cluster is not supported.

To establish network connectivity using node controller:

1. Deploy the NetScaler Ingress Controller. Perform the following steps:

a) Download the citrix‑k8s‑ingress‑controller.yaml using the following command:

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-
ingress-controller/master/deployment/baremetal/citrix-k8s-
ingress-controller.yaml

b) Edit the citrix-k8s-ingress-controller.yaml file and enter the values for the
environmental variables. For more information, see Deploy the NetScaler Ingress Con‑
troller.

c) Once you update the environment variables, save the YAML file and deploy it using the
following command:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 321

https://github.com/citrix/citrix-k8s-node-controller
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/citrix-k8s-ingress-controller.yaml
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html

NetScaler ingress controller

1 kubectl create -f citrix-k8s-ingress-controller.yaml

d) Verify if the NetScaler Ingress Controller is deployed successfully using the following com‑
mand:

1 kubectl get pods --all-namespaces

2. Deploy the node controller. For information on how to deploy the node controller, see Deploy
the Citrix k8s node controller.

Expose Service of type NodePort using Ingress

December 31, 2023

Ina single‑tierdeployment, the IngressNetScaler (VPXorMPX)outside theKubernetes cluster receives
all the Ingress traffic to themicroservices deployed in the Kubernetes cluster. For the Ingress traffic to
reach the microservices, you need to establish network connectivity between the Ingress NetScaler
instance and pods.

As pods run on overlay network, the pod IP addresses are private IP addresses and the Ingress
NetScaler instance cannot reach the microservices running within the pods. To make the service
accessible from outside of the cluster, you can create the service of type NodePort. The NetScaler
instance load balances the Ingress traffic to the nodes that contain the pods.

Tocreate theserviceof typeNodePort, in your servicedefinition file, specifyspec.type:NodePort
and optionally specify a port in the range 30000–32767.

Sample deployment

Consider a scenario wherein you are using a NodePort based service, for example, an apache app
and want to expose the app to North‑South traffic using an Ingress. In this case, you need to create
the apache app deployment, define the service of type NodePort, and create an Ingress definition
to configure Ingress NetScaler to send the North‑South traffic to the nodeport of the apache app.

In this example, you create a deployment namedapache, and deploy it in your Kubernetes cluster.

1. Create a manifest for the deployment named apache-deployment.yaml.

1 # If using this on GKE
2 # Make sure you have cluster-admin role for your account
3 # kubectl create clusterrolebinding citrix-cluster-admin --

clusterrole=cluster-admin --user=<username of your google
account>

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 322

https://github.com/citrix/citrix-k8s-node-controller/blob/master/deploy/README.md
https://github.com/citrix/citrix-k8s-node-controller/blob/master/deploy/README.md
https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://kubernetes.io/docs/concepts/services-networking/service/#nodeport

NetScaler ingress controller

4 #
5
6 #For illustration a basic apache web server is used as a

application
7 apiVersion: apps/v1
8 kind: Deployment
9 metadata:

10 name: apache
11 labels:
12 name: apache
13 spec:
14 selector:
15 matchLabels:
16 app: apache
17 replicas: 4
18 template:
19 metadata:
20 labels:
21 app: apache
22 spec:
23 containers:
24 - name: apache
25 image: httpd:latest
26 ports:
27 - name: http
28 containerPort: 80
29 imagePullPolicy: IfNotPresent
30 <!--NeedCopy-->

Containers in this deployment listen on port 80.

2. Create the deployment using the following command:

1 kubectl create -f apache-deployment.yaml

3. Verify that four pods are running using the following:

1 kubectl get pods

4. Once youverify that pods areupand running, create a serviceof typeNodePort. The following
is a manifest for the service:

1 #Expose the apache web server as a Service
2 apiVersion: v1
3 kind: Service
4 metadata:
5 name: apache
6 labels:
7 name: apache
8 spec:
9 type: NodePort

10 ports:
11 - name: http

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 323

NetScaler ingress controller

12 port: 80
13 targetPort: http
14 selector:
15 app: apache
16 <!--NeedCopy-->

5. Copy the manifest to a file named apache-service.yaml and create the service using the
following command:

1 kubectl create -f apache-service.yaml

The sample deploys and exposes the Apacheweb server as a service. You can access the service
using the <NodeIP>:<NodePort> address.

6. After you have deployed the service, create an Ingress resource to configure the Ingress
NetScaler to send the North‑South traffic to the nodeport of the apache app. The following is
a manifest for the Ingress definition named as vpx-ingress.yaml.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 annotations:
5 ingress.citrix.com/frontend-ip: xx.xxx.xxx.xx
6 name: vpx-ingress
7 spec:
8 defaultBackend:
9 service:

10 name: apache
11 port:
12 number: 80
13 <!--NeedCopy-->

7. Deploy the Ingress object.

1 kubectl create -f vpx-ingress.yaml

Configure pod to pod communication using Calico

December 31, 2023

Configuring a network in Kubernetes is a challenge. It requires you to deal withmany nodes and pods
in a cluster system. There are four problems you need to address while configuring the network:

• Container to container (which collectively provides a service) communication
• Pod to pod communication
• Pod to service communication
• External to service communication

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 324

NetScaler ingress controller

Pod to pod communication

By default, docker creates a virtual bridge called docker0 on the host machine and it assigns a pri‑
vate network range to it. For each container that is created, a virtual Ethernet device is attached to this
bridge. The virtual Ethernet device is then mapped to eth0 inside the container, with an IP from the
network range. This process happens for each host that is running docker. There is no coordination
between these hosts therefore the network ranges might collide.

Because of this, containers can only communicate with containers that are connected to
the same virtual bridge. To communicatewith other containers on other hosts, theymust rely on port
mapping. That means, you need to assign a port on the host machine to each container and then
forward all the traffic on that port to that container.

Since the local IP address of the application is translated to the host IP address and port on the host
machine, Kubernetes assumes that all nodes can communicate with each other without NAT. It also
assumes that the IP address that a container sees for itself is the same IP address that the other con‑
tainers see for the container. This approach also enables you to port applications easily from virtual
machines to containers.

Calico is one of the many different networking options that offer these capabilities for Kubernetes.

Calico

Calico is designed to simplify, scale, and secure cloud networks. The open source framework
enables Kubernetes networking and network policy for clusters across the cloud. Within the Kuber‑
netes ecosystem, Calico is starting to emerge as one of themost popularly used network frameworks
or plug‑ins, with many enterprises using it at scale.

Calico uses a pure IP networking fabric to deliver high performance Kubernetes networking, and its
policy engine enforces developer intent for high‑level network policy management. Calico provides
Layer 3 networking capabilities and associates a virtual router with each node. It enables host to
host and pod to pod networking. Calico allows establishment of zone boundaries through BGP or
encapsulation through IP on IP or VXLANmethods.

Integration between Kubernetes and Calico

Calico integrates with Kubernetes through a CNI plug‑in built on a fully distributed, layer 3 architec‑
ture. Hence, it scales smoothly from a single laptop to large enterprise. It relies on an IP layer and it
is relatively easy to debug with existing tools.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 325

NetScaler ingress controller

Configure the network with Calico

First, bring up a Kubernetes cluster with Calico using the following commands:

1 > kubeadm init --pod-network-cidr=192.168.0.0/16
2 > export KUBECONFIG=/etc/kubernetes/admin.conf
3 > kubectl apply -f calico.yaml

Amaster node is created with Calico as the CNI. After themaster node is up and running, you can join
the other nodes to the master using the join command.

Calico processes that are part of the Kubernetes master node are:

• Calico etcd

kube‑system calico‑etcd‑j4rwc 1/1 Running

• Calico controller

kube‑system calico‑kube‑controllers‑679568f47c‑vz69g 1/1 Running

• Calico nodes

kube‑system calico‑node‑ct6c9 2/2 Running

Note:

When you join a node to the Kubernetes cluster, a new Calico node is initiated on the Kubernetes
node.

Configure BGP peer with Ingress NetScaler

Whenever you deploy an application after establishing the Calico network in the cluster, Kubernetes
assigns an IP address from the IP address pool of Calico to the service associated with the applica‑
tion.

Border Gateway Protocol (BGP) uses autonomous systemnumber (AS number) to identify the remote
nodes. The AS number is a special number assigned by IANA used primarily with BGP to identify a
network under a single network administration that uses unique routing policy.

Configure BGP on Kubernetes using Ingress NetScaler Using a YAML file, you can apply BGP con‑
figuration of a remote node using the kubectl create command. In the YAML file, you need to
add the peer IP address and the AS number. The peer IP address is the Ingress NetScaler IP address
and the AS number is the AS number that is used in the Ingress NetScaler.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 326

https://en.wikipedia.org/wiki/Border_Gateway_Protocol
https://en.wikipedia.org/wiki/Autonomous_system_(Internet)

NetScaler ingress controller

Obtain the AS Number of the cluster Using the calicoctl command, you can obtain the AS
number that is used by Calico BGP in the Kubernetes cluster as shown in the following image:

Configure global BGP peer Using the calicoctl utility, you can peer Calico nodes with global
BGP speakers. This kind of peers is called global peers.

Create a YAML definition file called bgp.ymlwith the following definition:

1 apiVersion: projectcalico.org/v3 # This is the version of Calico
2 kind: BGPPeer # BGPPeer specifies that its Global peering.
3 metadata:
4 name: bgppeer-global-3040 # The name of the configuration
5 spec:
6 peerIP: 10.102.33.208 # IP address of the Ingress NetScaler
7 asNumber: 500 # AS number configured on the Ingress NetScaler
8 <!--NeedCopy-->

Deploy the definition file using the following command:

1 > kubectl create -f bgp.yml

Add the BGP configurations on the Ingress NetScaler Perform the following:

1. Log on to the NetScaler command‑line interface.

2. Enable the BGP feature using the following command:

1 > en feature bgp
2 Done

3. Type vtysh and press Enter.

1 > vtysh
2 ns#

4. Change to config terminal using the conf t command:

1 ns#conf t
2 Enter configuration commands, one per line. End with CNTL/Z.
3 ns(config)#

5. Add the BGP route with the AS number as 500 for demonstration purpose. You can use any
number as the AS number.

1 ns(config)# router bgp 500
2 ns(config-router)#

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 327

NetScaler ingress controller

6. Add neighbors using the following command:

1 ns(config-router)# Neighbor 10.102.33.198 remote-as 64512
2 ns(config-router)# Neighbor 10.102.22.202 remote-as 64512

7. Review the running configuration using the following command:

1 ns(config-router)#show running-config
2 !
3 log syslog
4 log record-priority
5 !
6 ns route-install bgp
7 !
8 interface lo0
9 ip adress 127.0.0.1/8

10 ipv6 address fe80: :1/64
11 ipv6 address : :1/128
12 !
13 interface vlan0
14 ip address 10.102.33.208/24
15 ipv6 address fe80::2cf6:beff:fe94:9f63/64
16 !
17 router bgp 500
18 max-paths ebgp 8
19 max-paths ibgp 8
20 neighbor 10.102.33.198 remote-as 64512
21 neighbor 10.102.33.202 remote-as 64512
22 !
23 end
24 ns(config-router)# In the sample, the AS number of Calico is

64512, you can change this number as per your requirement.

8. Install the BGP routes to NetScaler routing table using the following command:

1 ns(config)# ns route-install bgp
2 ns(config)#
3 exit
4 ns#exit
5 Done

9. Verify the route and add to the routing table using the following command:

Once the route is installed, the NetScaler is able to communicate with services that are present in the
Kubernetes cluster:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 328

NetScaler ingress controller

Troubleshooting

YoucanverifyBGPconfigurationson themasternode in theKubernetes cluster using thecalicoctl
script.

View the peer IP address and AS number configurations

You can view the peer IP address and AS number configurations using the following command:

1 >./calicoctl.1 get bgpPeer
2 NAME PEERIP NODE ASN
3 bgppeer-global-3040 10.102.33.208 (global) 500

View the BGP node status

You can view the status of a BGP node using the following command:

1 >calicoctl node status
2 IPV4 BGP status
3 +---------------+-----------+-------+----------+-------------+
4 | PEER ADDRESS | PEER TYPE | STATE | SINCE | INFO |
5 +---------------+-----------+-------+----------+-------------+
6 | 10.102.33.208 | global | up | 16:38:14 | Established |
7 +---------------+-----------+-------+----------+-------------+

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 329

NetScaler ingress controller

Enhancements for Kubernetes service of type LoadBalancer support in
the NetScaler Ingress Controller

February 8, 2024

Kubernetes service of type LoadBalancer support in theNetScaler Ingress Controller is enhancedwith
the following features:

• BGP route health injection (RHI) support
• Advertise or recall load balancer IP addresses (VIPs) based on the availability of service’s pods
in a set of nodes (zones) defined by node’s labels

Support for automatic configuration of BGP RHI on NetScaler

Route health injection (RHI) allows the NetScaler to advertise the availability of a VIP as a host route
throughout the network using BGP. However, you had to manually perform the configuration on
NetScaler to support RHI. Using NetScaler Ingress Controllers deployed in a Kubernetes environment,
you can automate the configuration on NetScalers to advertise VIPs.

When a service of type LoadBalancer is created, the NetScaler Ingress Controller configures a VIP
on the NetScaler for the service. If BGP RHI support is enabled for the NetScaler Ingress Controller,
it automatically configures NetScaler to advertise the VIP to the BGP network. Using the service
.citrix.com/vipparams annotation, you can enable IP parameters for the VIP. For example,
see the service.YAML file in the step 5 of Configuring BGP RHI on NetScalers using the NetScaler
Ingress Controller. For information on the supported IP parameters, see nsip configuration.

Advertise and recall VIPs based on the availability of pods

In the topology as shown in the following diagram, nodes in a Kubernetes cluster are physically dis‑
tributed across three different racks. They are logically grouped into three zones. Each zone has a
NetScaler MPX as the Tier‑1 ADC and a NetScaler Ingress Controller on the same in the Kubernetes
cluster. NetScaler Ingress Controllers in all zones listen to the same Kubernetes API server. So, when‑
ever a service of type LoadBalancer is created, all NetScalers in the cluster advertises the same
IP address to the BGP fabric. Even, if there is no workload on a zone, the NetScaler in that zone still
advertises the IP address.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 330

https://developer-docs.netscaler.com/en-us/adc-nitro-api/current-release/configuration/ns/nsip

NetScaler ingress controller

NetScaler provides a solution to advertise or recall the VIP based on the availability of pods in a zone.
You need to label the nodes on each zone so that the NetScaler Ingress Controller can identify nodes
belonging to the same zone. The NetScaler Ingress Controller on each zone performs a check to see
if there are pods on nodes in the zone. If there are pods on nodes in the zone, it advertises the VIP.
Otherwise, it revokes the advertisement of VIP from the NetScaler on the zone.

Configuring BGP RHI on NetScalers using the NetScaler Ingress Controller

This topic provides information on how to configure BGP RHI on NetScalers using the NetScaler
Ingress Controller based on a sample topology. In this topology, nodes in a Kubernetes cluster are
deployed across two zones. Each zone has a NetScaler VPX or MPX as the Tier‑1 ADC and a NetScaler
Ingress Controller for configuring ADC in the Kubernetes cluster. The ADCs are peered using BGPwith
the upstream router.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 331

NetScaler ingress controller

Prerequisites

• Configure NetScaler MPX or VPX as a BGP peer with the upstream routers.

Perform the following steps to configure BGP RHI support based on the sample topology.

1. Label nodes in each zone using the following command:

For zone 1:

1 kubectl label nodes node1 rack=rack-1
2 kubectl label nodes node2 rack=rack-1

For zone 2:

1 kubectl label nodes node3 rack=rack-2
2 kubectl label nodes node4 rack=rack-2

2. Configure the following environmental variables in the NetScaler Ingress Controller configura‑
tion YAML files as follows:

For zone 1:

1 - name: "NODE_LABELS"
2 value: "rack-1"
3 - name: "BGP_ADVERTISEMENT"
4 value: "True"

For zone 2:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 332

NetScaler ingress controller

1 - name: "NODE_LABELS"
2 value: "rack-2"
3 - name: "BGP_ADVERTISEMENT"
4 value: "True"

A sample cic.yaml file for deploying the NetScaler Ingress Controller on zone 1 is provided
as follows:

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: cic-k8s-ingress-controller-1
5 labels:
6 app: cic-k8s-ingress-controller-1
7 spec:
8 serviceAccountName: cic-k8s-role
9 containers:

10 - name: cic-k8s-ingress-controller
11 image: "quay.io/citrix/citrix-k8s-ingress-controller:1.36.5"
12
13 env:
14 # Set NetScaler NSIP/SNIP, SNIP in case of HA (mgmt has to be

enabled)
15 - name: "NS_IP"
16 value: "10.217.212.24"
17 # Set username for Nitro
18 - name: "NS_USER"
19 valueFrom:
20 secretKeyRef:
21 name: nslogin
22 key: username
23 # Set user password for Nitro
24 - name: "NS_PASSWORD"
25 valueFrom:
26 secretKeyRef:
27 name: nslogin
28 key: password
29 - name: "EULA"
30 value: "yes"
31 - name: "NODE_LABELS"
32 value: "rack=rack-1"
33 - name: "BGP_ADVERTISEMENT"
34 value: "True"
35 args:
36 - --ipam
37 citrix-ipam-controller
38 imagePullPolicy: Always

3. Deploy the NetScaler Ingress Controller using the following command.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 333

NetScaler ingress controller

Note:

You need to deploy the NetScaler Ingress Controller on both racks (per zone).

1 Kubectl create -f cic.yaml

4. Deploy a sample application using the web-frontend-lb.yaml file.

Kubectl create ‑f web‑frontend‑lb.yaml

The content of the web-frontend-lb.yaml is as follows:

1 apiVersion: v1
2 kind: Deployment
3 metadata:
4 name: web-frontend
5 spec:
6 selector:
7 matchLabels:
8 app: web-frontend
9 replicas: 4

10 template:
11 metadata:
12 labels:
13 app: web-frontend
14 spec:
15 containers:
16 - name: web-frontend
17 image: 10.217.6.101:5000/web-test:latest
18 ports:
19 - containerPort: 80
20 imagePullPolicy: Always

5. Create a service of type LoadBalancer for exposing the application.

1 Kubectl create -f web-frontend-lb-service.yaml

The content of the web-frontend-lb-service.yaml is as follows:

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: web-frontend
5 annotations:
6 service.citrix.com/class: 'cic-vpx'
7 service.citrix.com/frontend-ip: 1.1.1.1
8 service.citrix.com/vipparams: '{
9 "vserverrhilevel": "ONE_VSERVER", "hostroute": "ENABLED", "metric

": 10 }
10 '
11 labels:
12 app: web-frontend
13 spec:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 334

NetScaler ingress controller

14 type: LoadBalancer
15 ports:
16 - port: 80
17 protocol: TCP
18 name: http
19 selector:
20 app: web-frontend

6. Verify the service group creation on NetScalers using the following command.

1 show servicegroup <service-group-name>

Following is a sample output for the command.

1 # show servicegroup k8s-web-frontend_default_80_svc_k8s-web-
frontend_default_80_svc

2
3 k8s-web-frontend_default_80_svc_k8s-web-frontend_default_80_svc -

TCP
4 State: ENABLED Effective State: UP Monitor Threshold : 0
5 Max Conn: 0 Max Req: 0 Max Bandwidth: 0 kbits
6 Use Source IP: NO
7 Client Keepalive(CKA): NO
8 TCP Buffering(TCPB): NO
9 HTTP Compression(CMP): NO

10 Idle timeout: Client: 9000 sec Server: 9000 sec
11 Client IP: DISABLED
12 Cacheable: NO
13 SC: OFF
14 SP: OFF
15 Down state flush: ENABLED
16 Monitor Connection Close : NONE
17 Appflow logging: ENABLED
18 ContentInspection profile name: ???
19 Process Local: DISABLED
20 Traffic Domain: 0
21
22
23 1) 10.217.212.23:30126 State: UP Server Name: 10.217.212.23

Server ID: None Weight: 1
24 Last state change was at Wed Jan 22 23:35:11 2020
25 Time since last state change: 5 days, 00:45:09.760
26
27 Monitor Name: tcp-default State: UP Passive: 0
28 Probes: 86941 Failed [Total: 0 Current: 0]
29 Last response: Success - TCP syn+ack received.
30 Response Time: 0 millisec
31
32 2) 10.217.212.22:30126 State: UP Server Name: 10.217.212.22

Server ID: None Weight: 1
33 Last state change was at Wed Jan 22 23:35:11 2020
34 Time since last state change: 5 days, 00:45:09.790
35

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 335

NetScaler ingress controller

36 Monitor Name: tcp-default State: UP Passive: 0
37 Probes: 86941 Failed [Total: 0 Current: 0]
38 Last response: Success - TCP syn+ack received.

7. Verify the VIP advertisement on the BGP router using the following command.

1 >VTYSH
2 # show ip route bgp
3 B 172.29.46.78/32 [200/0] via 2.2.2.100, vlan20, 1

d00h35m
4 [200/0] via 2.2.2.101, vlan20, 1

d00h35m
5 Gateway of last resort is not set

TLS certificates handling in NetScaler Ingress Controller

April 10, 2024

NetScaler Ingress Controller provides option to configure TLS certificates for NetScaler SSL‑based vir‑
tual servers. The SSL virtual server intercepts SSL traffic, decrypts it and processes it before sending
it to services that are bound to the virtual server.

By default, SSL virtual server canbind to onedefault certificate and the application receives the traffic
based on the policy bound to the certificate. However, you have the Server Name Indication (SNI)
option to bind multiple certificates to a single virtual server. NetScaler determines which certificate
to present to the client based on the domain name in the TLS handshake.

NetScaler Ingress Controller handles the certificates in the following three ways:

• NetScaler Ingress Controller default Certificate
• Preconfigured certificates
• TLS section in the Ingress YAML

Prerequisite

For handling TLS certificates using NetScaler Ingress Controller, you need to enable TLS support in
NetScaler for the application and also if you are using certificates in your Kubernetes deployment
then you need to generate Kubernetes secret using the certificate.

Enable TLS support in NetScaler for the application

NetScaler Ingress Controller uses the TLS section in the ingress definition as an enabler for TLS sup‑
port with NetScaler.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 336

NetScaler ingress controller

Note:

If there is a default certificate or if there are preconfigured certificates, you need to add an empty
secret in the spec.tls.secretname field in your ingress definition to enable TLS.

The following sample snippet of the ingress definition:

1 spec:
2 tls:
3 - secretName:
4 <!--NeedCopy-->

Generate Kubernetes secret

To generate Kubernetes secret for an existing certificate, use the following kubectl command:

1 kubectl create secret tls k8s-secret --cert=path/to/tls.cert --key
=path/to/tls.key --namespace=default

2
3 secret “ k8s-secret ” created

The command creates a Kubernetes secret with a PEM formatted certificate under tls.crt key and
a PEM formatted private key under tls.key key.

Alternatively, you can also generate the Kubernetes secret using the following YAML definition:

1 apiVersion: v1
2 kind: Secret
3 metadata:
4 name: k8s-secret
5 data:
6 tls.crt: base64 encoded cert
7 tls.key: base64 encoded key
8 <!--NeedCopy-->

Deploy the YAML using thekubectl -create <file-name> command. It creates a Kubernetes
secret with a PEM formatted certificate under tls.crt key and a PEM formatted private key under
tls.key key.

NetScaler Ingress Controller default certificate

The default secrets provided in NetScaler Ingress Controller can be used to configure SSL and SSL SNI
certificates in NetScaler.
You can usedefault-sni-certificate anddefault-ssl-sni-certificate arguments
to provide a secret to configure non‑SNI and SNI certificates respectively. When you specify the argu‑

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 337

NetScaler ingress controller

ments in the NetScaler Ingress Controller deployment YAML file, provide the secret name and the
namespace where the secret has been deployed in the cluster as following:

• Argument to add in the YAML file to use the default certificate as a non‑SNI certificate:
--default-ssl-certificate <NAMESPACE>/<SECRET_NAME>.

• Argument to add in the YAML file to use the default certificate as an SNI certificate: --default
-ssl-sni-certificate <NAMESPACE>/<SECRET_NAME>

The following is a sample NetScaler Ingress Controller YAML definition file that contains a TLS secret
(hotdrink.secret) picked from the ssl namespace and provided as the NetScaler Ingress Con‑
troller default certificate.

Note:

Namespace is mandatory along with a valid SECRET_NAME.

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: cic
5 labels:
6 app: cic
7 spec:
8 serviceAccountName: cpx
9 containers:

10 - name: cic
11 image: "xxxx"
12 imagePullPolicy: Always
13 args:
14 - --default-ssl-certificate
15 ssl/hotdrink.secret
16 env:
17 # Set NetScaler ADM Management IP
18 - name: "NS_IP"
19 value: "xx.xx.xx.xx"
20 # Set port for Nitro
21 - name: "NS_PORT"
22 value: "xx"
23 # Set Protocol for Nitro
24 - name: "NS_PROTOCOL"
25 value: "HTTP"
26 # Set username for Nitro
27 - name: "NS_USER"
28 value: "nsroot"
29 # Set user password for Nitro
30 - name: "NS_PASSWORD"
31 value: "nsroot"
32 <!--NeedCopy-->

For information about the behaviour of NetScaler Ingress Controller in different scenarios related to
Kubernetes ingress in Kubernetes cluster, see the following table.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 338

NetScaler ingress controller

Default SSL
Secret in
NetScaler Ingress
Controller

Default SSL SNI
Secret in
NetScaler Ingress
Controller Host in Ingress Secret in Ingress Actions

Yes No Not provided Not provided Bind non‑SNI
secret as a
non‑SNI
certificate in SSL
virtual server.

No Yes Not provided Not Provided Bind default SNI
secret as an SNI
certificate in SSL
virtual server.

Yes Yes Not Provided Not provided • Bind
non‑SNI
secret as a
non‑SNI
certificate.

• Bind SNI
secret as an
SNI
certificate.

• Also, bind
non‑SNI
secret as
SNI since
multiple
secrets are
getting
bound.

Yes No Provided Not provided Bind non‑SNI
secret as a
non‑SNI
certificate in SSL
virtual server.

No Yes Provided Not provided Bind SNI secret as
an SNI certificate
in SSL virtual
server.

Yes Yes Provided Not provided • Bind
non‑SNI
secret as a
non‑SNI
certificate
in SSL
virtual
server.

• Bind SNI
secret as an
SNI
certificate
in SSL
virtual
server.

• Also, bind
non‑SNI
secret as an
SNI
certificate
since
multiple
secrets are
getting
bound.

Anything Anything Not provided Provided Bind secret
provided as a
non‑SNI
certificate in SSL
virtual server.

Anything Anything Provided Provided Bind secret
provided as an
SNI certificate in
SSL virtual server.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 339

NetScaler ingress controller

Default SSL
Secret in
NetScaler Ingress
Controller

Default SSL SNI
Secret in
NetScaler Ingress
Controller Host in Ingress Secret in Ingress Actions

Anything Anything Provided/Not
provided

Multiple Bind all the
secrets provided
as SNI certificates
in SSL virtual
server.

For informationaboutbehaviourofNetScaler IngressController indifferent scenarios related toOpen‑
Shift route in OpenShift cluster, see the following table.

Default SSL
Secret in
NetScaler Ingress
Controller

Default SSL SNI
Secret in
NetScaler Ingress
Controller Route type

Key and Cert in
Route Actions

Yes No Edge Not Provided Bind non‑SNI
secret as a
non‑SNI
certificate in SSL
virtual server.

No Yes Edge Not Provided Bind default SNI
secret as an SNI
certificate in SSL
virtual server.

Yes Yes Edge Not Provided • Bind
non‑SNI
secret as a
non‑SNI
certificate.

• Bind SNI
secret as an
SNI
certificate.

• Also, bind
non‑SNI
secret as
SNI
because
multiple
secrets are
getting
bound in
SSL virtual
server.

Yes No Reencrypt Not Provided Bind non‑SNI
secret as a
non‑SNI
certificate in SSL
virtual server.

No Yes Reencrypt Not provided Bind SNI secret as
a SNI certificate in
SSL virtual server.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 340

NetScaler ingress controller

Default SSL
Secret in
NetScaler Ingress
Controller

Default SSL SNI
Secret in
NetScaler Ingress
Controller Route type

Key and Cert in
Route Actions

Yes Yes Reencrypt Not provided • Bind
non‑SNI
secret as a
non‑SNI
certificate
in SSL
virtual
server.

• Bind SNI
secret as an
SNI
certificate.

• Also, bind
non‑SNI
secret as
SNI since
multiple
secrets are
getting
bound in
SSL virtual
server.

Yes No Passthrough Not provided Bind non‑SNI
secret as an SNI
certificate.

No Yes Passthrough Not provided Bind SNI secret as
an SNI certificate
in SSL virtual
server.

Yes Yes Passthrough Not provided • Bind
non‑SNI
secret as an
SNI
certificate
in SSL
virtual
server.

• Bind SNI
secret as an
SNI
certificate
in SSL
virtual
server.

Anything Anything Edge Provided Bind secret
provided as an
SNI certificate in
SSL virtual server.

Anything Anything Reencrypt Provided Bind secret
provided as an
SNI certificate in
SSL virtual server.

Anything Anything Passthrough OpenShift doesn’
t allow

NA

Preconfigured certificates

NetScaler Ingress Controller allows you to use the certkeys that are already configured on the
NetScaler. You must provide the details about the certificate using the following annotation in your
ingress definition:

1 ingress.citrix.com/preconfigured-certkey : '{
2 \"certs\": \[{
3 \"name\": \"<name>\", \"type\": \"default|sni|ca\" }
4] }
5 '

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 341

NetScaler ingress controller

You can provide details aboutmultiple certificates as a list within the annotation. Also, you can define
the way the certificate is treated. In the following sample annotation, certkey1 is used as a non‑SNI
certificate and certkey2 is used as an SNI certificate:

1 ingress.citrix.com/preconfigured-certkey : '{
2 "certs": [{
3 "name": "certkey1", "type": "default" }
4 , {
5 "name": "certkey2", "type": "sni" }
6] }
7 ’

If the type parameter is not providedwith the nameof a certificate, then it is considered as the default
(non‑SNI) type.

Note:

Ensure that youuse this feature in caseswhere youwant to reuse the certificates that are present
on the NetScaler and bind them to the applications that are managed by NetScaler Ingress Con‑
troller. NetScaler Ingress Controller does not manage the life cycle of the certificates. That is, it
does not create or delete the certificates, but only binds them to the necessary applications.

TLS section in the ingress YAML

Kubernetes allows you to provide the TLS secrets in the spec: section of an ingress definition. This
section describes how the NetScaler Ingress Controller uses these secrets.

With the host section

If the secret name is provided with the host section, NetScaler Ingress Controller binds the secret as
an SNI certificate.

1 spec:
2 tls:
3 - secretName: fruitjuice.secret
4 hosts:
5 - items.fruit.juice
6 <!--NeedCopy-->

Without the host section

If the secret name is provided without the host section, NetScaler Ingress Controller binds the secret
as a default certificate.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 342

NetScaler ingress controller

1 spec:
2 tls:
3 - secretName: colddrink.secret
4 <!--NeedCopy-->

Note:

If there aremore thanone secret given thenNetScaler Ingress Controller binds all the certificates
as SNI enabled certificates.

Points to note

1. When, multiple secrets are provided to the NetScaler Ingress Controller, the following prece‑
dence is followed:

a) preconfigured‑default‑certkey or non‑host tls secret
b) default‑ssl‑certificate

2. If there is a conflict in precedence among the same grade certificates (for example, two ingress
files configure a non‑host TLS secret each, as default/non‑SNI type), then the NetScaler Ingress
Controller binds the NetScaler Ingress Controller default certificate as the non‑SNI certificate
and uses all other certificates with SNI.

3. Certificate used for a secret given under the TLS section must have a CN name. Otherwise, it
does not bind to NetScaler.

4. If SNI enabled for SSL virtual server then:

• Non‑SNI (Default) certificate is used for the following HTTPs requests:

1 curl -1 -v -k https://1.1.1.1/
2
3 curl -1 -v -k -H 'HOST:*.colddrink.beverages' https://

1.1.1.1/

• SNI enabled certificate is used for a request with full domain name:

1 curl -1 -v -k https://items.colddrink.beverages/

If any request is received that does not match with certificates, CN name fails.

TLS client authentication support in NetScaler

December 31, 2023

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 343

NetScaler ingress controller

In TLS client authentication, a server requests a valid certificate from the client for authentication and
ensures that it is only accessible by authorized machines and users.

You can enable TLS client authentication using NetScaler SSL‑based virtual servers. With client au‑
thentication enabled on a NetScaler SSL virtual server, the NetScaler asks for the client certificate
during the SSL handshake. The appliance checks the certificate presented by the client for normal
constraints, such as the issuer signature and expiration date.

The following diagram explains the TLS client authentication feature on NetScaler.

TLS client authentication can be set to mandatory, or optional.
If the SSL client authentication is set as mandatory and the SSL Client does not provide a valid client
certificate, then the connection is dropped. A valid client certificate means that it is signed or issued
by a specific Certificate Authority, and not expired or revoked.
If it is marked as optional, then the NetScaler requests the client certificate, but the connection is
not dropped. The NetScaler proceeds with the SSL transaction even if the client does not present a
certificate or the certificate is invalid. Theoptional configuration is useful for authentication scenarios
like two‑factor authentication.

Configuring TLS client authentication

Perform the following steps to configure TLS client authentication.

1. Enable the TLS support in NetScaler.

The NetScaler Ingress Controller uses the TLS section in the Ingress definition as an enabler for
TLS support with NetScaler.
The following is a sample snippet of the Ingress definition:

1 spec:
2 tls:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 344

NetScaler ingress controller

3 - secretName:

2. Apply a CA certificate to the Kubernetes environment.

To generate a Kubernetes secret for an existing certificate, use the following kubectl command:

1 kubectl create secret generic tls-ca --from-file=tls.crt=
cacerts.pem

Note:

Youmust specify ‘tls.crt=’while creating a secret. This file is used by the NetScaler Ingress
Controller while parsing a CA secret.

3. Configure Ingress to enable client authentication.

You need to specify the following annotation to attach the generated CA secret which is used for
client certificate authentication for a service deployed in Kubernetes.

1 ingress.citrix.com/ca-secret: '{
2 "frontend-hotdrinks": "hotdrink-ca-secret" }
3 '

By default, client certificate authentication is set to mandatory but you can configure it to
optional using the frontend_sslprofile annotation in the front end configuration.

1 ingress.citrix.com/frontend_sslprofile: '{
2 "clientauth":"ENABLED", “ clientcert ” : “ optional ” }
3 '

Note:

The frontend_sslprofile only supports the front end Ingress configuration. For
more information, see front end configuration.

TLS server authentication support in NetScaler using the NetScaler
Ingress Controller

December 31, 2023

Server authentication allows a client to verify the authenticity of the web server that it is accessing.
Usually, the NetScaler device performs SSL offload and acceleration on behalf of a web server and
does not authenticate the certificate of the Web server. However, you can authenticate the server in
deployments that require end‑to‑end SSL encryption.

In such a situation, the NetScaler device becomes the SSL client and performs the following:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 345

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/configure/profiles.md#front-end-configuration
https://docs.citrix.com/en-us/citrix-adc/13/ssl/server-authentication.html

NetScaler ingress controller

• carries out a secure transaction with the SSL server
• verifies that a CA whose certificate is bound to the SSL service has signed the server certificate
• checks the validity of the server certificate.

To authenticate the server, you must first enable server authentication and then bind the certificate
of the CA that signed the certificate of the server to the SSL service on the NetScaler appliance. When
you bind the certificate, youmust specify the bind as a CA option.

Configuring TLS server authentication

Perform the following steps to configure TLS server authentication.

1. Enable the TLS support in NetScaler.

The NetScaler Ingress Controller uses the TLS section in the Ingress definition as an enabler for
TLS support with NetScaler.
The following is a sample snippet of the Ingress definition:

1 spec:
2 tls:
3 - secretName:

2. To generate a Kubernetes secret for an existing certificate, perform the following.

a) Generate a client certificate to be used with the service.

1 kubectl create secret tls tea-beverage --cert=path/to/tls.cert
--key=path/to/tls.key --namespace=default

b) Generate a secret for an existing CA certificate. This certificate is required to sign the back
end server certificate.

1 kubectl create secret generic tea-ca --from-file=tls.crt=
cacerts.pem

Note:

You must specify tls.crt= while creating a secret. This file is used by the NetScaler
Ingress Controller while parsing a CA secret.

3. Enable secure back end communication to the service using the following annotation in the
Ingress configuration.

1 ingress.citrix.com/secure-backend: "True"

4. Use the following annotation to bind the certificate to SSL service. This certificate is used when
the NetScaler acts as a client to send the request to the back end server.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 346

NetScaler ingress controller

1 ingress.citrix.com/backend-secret: '{
2 "tea-beverage": "tea-beverage", "coffee-beverage": "coffee-

beverage" }
3 '

5. To enable server authentication which authenticates the back end server certificate, you can
use the following annotation. This configuration binds the CA certificate of the server to the SSL
service on the NetScaler.

1 ingress.citrix.com/backend-ca-secret: '{
2 "coffee-beverage":"coffee-ca", "tea-beverage":"tea-ca" }

Install, link, and update certificates on a NetScaler using the NetScaler
Ingress Controller

December 31, 2023

On the Ingress NetScaler, you can install, link, and update certificates. Many server certificates are
signed by multiple hierarchical certificate authorities (CAs). This means that certificates form a
chain.

A certificate chain is anordered list of certificates containinganSSLcertificateandcertificateauthority
(CA) certificates. It enables the receiver to verify that the sender and all CAs are trustworthy. The
chain or path begins with the SSL certificate, and each certificate in the chain is signed by the entity
identified by the next certificate in the chain.

Any certificate that sits between the SSL certificate and the root certificate is called a chain or inter‑
mediate certificate. The intermediate certificate is the signer or issuer of the SSL certificate. The root
CA certificate is the signer or issuer of the intermediate certificate.

If the intermediate certificate is not installed on the server (where the SSL certificate is installed) it
may prevent some browsers, mobile devices, and applications from trusting the SSL certificate. To
make the SSL certificate compatible with all clients, it is necessary that the intermediate certificate is
installed.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 347

https://docs.citrix.com/en-us/citrix-adc/13/ssl/ssl-certificates/add-group-certs.html

NetScaler ingress controller

Certificates linking in Kubernetes

The NetScaler Ingress Controller supports automatic provisioning and renewal of TLS certificates us‑
ing the Kubernetes cert‑manager. The cert-manager issues certificates from different sources,
such as Let’s Encrypt and HashiCorp Vault and converts them to Kubernetes secrets.

The following diagram explains how the cert-manager performs certificate management.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 348

https://github.com/jetstack/cert-manager
https://letsencrypt.org/docs/
https://www.hashicorp.com/products/vault/

NetScaler ingress controller

When you create a Kubernetes secret from a PEM certificate embedded with multiple CA certificates,
you need to link the server certificates with the associated CAs.
While applying the Kubernetes secret, you can link the server certificates with all the associated CAs
using the Ingress NetScaler. Linking the server certificates and CAs enable the receiver to verify if the
sender and CAs are trustworthy.

The following is a sample Ingress definition:

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: frontendssl
5 spec:
6 rules:
7 - host: frontend.com
8 http:
9 paths:

10 - backend:
11 service:
12 name: frontend
13 port:
14 number: 443

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 349

NetScaler ingress controller

15 path: /web-frontend/frontend.php
16 pathType: Prefix
17 tls:
18 - secretName: certchain1
19
20 <!--NeedCopy-->

On the NetScaler, you can verify if certificates are added to the NetScaler. Perform the following:

1. Log on to the NetScaler command‑line interface.

2. Verify if certificates are added to the NetScaler using the following command:

1 >show certkey

For sample outputs, see the NetScaler documentation.

3. Verify that the server certificate and CAs are linked using the following command:

1 >show certlink

Output:

1 1) Cert Name: k8s-3KC24EQYHG6ZKEDAY5Y3SG26MT2 CA Cert Name: k8s
-3KC24EQYHG6ZKEDAY5Y3SG2_ic1

2
3 2) Cert Name: k8s-3KC24EQYHG6ZKEDAY5Y3SG2_ic1 CA Cert Name: k8s

-3KC24EQYHG6ZKEDAY5Y3SG2_ic2

Configure SSL passthrough using Kubernetes Ingress

December 31, 2023

SSL passthrough feature allows you to pass incoming security sockets layer (SSL) requests directly to
a server for decryption rather than decrypting the request using a load balancer. SSL passthrough is
widely used forwebapplication security and it uses theTCPmode topass encrypteddata to servers.

The proxy SSL passthrough configuration does not require the installation of an SSL certificate on the
load balancer. SSL certificates are installed on the back end server as they handle the SSL connection
instead of the load balancer.

The following diagram explains the SSL passthrough feature.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 350

https://docs.citrix.com/en-us/citrix-adc/13/ssl/ssl-certificates/add-group-certs.html#manual-certificate-linking

NetScaler ingress controller

As shown in this diagram, SSL traffic is not terminated at the NetScaler and SSL traffic is passed
through the NetScaler to the back end server. SSL certificate at the back end server is used for the
SSL handshake.

TheNetScaler Ingress Controller provides the following Ingress annotation that you can use to enable
SSL passthrough on the Ingress NetScaler:

1 ingress.citrix.com/ssl-passthrough: 'True|False'

The default value of the annotation is False.

SSL passthrough is enabled for all services or host names provided in the Ingress definition. SSL
passthrough uses host name (wildcard host name is also supported) and ignores paths given in
Ingress.

Note:

The NetScaler Ingress Controller does not support SSL passthrough for non‑hostname based
Ingress. Also, SSL passthrough is not valid for default back end Ingress.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 351

NetScaler ingress controller

ToconfigureSSLpassthroughon the IngressNetScaler, youmustdefine theingress.citrix.com
/ssl-passthrough: as shown in the following sample Ingress definition. You must also enable
TLS for the host as shown in the example.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 annotations:
5 ingress.citrix.com/frontend-ip: x.x.x.x
6 ingress.citrix.com/insecure-termination: redirect
7 ingress.citrix.com/secure-backend: "True"
8 ingress.citrix.com/ssl-passthrough: "True"
9 kubernetes.io/ingress.class: citrix

10 name: hotdrinks-ingress
11 spec:
12 rules:
13 - host: hotdrinks.beverages.com
14 http:
15 paths:
16 - backend:
17 service:
18 name: frontend-hotdrinks
19 port:
20 number: 443
21 path: /
22 pathType: Prefix
23 tls:
24 - secretName: beverages
25 <!--NeedCopy-->

Automated certificatemanagement with cert‑manager

December 31, 2023

NetScaler Ingress Controller supports automatic provisioning and renewal of TLS certificates using
cert‑manager. The cert-manager is a native Kubernetes certificate management controller. It is‑
sues certificates from different sources, such as Let’s Encrypt and HashiCorp Vault.

As shown in the followingdiagram,cert-manager interactswith theexternal CertificateAuthorities
(CA) to sign the certificates and converts it to Kubernetes secrets. These secrets are used by NetScaler
Ingress Controller to configure SSL virtual server on the NetScaler.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 352

https://github.com/jetstack/cert-manager
https://letsencrypt.org/docs/
https://www.hashicorp.com/products/vault/

NetScaler ingress controller

For detailed configurations, refer:

• Deploying HTTPS web applications on Kubernetes with NetScaler Ingress Controller and Let’s
Encrypt using cert‑manager

• Deploying HTTPS web application on Kubernetes with NetScaler Ingress Controller and
HashiCorp Vault using cert‑manager

Deploy HTTPSweb application on Kubernetes with the NetScaler
Ingress Controller and Let‘s Encrypt using cert‑manager

December 31, 2023

Let’s Encrypt and the ACME (Automatic Certificate Management Environment) protocol enables you
to set up an HTTPS server and automatically obtain a browser‑trusted certificate. To get a certificate
for your website’s domain from Let’s Encrypt, you have to demonstrate control over the domain by

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 353

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/certificate-management/acme.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/certificate-management/acme.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/certificate-management/vault.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/certificate-management/vault.html
https://letsencrypt.org/docs/

NetScaler ingress controller

accomplishing certain challenges. A challenge is oneamonga list of specified tasks thatonly someone
who controls the domain can accomplish.

Currently there are two types of challenges:

• HTTP‑01 challenge: HTTP‑01 challenges are completed by posting a specified file in a specified
location on awebsite. Let’s Encrypt CA verifies the file bymaking an HTTP request on the HTTP
URI to satisfy the challenge.

• DNS‑01 challenge: DNS01 challenges are completed by providing a computed key that is
present at a DNS TXT record. Once this TXT record has been propagated across the internet, the
ACME server can successfully retrieve this key via a DNS lookup. The ACME server can validate
that the client owns the domain for the requested certificate. With the correct permissions,
cert‑manager automatically presents this TXT record for your specified DNS provider.

On successful validation of the challenge, a certificate is granted for the domain.

This topic provides informationonhow to securely deploy anHTTPSwebapplication onaKubernetes
cluster, using:

• The NetScaler Ingress Controller

• JetStack’s cert‑manager to provision TLS certificates from the Let’s Encrypt project.

Prerequisites

Ensure that you have:

• The domain for which the certificate is requested is publicly accessible.

• Enabled RBAC on your Kubernetes cluster.

• Deployed NetScaler MPX, VPX, or CPX deployed in Tier 1 or Tier 2 deployment model.

In the Tier 1 deployment model, NetScaler MPX or VPX is used as an Application Delivery Con‑
troller (ADC). The NetScaler Ingress Controller running in Kubernetes cluster configures the vir‑
tual services for services running on Kubernetes cluster. NetScaler runs the virtual service on
the publicly routable IP address and offloads SSL for client traffic with the help of the Let’s En‑
crypt generated certificate.

In the Tier 2 deployment model, a TCP service is configured on the NetScaler (VPX/MPX) run‑
ning outside the Kubernetes cluster. This service is created to forward the traffic to NetScaler
CPX instances running in the Kubernetes cluster. NetScaler CPX ends the SSL session and load‑
balances the traffic to actual service pods.

• Deployed the NetScaler Ingress Controller. Click here for various deployment scenarios.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 354

https://github.com/jetstack/cert-manager
https://letsencrypt.org/docs/
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html

NetScaler ingress controller

• Opened port 80 for the virtual IP address on the firewall for the Let’s Encrypt CA to validate the
domain for HTTP01 challenge.

• A DNS domain that you control, where you host your web application for the ACME DNS01 chal‑
lenge.

• Administrator permissions for all deployment steps. If you encounter failures due to permis‑
sions, make sure you have administrator permissions.

Install cert‑manager

To install cert‑manager, see the cert‑manager installation documentation.

You can install cert‑manager either using manifest files or Helm chart.

Once you install the cert‑manager, verify that cert‑manager is up and running as explained verifying
the installation.

Deploy a sample web application

Perform the following to deploy a sample web application:

Note:

Kuard, a Kubernetes demo application is used for reference in this topic.

1. Create adeployment YAML file (kuard-deployment.yaml) for Kuardwith the following con‑
figuration:

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 labels:
5 app: kuard
6 name: kuard
7 spec:
8 replicas: 1
9 selector:

10 matchLabels:
11 app: kuard
12 template:
13 metadata:
14 labels:
15 app: kuard
16 spec:
17 containers:
18 - image: gcr.io/kuar-demo/kuard-amd64:1
19 imagePullPolicy: Always
20 name: kuard

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 355

https://cert-manager.io/docs/installation/kubernetes/
https://cert-manager.io/docs/installation/kubernetes/#verifying-the-installation
https://cert-manager.io/docs/installation/kubernetes/#verifying-the-installation
https://github.com/kubernetes-up-and-running/kuard

NetScaler ingress controller

21 ports:
22 - containerPort: 8080
23 protocol: TCP
24 <!--NeedCopy-->

2. Deploy the Kuard deployment file (kuard-deployment.yaml) to your cluster, using the fol‑
lowing commands:

% kubectl create ‑f kuard‑deployment.yaml

1 deployment.extensions/kuard created

% kubectl get pod ‑l app=kuard

1 NAME READY STATUS RESTARTS AGE
2
3 kuard-6fc4d89bfb-djljt 1/1 Running 0 24s

3. Create a service for the deployment. Create a file called service.yaml with the following
configuration:

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: kuard
5 spec:
6 ports:
7 - port: 80
8 targetPort: 8080
9 protocol: TCP

10 selector:
11 app: kuard
12 <!--NeedCopy-->

4. Deploy and verify the service using the following commands:

1 % kubectl create -f service.yaml
2
3 service/kuard created
4 % kubectl get svc kuard
5 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
6 kuard ClusterIP 10.103.49.171 <none> 80/TCP 13s

5. Expose this service to outsideworld by creating an Ingress that is deployed onNetScaler CPX or
VPX as Content switching virtual server.

Note:

Ensures that you change the value of kubernetes.io/ingress.class to your
ingress class on which the NetScaler Ingress Controller is started.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 356

NetScaler ingress controller

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 annotations:
5 kubernetes.io/ingress.class: citrix
6 name: kuard
7 spec:
8 rules:
9 - host: kuard.example.com

10 http:
11 paths:
12 - backend:
13 service:
14 name: kuard
15 port:
16 number: 80
17 path: /
18 pathType: Prefix

Note:

Youmust change the value of spec.rules.host to the domain that you control. Ensure that
a DNS entry exists to route the traffic to NetScaler CPX or VPX.

1. Deploy the Ingress using the following command:

1 % kubectl apply -f ingress.yml
2 ingress.extensions/kuard created
3
4 root@ubuntu-:~/cert-manager# kubectl get ingress
5 NAME HOSTS ADDRESS PORTS AGE
6 kuard kuard.example.com 80 7s

2. Verify that the Ingress is configured on NetScaler CPX or VPX by using the following command:

1 $ kubectl exec -it cpx-ingress-5b85d7c69d-ngd72 /bin/bash
2
3 root@cpx-ingress-55c88788fd-qd4rg:/# cli_script.sh 'show cs

vserver'
4 exec: show cs vserver
5 1) k8s-192.168.8.178_80_http (192.168.8.178:80) - HTTP Type:

CONTENT
6 State: UP
7 Last state change was at Sat Jan 4 13:36:14 2020
8 Time since last state change: 0 days, 00:18:01.950
9 Client Idle Timeout: 180 sec

10 Down state flush: ENABLED
11 Disable Primary Vserver On Down : DISABLED
12 Comment: uid=

MPPL57E3AFY6NMNDGDKN2VT57HEZVOV53Z7DWKH44X2SGLIH4ZWQ====
13 Appflow logging: ENABLED
14 Port Rewrite : DISABLED

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 357

NetScaler ingress controller

15 State Update: DISABLED
16 Default: Content Precedence: RULE
17 Vserver IP and Port insertion: OFF
18 L2Conn: OFF Case Sensitivity: ON
19 Authentication: OFF
20 401 Based Authentication: OFF
21 Push: DISABLED Push VServer:
22 Push Label Rule: none
23 Persistence: NONE
24 Listen Policy: NONE
25 IcmpResponse: PASSIVE
26 RHIstate: PASSIVE
27 Traffic Domain: 0
28 Done
29
30 root@cpx-ingress-55c88788fd-qd4rg/# exit
31 exit

3. Verify that the webpage is correctly being served when requested using the curl command.

1 % curl -sS -D - kuard.example.com -o /dev/null
2 HTTP/1.1 200 OK
3 Content-Length: 1458
4 Content-Type: text/html
5 Date: Thu, 21 Feb 2019 09:09:05 GMT

Configure issuing ACME certificate using the HTTP challenge

This section describes a way to issue the ACME certificate using the HTTP validation. If you want to
use the DNS validation, skip this section and proceed to the next section.

The HTTP validation using cert‑manager is a simple way of getting a certificate from Let’s Encrypt for
your domain. In this method, you prove ownership of a domain by ensuring that a particular file is
present at the domain. It is assumed that you control the domain if you are able to publish the given
file under a given path.

Deploy the Let’s Encrypt ClusterIssuer with the HTTP01 challenge provider

Thecert‑manager supports twodifferentCRDs for configuration, anIssuer, scoped toa singlename‑
space, and a ClusterIssuer, with cluster‑wide scope.

For the NetScaler Ingress Controller to use the Ingress from any namespace, use ClusterIssuer.
Alternatively, youcanalso createanIssuer for eachnamespaceonwhichyouare creatingan Ingress
resource.

For more information, see cert‑manager documentation for HTTP validation.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 358

https://cert-manager.io/docs/tutorials/acme/http-validation/

NetScaler ingress controller

1. Create a file called issuer-letsencrypt-staging.yaml with the following configura‑
tion:

1 apiVersion: cert-manager.io/v1alpha2
2 kind: ClusterIssuer
3 metadata:
4 name: letsencrypt-staging
5 spec:
6 acme:
7 # You must replace this email address with your own.
8 # Let's Encrypt will use this to contact you about expiring
9 # certificates, and issues related to your account.

10 email: user@example.com
11 server: https://acme-staging-v02.api.letsencrypt.org/directory
12 privateKeySecretRef:
13 # Secret resource used to store the account's private key.
14 name: example-issuer-account-key
15 # Add a single challenge solver, HTTP01 using citrix
16 solvers:
17 - http01:
18 ingress:
19 class: citrix

spec.acme.solvers\[].http01.ingress.class refers to the Ingress class of
NetScaler Ingress Controller. If the NetScaler Ingress Controller has no ingress class, you do
not need to specify this field.
Note:
This is a sample Clusterissuer of cert‑manager.io/v1alpha2 resource. For more informa‑
tion, see cert‑manager http01 documentation.

The staging Let’s Encrypt server issues fake certificate, but it is not bound by the API rate limits
of the production server. This approach lets you set up and test your environment without wor‑
rying about rate limits. You can repeat the same step for the Let’s Encrypt production server.

2. After you edit and save the file, deploy the file using the following command:

1 % kubectl apply -f issuer-letsencrypt-staging.yaml
2 clusterissuer "letsencrypt-staging" created

3. Verify that the issuer is created and registered to the ACME server.

1 % kubectl get issuer
2 NAME AGE
3 letsencrypt-staging 8d

4. Verify that the ClusterIssuer is properly registered using the command kubectl
describe issuer letsencrypt-staging:

1 % kubectl describe issuer letsencrypt-staging
2
3 Status:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 359

https://cert-manager.io/docs/configuration/acme/http01/
https://letsencrypt.org/docs/rate-limits/
https://letsencrypt.org/docs/rate-limits/

NetScaler ingress controller

4 Acme:
5 Uri: https://acme-staging-v02.api.letsencrypt.org/acme/acct

/8200869
6 Conditions:
7 Last Transition Time: 2019-02-11T12:06:31Z
8 Message: The ACME account was registered with

the ACME server
9 Reason: ACMEAccountRegistered

10 Status: True
11 Type: Ready

Issue certificate for the Ingress object

Once ClusterIssuer is successfully registered, you can get a certificate for the Ingress domain
‘kuard.example.com’.

You can request a certificate for the specified Ingress resource using the following methods:

• Adding Ingress-shim annotations to the ingress object.

• Creating a certificate CRD object.

The first method is quick and simple, but if you need more customization and granularity in terms
of certificate renewal, you can choose the second method. You can choose the method according to
your needs.

Adding Ingress-shim annotations to the Ingress object In this approach, you add the follow‑
ing two annotations to the Ingress object for which you request a certificate from the ACME server.

1 certmanager.io/cluster-issuer: "letsencrypt-staging"

Note:

You can find all supported annotations from cert‑manager for Ingress-shim, at supported‑
annotations.

Also, modify the ingress.yaml to use TLS by specifying a secret.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 annotations:
5 certmanager.io/cluster-issuer: letsencrypt-staging
6 kubernetes.io/ingress.class: citrix
7 name: kuard
8 spec:
9 rules:

10 - host: kuard.example.com

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 360

https://cert-manager.io/docs/usage/ingress/#supported-annotations
https://cert-manager.io/docs/usage/ingress/#supported-annotations

NetScaler ingress controller

11 http:
12 paths:
13 - backend:
14 service:
15 name: kuard
16 port:
17 number: 80
18 pathType: Prefix
19 path: /
20 tls:
21 - hosts:
22 - kuard.example.com
23 secretName: kuard-example-tls

The cert-manager.io/cluster-issuer: \"letsencrypt-staging\" annotation tells
cert‑manager to use the letsencrypt-staging cluster‑wide issuer to request a certificate from
Let’s Encrypt’s staging servers. Cert‑manager creates a certificate object that is used to man‑
age the lifecycle of the certificate for kuard.example.com. The value for the domain name and
challengemethod for the certificate object is derived from the ingress object. Cert‑managermanages
the contents of the secret as long as the Ingress is present in your cluster.

Deploy the ingress.yaml file using the following command:

1 % kubectl apply -f ingress.yml
2
3 ingress.extensions/kuard configured
4 % kubectl get ingress kuard
5 NAME HOSTS ADDRESS PORTS AGE
6 kuard kuard.example.com 80, 443 4h39m

Create a certificate CRD resource Alternatively, you can deploy a certificate CRD object indepen‑
dent of the Ingress object. Documentation of “certificate”CRD can be found at HTTP validation.

1. Create the certificate.yaml file with the following configuration:

1 apiVersion: cert-manager.io/v1alpha2
2 kind: Certificate
3 metadata:
4 name: example-com
5 namespace: default
6 spec:
7 secretName: kuard-example-tls
8 issuerRef:
9 name: letsencrypt-staging

10 commonName: kuard.example.com
11 dnsNames:
12 - www.kuard.example.com
13 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 361

https://cert-manager.io/docs/tutorials/acme/http-validation/

NetScaler ingress controller

The spec.secretName key is the name of the secret where the certificate is stored on successfully
issuing the certificate.

1. Deploy the certificate.yaml file on the Kubernetes cluster:

1 kubectl create -f certificate.yaml
2 certificate.cert-manager.io/example-com created

2. Verify that certificate custom resource is created by the cert‑manager which represents the
certificate specified in the Ingress. After few minutes, if ACME validation goes well, certificate
‘READY’status is set to true.

1 % kubectl get certificates.cert-manager.io kuard-example-tls
2 NAME READY SECRET AGE
3 kuard-example-tls True kuard-example-tls 3m44s
4
5
6 % kubectl get certificates.cert-manager.io kuard-example-tls
7 Name: kuard-example-tls
8 Namespace: default
9 Labels: <none>

10 Annotations: <none>
11 API Version: cert-manager.io/v1alpha2
12 Kind: Certificate
13 Metadata:
14 Creation Timestamp: 2020-01-04T17:36:26Z
15 Generation: 1
16 Owner References:
17 API Version: extensions/v1beta1
18 Block Owner Deletion: true
19 Controller: true
20 Kind: Ingress
21 Name: kuard
22 UID: 2cafa1b4-2ef7-11ea-8ba9-06bea3f4b04a
23 Resource Version: 81263
24 Self Link: /apis/cert-manager.io/v1alpha2/

namespaces/default/certificates/kuard-example-tls
25 UID: bbfa5e51-2f18-11ea-8ba9-06bea3f4b04a
26 Spec:
27 Dns Names:
28 acme.cloudpst.net
29 Issuer Ref:
30 Group: cert-manager.io
31 Kind: ClusterIssuer
32 Name: letsencrypt-staging
33 Secret Name: kuard-example-tls
34 Status:
35 Conditions:
36 Last Transition Time: 2020-01-04T17:36:28Z
37 Message: Certificate is up to date and has not

expired
38 Reason: Ready

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 362

NetScaler ingress controller

39 Status: True
40 Type: Ready
41 Not After: 2020-04-03T16:36:27Z
42 Events:
43 Type Reason Age From Message
44 ---- ------ ---- ---- -------
45 Normal GeneratedKey 24m cert-manager Generated a new

private key
46 Normal Requested 24m cert-manager Created new

CertificateRequest resource "kuard-example-tls-3030465986"
47 Normal Issued 24m cert-manager Certificate issued

successfully

3. Verify that the secret resource is created.

1 % kubectl get secret kuard-example-tls
2 NAME TYPE DATA AGE
3 kuard-example-tls kubernetes.io/tls 3 3m13s

Issuing an ACME certificate using the DNS challenge

This section describes a way to use the DNS validation to get the ACME certificate from Let’sEncrypt
CA.With aDNS‑01 challenge, youprove the ownership of a domain byproving that you control its DNS
records. This is done by creating a TXT record with specific content that proves you have control of
the domain’s DNS records. For detailed explanation of DNS challenge and best security practices in
deployingDNSchallenge, seeATechnicalDeepDive: Securing theAutomationofACMEDNSChallenge
Validation.

Note:

In this procedure, route53 is used as the DNS provider. For other providers, see cert‑manager
documentation of DNS validation.

Deploy the Let’s Encrypt ClusterIssuer with the DNS01 challenge provider

Perform the following to deploy the Let’s Encrypt ClusterIssuer with the DNS01 challenge
provider:

1. Create an AWS IAM user account and download the secret access key ID and secret access key.

2. Grant the following IAM policy to your user:

Route53 access policy

3. Create a Kubernetes secret acme-route53 in kube-system namespace.

1 % kubectl create secret generic acme-route53 --from-literal secret
-access-key=<secret_access_key>

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 363

https://www.eff.org/deeplinks/2018/02/technical-deep-dive-securing-automation-acme-dns-challenge-validation
https://www.eff.org/deeplinks/2018/02/technical-deep-dive-securing-automation-acme-dns-challenge-validation
https://cert-manager.io/docs/configuration/acme/dns01/
http://docs.cert-manager.io/en/latest/tasks/issuers/setup-acme/dns01/route53.html

NetScaler ingress controller

4. Create an Issuer or ClusterIssuerwith the DNS01 challenge provider.

You can provide multiple providers under DNS01, and specify which provider to be used at the
time of certificate creation.
You must have access to the DNS provider for cert‑manager to create a TXT record. Credentials
are stored in theKubernetes secret specified inspec.dns01.secretAccessKeySecretRef
. For detailed instructions on how to obtain credentials, see the DNS provider documentation.

1 apiVersion: cert-manager.io/v1alpha2
2 kind: ClusterIssuer
3 metadata:
4 name: letsencrypt-staging
5 spec:
6 acme:
7 # You must replace this email address with your own.
8 # Let's Encrypt will use this to contact you about

expiring
9 # certificates, and issues related to your account.

10 email: user@example.com
11 server: https://acme-staging-v02.api.letsencrypt.org/

directory
12 privateKeySecretRef:
13 name: example-issuer-account-key
14 solvers:
15 - dns01:
16 route53:
17 region: us-west-2
18 accessKeyID: <IAMKEY>
19 secretAccessKeySecretRef:
20 name: acme-route53
21 key: secret-access-key
22 <!--NeedCopy-->

Note:

Replace user@example.com with your email address. For each domain mentioned in
a DNS01 stanza, cert‑manager uses the provider’s credentials from the referenced Issuer
to create a TXT record called _acme-challenge. This record is then verified by the
ACME server to issue the certificate. For more information about the DNS provider config‑
uration, and the list of supported providers, see DNS01 reference doc.

5. After you edit and save the file, deploy the file using the following command:

1 % kubectl apply -f acme_clusterissuer_dns.yaml
2 clusterissuer "letsencrypt-staging" created

6. Verify if the issuer is created and registered to the ACME server using the following command:

1 % kubectl get issuer
2 NAME AGE

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 364

https://cert-manager.io/docs/configuration/acme/dns01/

NetScaler ingress controller

3 letsencrypt-staging 8d

7. Verify if the ClusterIssuer is properly registered using the command kubectl
describe issuer letsencrypt-staging:

1 Status:
2 Acme:
3 Uri: https://acme-staging-v02.api.letsencrypt.org/acme/acct

/8200869
4 Conditions:
5 Last Transition Time: 2019-02-11T12:06:31Z
6 Message: The ACME account was registered with

the ACME server
7 Reason: ACMEAccountRegistered
8 Status: True
9 Type: Ready

Issue certificate for the Ingress resource

Once the issuer is successfully registered, you can get a certificate for the ingress domain kuard.
example.com. Similar to HTTP01 challenge, there are two ways you can request the certificate for
a specified Ingress resource:

• Adding Ingress-shim annotations to the Ingress object.

• Creating a certificate CRD object. For detailed instructions, see Create a Certificate CRD
resource.

Adding Ingress-shim annotations to the ingress object Add the following annotation to the
Ingress object along with the spec.tls section:

1 certmanager.io/cluster-issuer: "letsencrypt-staging"
2 <!--NeedCopy-->

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 annotations:
5 cert-manager.io/cluster-issuer: letsencrypt-staging
6 kubernetes.io/ingress.class: citrix
7 name: kuard
8 spec:
9 rules:

10 - host: kuard.example.com
11 http:
12 paths:
13 - backend:
14 service:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 365

NetScaler ingress controller

15 name: kuard
16 port:
17 number: 80
18 pathType: Prefix
19 path: /
20 tls:
21 - hosts:
22 - kuard.example.com
23 secretName: kuard-example-tls
24 <!--NeedCopy-->

The cert‑manager creates a Certificate CRD resource with the DNS01 challenge. It uses creden‑
tials specified in the ClusterIssuer to create a TXT record in the DNS server for the domain you
own. Then, Let’s Encypt CA validates the content of the TXT record to complete the challenge.

Adding a Certificate CRD resource** Alternatively, you can explicitly create a certificate cus‑
tom resource definition resource to trigger automatic generation of certificates.

1. Create the certificate.yaml file with the following configuration:

1 apiVersion: cert-manager.io/v1alpha2
2 kind: Certificate
3 metadata:
4 name: example-com
5 namespace: default
6 spec:
7 secretName: kuard-example-tls
8 issuerRef:
9 name: letsencrypt-staging

10 commonName: kuard.example.com
11 dnsNames:
12 - www.kuard.example.com
13 <!--NeedCopy-->

After successful validation of the domain name, certificate READY status is set to True.

2. Verify that the certificate is issued.

1 % kubectl get certificate kuard-example-tls
2
3 NAME READY SECRET AGE
4 -example-tls True kuard-example-tls 10m

You can watch the progress of the certificate as it is issued, using the following command:

% kubectl describe certificates kuard-example-tls | tail -n 6

1 Not After: 2020-04-04T13:34:23Z
2 Events:
3 Type Reason Age From Message
4 ---- ------ ---- ---- -------

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 366

NetScaler ingress controller

5 Normal Requested 11m cert-manager Created new
CertificateRequest resource "kuard-example-tls-3030465986"

6 Normal Issued 7m21s cert-manager Certificate issued
successfully

Verify certificate in NetScaler

Letsencrypt CA successfully validated the domain and issued a new certificate for the domain. A
kubernetes.io/tls secret is created with the secretName specified in the tls: field of the
Ingress. Also, cert‑manager automatically initiates a renewal, 30 days before the expiry.

For HTTP challenge, cert‑manager creates a temporary Ingress resource to route the Let’s Encrypt
CA generated traffic to cert‑manager pods. On successful validations of the domain, this temporary
Ingress is deleted.

1. Verify that the secret is created using the following command:

1 % kubectl get secret kuard-example-tls
2
3 NAME TYPE DATA AGE
4 kuard-example-tls kubernetes.io/tls 3 30m

The NetScaler Ingress Controller picks up the secret and binds the certificate to the content
switching virtual server on the NetScaler CPX. If there are any intermediate CA certificates, it is
automatically linked to the server certificate and presented to the client during SSL negotiation.

2. Log on to NetScaler CPX and verify if the certificate is bound to the SSL virtual server.

1 % kubectl exec -it cpx-ingress-55c88788fd-n2x9r bash -c cpx-
ingress

2 Defaulting container name to cpx-ingress.
3 Use 'kubectl describe pod/cpx-ingress-55c88788fd-n2x9r -n default'

to see all of the containers in this pod.
4
5 % cli_script.sh 'sh ssl vs k8s-192.168.8.178_443_ssl'
6 exec: sh ssl vs k8s-192.168.8.178_443_ssl
7
8 Advanced SSL configuration for VServer k8s-192.168.8.178_443_ssl

:
9 DH: DISABLED

10 DH Private-Key Exponent Size Limit: DISABLED Ephemeral RSA:
ENABLED Refresh Count: 0

11 Session Reuse: ENABLED Timeout: 120 seconds
12 Cipher Redirect: DISABLED
13 ClearText Port: 0
14 Client Auth: DISABLED
15 SSL Redirect: DISABLED
16 Non FIPS Ciphers: DISABLED
17 SNI: ENABLED

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 367

NetScaler ingress controller

18 OCSP Stapling: DISABLED
19 HSTS: DISABLED
20 HSTS IncludeSubDomains: NO
21 HSTS Max-Age: 0
22 HSTS Preload: NO
23 SSLv3: ENABLED TLSv1.0: ENABLED TLSv1.1: ENABLED TLSv1.2:

ENABLED TLSv1.3: DISABLED
24 Push Encryption Trigger: Always
25 Send Close-Notify: YES
26 Strict Sig-Digest Check: DISABLED
27 Zero RTT Early Data: DISABLED
28 DHE Key Exchange With PSK: NO
29 Tickets Per Authentication Context: 1
30 , P_256, P_384, P_224, P_5216) CertKey Name: k8s-

GVWNYGVZKKRHKF7MZVTLOAEZYBS Server Certificate for SNI
31
32 7) Cipher Name: DEFAULT
33 Description: Default cipher list with encryption strength >= 128

bit
34 Done
35
36 % cli_script.sh 'sh certkey'
37 1) Name: k8s-GVWNYGVZKKRHKF7MZVTLOAEZYBS
38 Cert Path: k8s-GVWNYGVZKKRHKF7MZVTLOAEZYBS.crt
39 Key Path: k8s-GVWNYGVZKKRHKF7MZVTLOAEZYBS.key
40 Format: PEM
41 Status: Valid, Days to expiration:89
42 Certificate Expiry Monitor: ENABLED
43 Expiry Notification period: 30 days
44 Certificate Type: "Client Certificate" "Server Certificate"
45 Version: 3
46 Serial Number: 03B2B57EA9E61A93F1D05EA3272FA95203C2
47 Signature Algorithm: sha256WithRSAEncryption
48 Issuer: C=US,O=Let's Encrypt,CN=Let's Encrypt Authority X3
49 Validity
50 Not Before: Jan 5 13:34:23 2020 GMT
51 Not After : Apr 4 13:34:23 2020 GMT
52 Subject: CN=acme.cloudpst.net
53 Public Key Algorithm: rsaEncryption
54 Public Key size: 2048
55 Ocsp Response Status: NONE
56 2) Name: k8s-GVWNYGVZKKRHKF7MZVTLOAEZYBS_ic1
57 Cert Path: k8s-GVWNYGVZKKRHKF7MZVTLOAEZYBS.crt_ic1
58 Format: PEM
59 Status: Valid, Days to expiration:437
60 Certificate Expiry Monitor: ENABLED
61 Expiry Notification period: 30 days
62 Certificate Type: "Intermediate CA"
63 Version: 3
64 Serial Number: 0A0141420000015385736A0B85ECA708
65 Signature Algorithm: sha256WithRSAEncryption
66 Issuer: O=Digital Signature Trust Co.,CN=DST Root CA X3
67 Validity

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 368

NetScaler ingress controller

68 Not Before: Mar 17 16:40:46 2016 GMT
69 Not After : Mar 17 16:40:46 2021 GMT
70 Subject: C=US,O=Let's Encrypt,CN=Let's Encrypt Authority X3
71 Public Key Algorithm: rsaEncryption
72 Public Key size: 2048
73 Ocsp Response Status: NONE
74 Done

The HTTPS webserver is now UP with a fake LE signed certificate. Next step is to move to production
with the actual Let’s Encrypt certificates.

Move to production

After successfully testingwith Let’s Encrypt‑staging, you can get the actual Let’s Encrypt certificate.

Youneed tochangeLet’sEncryptendpoint fromhttps:acme-staging-v02.api.letsencrypt
.org/directory to https:acme-v02.api.letsencrypt.org/directory

Then, change the name of the ClusterIssuer from letsencrypt-staging to letsencrypt-
production

1 apiVersion: cert-manager.io/v1alpha2
2 kind: ClusterIssuer
3 metadata:
4 name: letsencrypt-prod
5 spec:
6 acme:
7 # You must replace this email address with your own.
8 # Let's Encrypt will use this to contact you about expiring
9 # certificates, and issues related to your account.

10 email: user@example.com
11 server: https://acme-v02.api.letsencrypt.org/directory
12 privateKeySecretRef:
13 # Secret resource used to store the account's private key.
14 name: example-issuer-account-key
15 # Add a single challenge solver, HTTP01 using citrix
16 solvers:
17 - http01:
18 ingress:
19 class: citrix
20 <!--NeedCopy-->

Note:

Replace user@example.comwith your email address.

Deploy the file using the following command:

1 % kubectl apply -f letsencrypt-prod.yaml
2

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 369

NetScaler ingress controller

3 clusterissuer "letsencrypt-prod" created

Now, repeat the procedure of modifying the annotation in Ingress or creating a CRD certificate which
triggers the generation of new certificate.

Note

Ensure that you delete the old secret so that cert‑manager starts a fresh challenge with the pro‑
duction CA.

1 % kubectl delete secret kuard-example-tls
2
3 secret "kuard-example-tls" deleted

Once the HTTP website is up, you can redirect the traffic from HTTP to HTTPS using the annotation
ingress.citrix.com/insecure-termination: redirect in the ingress object.

Troubleshooting

Since the certificate generation involves multiple components, this section summarizes the trou‑
bleshooting techniques that you can use if there was failures.

Verify the status of certificate generation

The certificate CRDobject defines the life cyclemanagement of generation and renewal of certificates.
You can view the status of the certificate using the kubectl describe command as follows.

1 % kubectl get certificate
2
3 NAME READY SECRET AGE
4 kuard-example-tls False kuard-example-tls 9s
5
6 % kubectl describe certificate kuard-example-tls
7
8 Status:
9 Conditions:

10 Last Transition Time: 2019-03-05T09:50:29Z
11 Message: Certificate does not exist
12 Reason: NotFound
13 Status: False
14 Type: Ready
15 Events:
16 Type Reason Age From Message
17 ---- ------ ---- ---- -------
18 Normal OrderCreated 22s cert-manager Created Order resource "

kuard-example-tls-1754626579"

Also you can view the major certificate events using the kubectl events command:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 370

NetScaler ingress controller

1 kubectl get events
2
3 LAST SEEN TYPE REASON KIND MESSAGE
4 36s Normal Started Challenge Challenge

scheduled for processing
5 36s Normal Created Order Created

Challenge resource "kuard-example-tls-1754626579-0" for domain "acme
.cloudpst.net"

6 38s Normal OrderCreated Certificate Created Order
resource "kuard-example-tls-1754626579"

7 38s Normal CreateCertificate Ingress Successfully
created Certificate "kuard-example-tls"

Analyze logs from cert‑manager

If there is a failure, first step is to analyze logs from the cert‑manager component. Identify the cert‑
manager pod using the following command:

1 % kubectl get po -n cert-manager
2
3 NAME READY STATUS RESTARTS

AGE
4 cert-manager-76d48d47bf-5w4vx 1/1 Running 0

23h
5 cert-manager-webhook-67cfb86d56-6qtxr 1/1 Running 0

23h
6 cert-manager-webhook-ca-sync-x4q6f 0/1 Completed 4

23h

Herecert-manager-76d48d47bf-5w4vx is themain cert‑managerpod, andother twopodsare
cert‑manager webhook pods.

Get the logs of the cert‑manager using the following command:

1 % kubectl logs -f cert-manager-76d48d47bf-5w4vx -n cert-manager

If there is any failure to get the certificate, the ERROR logs give details about the failure.

Check the Kubernetes secret

Use thekubectl describe command to verify if both certificates and key are populated in Kuber‑
netes secret.

1 % kubectl describe secret kuard-example-tls
2
3 Name: kuard-example-tls
4 Namespace: default
5 Labels: certmanager.k8s.io/certificate-name=kuard-example-tls

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 371

NetScaler ingress controller

6 Annotations: certmanager.k8s.io/alt-names: acme.cloudpst.net
7 certmanager.k8s.io/common-name: acme.cloudpst.net
8 certmanager.k8s.io/issuer-kind: ClusterIssuer
9 certmanager.k8s.io/issuer-name: letsencrypt-staging

10
11 Type: kubernetes.io/tls
12
13 Data
14 ====
15 tls.crt: 3553 bytes
16 tls.key: 1679 bytes
17 ca.crt: 0 bytes

If bothtls.crt andtls.key are populated in the Kubernetes secret, certificate generation is com‑
plete. If onlytls.key is present, certificate generation is incomplete. Analyze the cert‑manager logs
for more details about the issue.

Analyze logs from the NetScaler Ingress Controller

If a Kubernetes secret is generated and complete, but it is not uploaded to the NetScaler, you can
analyze the logs from the NetScaler Ingress Controller using the following command.

1 % kubectl logs -f cpx-ingress-685c8bc976-zgz8q

Deploy an HTTPSweb application on Kubernetes with NetScaler Ingress
Controller and HashiCorp Vault using cert‑manager

December 31, 2023

For ingress resourcesdeployedwith theNetScaler IngressController, youcanautomateTLScertificate
provisioning, revocation, and renewal using cert‑manager andHashiCorp Vault. This topic provides a
sampleworkflow that uses HashiCorp Vault as a self‑signed certificate authority for certificate signing
requests from cert‑manager.

Specifically, the workflow uses the Vault PKI Secrets Engine to create a certificate authority (CA). This
tutorial assumes that youhaveaVault server installedand reachable fromtheKubernetes cluster. The
PKI secrets engine of Vault is suitable for internal applications. For external facing applications that
require public trust, see automating TLS certificates using Let’s Encrypt CA.

Theworkflowuses a Vault secret engine and authenticationmethods. For the full list of Vault features,
see the following Vault documentation:

• Vault Secrets Engines

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 372

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/certificate-management/acme.html
https://www.vaultproject.io/docs/secrets/index.html

NetScaler ingress controller

• Vault Authentication Methods

This topic provides you information on how to deploy an HTTPS web application on a Kubernetes
cluster, using:

• NetScaler Ingress Controller
• JetStack’s cert‑manager to provision TLS certificates from HashiCorp Vault
• HashiCorp Vault

Prerequisites

Ensure that you have:

• The Vault server is installed, unsealed, and is reachable from the Kubernetes cluster. For infor‑
mation on installing the Vault server, see the Vault installation documentation.

• Enabled RBAC on your Kubernetes cluster.

• Deployed NetScaler MPX, VPX, or CPX in Tier 1 or Tier 2 deployment model.

In the Tier 1 deployment model, NetScaler MPX or VPX is used as an Application Delivery Con‑
troller (ADC). The NetScaler Ingress Controller running in the Kubernetes cluster configures the
virtual services for the services running on the Kubernetes cluster. NetScaler runs the virtual
service on the publicly routable IP address and offloads SSL for client trafficwith the help of the
Let’s Encrypt generated certificate.

In the Tier 2 deployment, a TCP service is configured on the NetScaler (VPX/MPX) running out‑
side the Kubernetes cluster to forward the traffic to NetScaler CPX instances running in the Ku‑
bernetes cluster. NetScaler CPX ends the SSL session and load‑balances the traffic to actual
service pods.

• DeployedNetScaler IngressController. SeeDeploymentTopologies for variousdeployment sce‑
narios.

• Administrator permissions for all the deployment steps. If you encounter failures due to permis‑
sions, make sure that you have the administrator permission.

Note:

The following procedure shows steps to configure Vault as a certificate authority with NetScaler
CPX used as the ingress device. When a NetScaler VPX or MPX is used as the ingress device, the
steps are the same except the steps to verify the ingress configuration in the NetScaler.

Deploy cert‑manager using themanifest file

Perform the following steps to deploy cert‑manager using the supplied YAMLmanifest file.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 373

https://www.vaultproject.io/docs/auth/index.html
https://cert-manager.io/docs/
https://www.vaultproject.io/
https://www.vaultproject.io/
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html

NetScaler ingress controller

1. Install cert‑manager. For information on installing cert‑manager, see the cert‑manager docu‑
mentation.

1 kubectl apply -f https://github.com/jetstack/cert-manager/releases
/download/vx.x.x/cert-manager.yaml

You can also install cert‑manager with Helm. For more information, see the cert‑manager doc‑
umentation.

2. Verify that cert‑manager is up and running using the following command.

1 % kubectl -n cert-manager get all
2 NAME READY STATUS

RESTARTS AGE
3 pod/cert-manager-77fd74fb64-d68v7 1/1 Running 0

4m41s
4 pod/cert-manager-webhook-67bf86d45-k77jj 1/1 Running 0

4m41s
5
6 NAME TYPE CLUSTER-IP

EXTERNAL-IP PORT(S) AGE
7 service/cert-manager-webhook ClusterIP 10.108.161.154 <none>

443/TCP 13d
8
9 NAME READY UP-TO-DATE

AVAILABLE AGE
10 deployment.apps/cert-manager 1/1 1 1

13d
11 deployment.apps/cert-manager-webhook 1/1 1 1

13d
12
13 NAME DESIRED CURRENT

READY AGE
14 replicaset.apps/cert-manager-77fd74fb64 1 1

1 13d
15 replicaset.apps/cert-manager-webhook-67bf86d45 1 1

1 13d
16
17 NAME COMPLETIONS

DURATION AGE
18 job.batch/cert-manager-webhook-ca-sync 1/1

22s 13d
19 job.batch/cert-manager-webhook-ca-sync-1549756800 1/1

21s 10d
20 job.batch/cert-manager-webhook-ca-sync-1550361600 1/1

19s 3d8h
21
22 NAME SCHEDULE SUSPEND

ACTIVE LAST SCHEDULE AGE
23 cronjob.batch/cert-manager-webhook-ca-sync @weekly False

0 3d8h 13d

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 374

https://cert-manager.io/docs/installation/kubernetes/
https://cert-manager.io/docs/installation/kubernetes/
https://cert-manager.io/docs/installation/kubernetes/#installing-with-helm
https://cert-manager.io/docs/installation/kubernetes/#installing-with-helm

NetScaler ingress controller

Deploy a sample web application

Perform the following steps to deploy a sample web application.

Note:

Kuard, a Kubernetes demo application is used for reference in this topic.

1. Create adeployment YAML file (kuard-deployment.yaml) for Kuardwith the following con‑
figuration.

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: kuard
5 spec:
6 replicas: 1
7 selector:
8 matchLabels:
9 app: kuard

10 template:
11 metadata:
12 labels:
13 app: kuard
14 spec:
15 containers:
16 - image: gcr.io/kuar-demo/kuard-amd64:1
17 imagePullPolicy: Always
18 name: kuard
19 ports:
20 - containerPort: 8080
21 <!--NeedCopy-->

2. Deploy the Kuard deployment file (kuard-deployment.yaml) to your cluster, using the fol‑
lowing commands.

1 % kubectl create -f kuard-deployment.yaml
2 deployment.extensions/kuard created
3 % kubectl get pod -l app=kuard
4 NAME READY STATUS RESTARTS AGE
5 kuard-6fc4d89bfb-djljt 1/1 Running 0 24s

3. Create a service for the deployment. Create a file called service.yaml with the following
configuration.

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: kuard
5 spec:
6 ports:
7 - port: 80

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 375

https://github.com/kubernetes-up-and-running/kuard

NetScaler ingress controller

8 targetPort: 8080
9 protocol: TCP

10 selector:
11 app: kuard
12 <!--NeedCopy-->

4. Deploy and verify the service using the following command.

1 % kubectl create -f service.yaml
2 service/kuard created
3 % kubectl get svc kuard
4 NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
5 kuard ClusterIP 10.103.49.171 <none> 80/TCP 13s

5. Expose this service to the outside world by creating an Ingress that is deployed on NetScaler
CPX or VPX as Content switching virtual server.

Note:

Ensure that you change kubernetes.io/ingress.class to your ingress class on
which NetScaler Ingress Controller is started.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 annotations:
5 kubernetes.io/ingress.class: citrix
6 name: kuard
7 spec:
8 rules:
9 - host: kuard.example.com

10 http:
11 paths:
12 - backend:
13 service:
14 name: kuard
15 port:
16 number: 80
17 path: /
18 pathType: Prefix
19 <!--NeedCopy-->

Note:

Change the value of spec.rules.host to the domain that you control. Ensure that a
DNS entry exists to route the traffic to NetScaler CPX or VPX.

6. Deploy the Ingress using the following command.

1 % kubectl apply -f ingress.yml
2 ingress.extensions/kuard created

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 376

NetScaler ingress controller

3 root@ubuntu-vivek-225:~/cert-manager# kubectl get ingress
4 NAME HOSTS ADDRESS PORTS AGE
5 kuard kuard.example.com 80 7s

7. Verify if the ingress is configured on NetScaler CPX or VPX using the following command.

1 kubectl exec -it cpx-ingress-5b85d7c69d-ngd72 /bin/bash
2 root@cpx-ingress-5b85d7c69d-ngd72:/# cli_script.sh 'sh cs vs'
3 exec: sh cs vs
4 1) k8s-10.244.1.50:80:http (10.244.1.50:80) - HTTP Type: CONTENT
5 State: UP
6 Last state change was at Thu Feb 21 09:02:14 2019
7 Time since last state change: 0 days, 00:00:41.140
8 Client Idle Timeout: 180 sec
9 Down state flush: ENABLED

10 Disable Primary Vserver On Down : DISABLED
11 Comment: uid=75

VBGFO7NZXV7SCI4LSDJML2Q5X6FSNK6NXQPWGMDOYGBW2IMOGQ====
12 Appflow logging: ENABLED
13 Port Rewrite : DISABLED
14 State Update: DISABLED
15 Default: Content Precedence: RULE
16 Vserver IP and Port insertion: OFF
17 L2Conn: OFF Case Sensitivity: ON
18 Authentication: OFF
19 401 Based Authentication: OFF
20 Push: DISABLED Push VServer:
21 Push Label Rule: none
22 Listen Policy: NONE
23 IcmpResponse: PASSIVE
24 RHIstate: PASSIVE
25 Traffic Domain: 0
26 Done
27 root@cpx-ingress-5b85d7c69d-ngd72:/# exit
28 exit

8. Verify if the page is correctly being served when requested using the curl command.

1 % curl -sS -D - kuard.example.com -o /dev/null
2 HTTP/1.1 200 OK
3 Content-Length: 1458
4 Content-Type: text/html
5 Date: Thu, 21 Feb 2019 09:09:05 GMT

Once youhave deployed the sampleHTTP application, you canproceed tomake the application avail‑
able over HTTPS. Here the Vault server signs the CSR generated by the cert‑manager and a server
certificate is automatically generated for the application.

In the following procedure, you use the configured Vault as a certificate authority and configure the
cert‑manager to use the Vault as signing authority for the CSR.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 377

NetScaler ingress controller

Configure HashiCorp Vault as Certificate Authority

In this procedure, you set up an intermediate CA certificate signing request using HashiCorp Vault.
This Vault endpoint is used by the cert‑manager to sign the certificate for the ingress resources.

Note:

Ensure that you have installed the jq utility before performing these steps.

Create a root CA

For the sample workflow you can generate your own Root Certificate Authority within the Vault. In a
production environment, you should use an external Root CA to sign the intermediate CA that Vault
uses to generate certificates. If you have a root CA generated elsewhere, skip this step.

Note:

PKI_ROOT is a path where you mount the root CA, typically it is pki. ${DOMAIN} in this proce‑
dure is example.com

1 % export DOMAIN=example.com
2 % export PKI_ROOT=pki
3
4 % vault secrets enable -path="${
5 PKI_ROOT }
6 " pki
7
8 # Set the max TTL for the root CA to 10 years
9 % vault secrets tune -max-lease-ttl=87600h "${

10 PKI_ROOT }
11 "
12
13 % vault write -format=json "${
14 PKI_ROOT }
15 "/root/generate/internal \
16 common_name="${
17 DOMAIN }
18 CA root" ttl=87600h | tee \
19 >(jq -r .data.certificate > ca.pem) \
20 >(jq -r .data.issuing_ca > issuing_ca.pem) \
21 >(jq -r .data.private_key > ca-key.pem)
22
23 #Configure the CA and CRL URLs:
24
25 % vault write "${
26 PKI_ROOT }
27 "/config/urls \
28 issuing_certificates="${
29 VAULT_ADDR }
30 /v1/${

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 378

NetScaler ingress controller

31 PKI_ROOT }
32 /ca" \
33 crl_distribution_points="${
34 VAULT_ADDR }
35 /v1/${
36 PKI_ROOT }
37 /crl"
38 <!--NeedCopy-->

Generate an intermediate CA

After creating the root CA, perform the following steps to create an intermediate CSR using the root
CA.

1. Enable pki from a different path PKI_INT from root CA, typically pki_int. Use the follow‑
ing command:

1 % export PKI_INT=pki_int
2 % vault secrets enable -path=${
3 PKI_INT }
4 pki
5
6 # Set the max TTL to 3 year
7
8 % vault secrets tune -max-lease-ttl=26280h ${
9 PKI_INT }

10
11 <!--NeedCopy-->

2. Generate CSR for${ DOMAIN } that needs to be signed by the root CA. The key is stored inter‑
nally to the Vault. Use the following command:

1 % vault write -format=json "${
2 PKI_INT }
3 "/intermediate/generate/internal \
4 common_name="${
5 DOMAIN }
6 CA intermediate" ttl=26280h | tee \
7 >(jq -r .data.csr > pki_int.csr) \
8 >(jq -r .data.private_key > pki_int.pem)
9

10 <!--NeedCopy-->

3. Generate and sign the ${ DOMAIN } certificate as an intermediate CA using root CA, store it
as intermediate.cert.pem. Use the following command:

1 % vault write -format=json "${
2 PKI_ROOT }
3 "/root/sign-intermediate csr=@pki_int.csr
4 format=pem_bundle ttl=26280h \

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 379

NetScaler ingress controller

5 | jq -r '.data.certificate' > intermediate.cert.pem
6 <!--NeedCopy-->

If you are using an external root CA, skip the preceding step and sign the CSR manually using
the root CA.

4. Once the CSR is signed and the root CA returns a certificate, it needs to be added back into the
Vault using the following command:

1 % vault write "${
2 PKI_INT }
3 "/intermediate/set-signed certificate=@intermediate.cert.pem
4 <!--NeedCopy-->

5. Set the CA and CRL location using the following command.

1 vault write "${
2 PKI_INT }
3 "/config/urls issuing_certificates="${
4 VAULT_ADDR }
5 /v1/${
6 PKI_INT }
7 /ca" crl_distribution_points="${
8 VAULT_ADDR }
9 /v1/${

10 PKI_INT }
11 /crl"
12 <!--NeedCopy-->

An intermediate CA is set up and can be used to sign certificates for ingress resources.

Configure a role

A role is a logical namewhichmaps to policies. An administrator can control the certificate generation
through the roles.

Createa role for the intermediateCA thatprovidesa setof policies for issuingor signing the certificates
using this CA.

There aremany configurations that can be configuredwhen creating roles. Formore information, see
the Vault role documentation.

For theworkflow, create a rolekube-ingress that allows you to sign certificates of${ DOMAIN }
and its subdomains with a TTL of 90 days.

1 # with a Max TTL of 90 days
2 vault write ${
3 PKI_INT }
4 /roles/kube-ingress \
5 allowed_domains=${

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 380

https://www.vaultproject.io/api/secret/pki/index.html#create-update-role

NetScaler ingress controller

6 DOMAIN }
7 \
8 allow_subdomains=true \
9 max_ttl="2160h" \

10 require_cn=false
11 <!--NeedCopy-->

Create Approle based authentication

After configuring an intermediate CA to sign the certificates, you need to provide an authentication
mechanism for the cert‑manager to use the Vault for signing the certificates. Cert‑manager supports
Approle authenticationmethodwhich provides a way for the applications to access the Vault defined
roles.

An AppRole represents a set of Vault policies and login constraints that must be met to receive a
token with those policies. For more information on this authentication method, see the Approle doc‑
umentation.

Create an Approle

Create an Approle namedKube-role. Thesecret_id for the cert‑manager should not be expired
to use this Approle for authentication. Hence, do not set a TTL or set it to 0.

1 % vault auth enable approle
2
3 % vault write auth/approle/role/kube-role token_ttl=0

Associate a policy with the Approle

Perform the following steps to associate a policy with an Approle.

1. Create a file pki_int.hclwith the following configuration to allow the signing endpoints of
the intermediate CA.

1 path "${
2 PKI_INT }
3 /sign/*" {
4
5 capabilities = ["create","update"]
6 }
7
8 <!--NeedCopy-->

2. Add the file to a new policy called kube_allow_sign using the following command.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 381

https://www.vaultproject.io/docs/auth/approle.html
https://www.vaultproject.io/docs/auth/approle.html

NetScaler ingress controller

1 vault policy write kube-allow-sign pki_int.hcl

3. Update this policy to the Approle using the following command.

1 vault write auth/approle/role/kube-role policies=kube-allow-sign

The kube-role approle allows you to sign the CSR with intermediate CA.

Generate the role ID and secret ID

The role ID and secret ID are used by the cert‑manager to authenticate with the Vault.

Generate the role ID and secret ID and encode the secret ID with Base64. Perform the following:

1 % vault read auth/approle/role/kube-role/role-id
2 role_id db02de05-fa39-4855-059b-67221c5c2f63
3
4 % vault write -f auth/approle/role/kube-role/secret-id
5 secret_id 6a174c20-f6de-a53c-74d2-6018fcceff64
6 secret_id_accessor c454f7e5-996e-7230-6074-6ef26b7bcf86
7
8 # encode secret_id with base64
9 % echo 6a174c20-f6de-a53c-74d2-6018fcceff64 | base64

10 NmExNzRjMjAtZjZkZS1hNTNjLTc0ZDItNjAxOGZjY2VmZjY0Cg==

Configure issuing certificates in Kubernetes

After you have configured Vault as the intermediate CA, and the Approle authentication method for
the cert‑manager to access Vault, you need to configure the certificate for the ingress.

Create a secret with the Approle secret ID

Perform the following to create a secret with the Approle secret ID.

1. Create a secret file called secretid.yamlwith the following configuration.

1 apiVersion: v1
2 kind: Secret
3 type: Opaque
4 metadata:
5 name: cert-manager-vault-approle
6 namespace: cert-manager
7 data:
8 secretId: "NmExNzRjMjAtZjZkZS1hNTNjLTc0ZDItNjAxOGZjY2VmZjY0Cg=="

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 382

NetScaler ingress controller

Note:

The secret IDdata.secretId is thebase64 encoded secret ID generated inGenerate the
role id and secret id. If you are using an Issuer resource in the next step, the secretmust be
in the same namespace as the Issuer. For ClusterIssuer, the secret must be in the
cert-manager namespace.

2. Deploy the secret file (secretid.yaml) using the following command.

1 % kubectl create -f secretid.yaml

Deploy the Vault cluster issuer

The cert‑manager supports two different CRDs for configuration, an Issuer, which is scoped to a
single namespace, and aClusterIssuer, which is cluster‑wide. For theworkflow, you need to use
ClusterIssuer.

Perform the following steps to deploy the Vault cluster issuer.

1. Create a file called issuer-vault.yamlwith the following configuration.

1 apiVersion: cert-manager.io/v1
2 kind: ClusterIssuer
3 metadata:
4 name: vault-issuer
5 spec:
6 vault:
7 path: pki_int/sign/kube-ingress
8 server: <vault-server-url>
9 #caBundle: <base64 encoded caBundle PEM file>

10 auth:
11 appRole:
12 path: approle
13 roleId: "db02de05-fa39-4855-059b-67221c5c2f63"
14 secretRef:
15 name: cert-manager-vault-approle
16 key: secretId

SecretRef is the Kubernetes secret name created in the previous step. ReplaceroleIdwith
the role_id retrieved from the Vault.
An optional base64 encoded caBundle in the PEM format can be provided to validate the TLS
connection to the Vault Server. When caBundle is set it replaces the CA bundle inside the con‑
tainer running the cert‑manager. This parameter has no effect if the connection used is in plain
HTTP.

2. Deploy the file (issuer-vault.yaml) using the following command.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 383

NetScaler ingress controller

1 % kubectl create -f issuer-vault.yaml

3. Using the following command verify if the Vault cluster issuer is successfully authenticatedwith
the Vault.

1 % kubectl describe clusterIssuer vault-issuer | tail -n 7
2 Conditions:
3 Last Transition Time: 2019-02-26T06:18:40Z
4 Message: Vault verified
5 Reason: VaultVerified
6 Status: True
7 Type: Ready
8 Events: <none>

Now, you have successfully setup the cert‑manager for Vault as the CA. The next step is securing the
ingress by generating the server certificate. There are two different options for securing your ingress.
You can proceed with one of the approaches to secure your ingresses.

• Ingress Shim approach
• Manually creating the certificate CRD object for the certificate.

Ingress‑shim approach

In this approach, you modify the ingress annotation for the cert‑manager to automatically generate
the certificate for the given host name and store it in the specified secret.

1. Modify the ingress with the tls section specifying a host name and secret. Also, specify the
cert‑manager annotation cert-manager.io/cluster-issuer as follows.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 annotations:
5 cert-manager.io/cluster-issuer: vault-issuer
6 kubernetes.io/ingress.class: citrix
7 name: kuard
8 spec:
9 rules:

10 - host: kuard.example.com
11 http:
12 paths:
13 - backend:
14 service:
15 name: kuard-service
16 port:
17 number: 80
18 path: /
19 pathType: Prefix

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 384

NetScaler ingress controller

20 tls:
21 - hosts:
22 - kuard.example.com
23 secretName: kuard-example-tls
24 <!--NeedCopy-->

2. Deploy the modified ingress as follows.

1 % kubectl apply -f ingress.yml
2 ingress.extensions/kuard created
3
4 % kubectl get ingress kuard
5 NAME HOSTS ADDRESS PORTS AGE
6 kuard kuard.example.com 80, 443 12s

This step triggers a certificate object by the cert‑manager which creates a certificate signing re‑
quest (CSR) for the domain kuard.example.com. On successful signing of CSR, the certificate is
stored in the secret name kuard-example-tls specified in the ingress.

1. Verify that the certificate is successfully issued using the following command.

1 % kubectl describe certificates kuard-example-tls | grep -A5
Events

2 Events:
3 Type Reason Age From Message
4 ---- ------ ---- ---- -------
5 Normal CertIssued 48s cert-manager Certificate issued

successfully

Create a certificate CRD object for the certificate

Once the issuer is successfully registered, youneed toget the certificate for the ingress domainkuard
.example.com.

You need to create a certificate resource with the commonName and dnsNames. For more in‑
formation, see cert‑manager documentation. You can specify multiple dnsNames which are used for
the SAN field in the certificate.

To create a “certificate”CRD object for the certificate, perform the following:

1. Create a file called certificate.yamlwith the following configuration.

1 apiVersion: cert-manager.io/v1
2 kind: Certificate
3 metadata:
4 name: kuard-example-tls
5 namespace: default
6 spec:
7 secretName: kuard-example-tls

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 385

https://cert-manager.io/docs/usage/certificate/

NetScaler ingress controller

8 issuerRef:
9 kind: ClusterIssuer

10 name: vault-issuer
11 commonName: kuard.example.com
12 duration: 720h
13 #Renew before 7 days of expiry
14 renewBefore: 168h
15 commonName: kuard.example.com
16 dnsNames:
17 - www.kuard.example.com

The certificate has CN=kuard.example.com and SAN=Kuard.example.com,www.
kuard.example.com.
spec.secretName is the name of the secret where the certificate is stored after the
certificate is issued successfully.

2. Deploy the file (certificate.yaml) on the Kubernetes cluster using the following
command.

% kubectl create ‑f certificate.yaml
certificate.certmanager.k8s.io/kuard‑example‑tls created

Verify if the certificate is issued

You can watch the progress of the certificate as it is issued using the following command:

1 % kubectl describe certificates kuard-example-tls | grep -A5 Events
2 Events:
3 Type Reason Age From Message
4 ---- ------ ---- ---- -------
5 Normal CertIssued 48s cert-manager Certificate issued

successfully > **Note** > > You may encounter some errors due to
the Vault policies. If you encounter any such errors, return to
the Vault and fix it.

After successful signing, a kubernetes.io/tls secret is created with the secretName specified
in the Certificate resource.

1 % kubectl get secret kuard-example-tls
2 NAME TYPE DATA AGE
3 kuard-exmaple-tls kubernetes.io/tls 3 4m20s

Modify the ingress to use the generated secret

Perform the following steps to modify the ingress to use the generated secret.

1. Edit the original ingress and add a spec.tls section specifying the secret kuard-example
-tls as follows.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 386

NetScaler ingress controller

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 annotations:
5 kubernetes.io/ingress.class: citrix
6 name: kuard
7 spec:
8 rules:
9 - host: kuard.example.com

10 http:
11 paths:
12 - backend:
13 service:
14 name: kuard
15 port:
16 number: 80
17 pathType: Prefix
18 path: /
19 tls:
20 - hosts:
21 - kuard.example.com
22 secretName: kuard-example-tls

2. Deploy the ingress using the following command.

1 % kubectl apply -f ingress.yml
2 ingress.extensions/kuard created
3
4 % kubectl get ingress kuard
5 NAME HOSTS ADDRESS PORTS AGE
6 kuard kuard.example.com 80, 443 12s

Verify the Ingress configuration in NetScaler

Once the certificate is successfully generated, NetScaler Ingress Controller uses this certificate for con‑
figuring the front‑end SSL virtual server. You can verify it with the following steps.

1. Log on to NetScaler CPX and verify if the Certificate is bound to the SSL virtual server.

1 % kubectl exec -it cpx-ingress-668bf6695f-4fwh8 bash
2 cli_script.sh 'shsslvs'
3 exec: shsslvs
4 1) Vserver Name: k8s-10.244.3.148:443:ssl
5 DH: DISABLED
6 DH Private-Key Exponent Size Limit: DISABLED Ephemeral RSA:

ENABLED Refresh Count: 0
7 Session Reuse: ENABLED Timeout: 120 seconds
8 Cipher Redirect: DISABLED
9 SSLv2 Redirect: DISABLED

10 ClearText Port: 0

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 387

NetScaler ingress controller

11 Client Auth: DISABLED
12 SSL Redirect: DISABLED
13 Non FIPS Ciphers: DISABLED
14 SNI: ENABLED
15 OCSP Stapling: DISABLED
16 HSTS: DISABLED
17 HSTS IncludeSubDomains: NO
18 HSTS Max-Age: 0
19 SSLv2: DISABLED SSLv3: ENABLED TLSv1.0: ENABLED TLSv1.1:

ENABLED TLSv1.2: ENABLED TLSv1.3: DISABLED
20 Push Encryption Trigger: Always
21 Send Close-Notify: YES
22 Strict Sig-Digest Check: DISABLED
23 Zero RTT Early Data: DISABLED
24 DHE Key Exchange With PSK: NO
25 Tickets Per Authentication Context: 1
26 Done
27
28 root@cpx-ingress-668bf6695f-4fwh8:/# cli_script.sh 'shsslvs k8s

-10.244.3.148:443:ssl'
29 exec: shsslvs k8s-10.244.3.148:443:ssl
30
31 Advanced SSL configuration for VServer k8s-10.244.3.148:443:ssl:
32 DH: DISABLED
33 DH Private-Key Exponent Size Limit: DISABLED Ephemeral RSA:

ENABLED Refresh Count: 0
34 Session Reuse: ENABLED Timeout: 120 seconds
35 Cipher Redirect: DISABLED
36 SSLv2 Redirect: DISABLED
37 ClearText Port: 0
38 Client Auth: DISABLED
39 SSL Redirect: DISABLED
40 Non FIPS Ciphers: DISABLED
41 SNI: ENABLED
42 OCSP Stapling: DISABLED
43 HSTS: DISABLED
44 HSTS IncludeSubDomains: NO
45 HSTS Max-Age: 0
46 SSLv2: DISABLED SSLv3: ENABLED TLSv1.0: ENABLED TLSv1.1:

ENABLED TLSv1.2: ENABLED TLSv1.3: DISABLED
47 Push Encryption Trigger: Always
48 Send Close-Notify: YES
49 Strict Sig-Digest Check: DISABLED
50 Zero RTT Early Data: DISABLED
51 DHE Key Exchange With PSK: NO
52 Tickets Per Authentication Context: 1
53 , P_256, P_384, P_224, P_5216) CertKey Name: k8s-

LMO3O3U6KC6WXKCBJAQY6K6X6JO Server Certificate for SNI
54
55 7) Cipher Name: DEFAULT
56 Description: Default cipher list with encryption strength >= 128

bit
57 Done

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 388

NetScaler ingress controller

58
59 root@cpx-ingress-668bf6695f-4fwh8:/# cli_script.sh 'sh certkey k8s

-LMO3O3U6KC6WXKCBJAQY6K6X6JO'
60 exec: sh certkey k8s-LMO3O3U6KC6WXKCBJAQY6K6X6JO
61 Name: k8s-LMO3O3U6KC6WXKCBJAQY6K6X6JO Status: Valid, Days to

expiration:0
62 Version: 3
63 Serial Number: 524C1D9306F784A2F5277C05C2A120D5258D9A2F
64 Signature Algorithm: sha256WithRSAEncryption
65 Issuer: CN=example.com CA intermediate
66 Validity
67 Not Before: Feb 26 06:48:39 2019 GMT
68 Not After : Feb 27 06:49:09 2019 GMT
69 Certificate Type: "Client Certificate" "Server Certificate"
70 Subject: CN=kuard.example.com
71 Public Key Algorithm: rsaEncryption
72 Public Key size: 2048
73 Ocsp Response Status: NONE
74 2) URI:http://127.0.0.1:8200/v1/pki_int/crl
75 3) VServer name: k8s-10.244.3.148:443:ssl Server Certificate for

SNI
76 Done

The HTTPS webserver is up with the vault signed certificate. Cert‑manager automatically re‑
news the certificate as specified in the RenewBefore parameter in the certificate, before ex‑
piry of the certificate.

Note:

The Vault signing of the certificate fails if the expiry of a certificate is beyond the expiry of
the root CA or intermediate CA. You should ensure that the CA certificates are renewed in
advance before the expiry.

2. Verify that the application is accessible using the HTTPS protocol.

1 % curl -sS -D - https://kuard.example.com -k -o /dev/null
2 HTTP/1.1 200 OK
3 Content-Length: 1472
4 Content-Type: text/html
5 Date: Tue, 11 May 2021 20:39:23 GMT

Enable NetScaler certificate validation in the NetScaler Ingress
Controller

December 31, 2023

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 389

NetScaler ingress controller

The NetScaler Ingress Controller provides an option to ensure secure communication between the
NetScaler IngressController andNetScaler byusing theHTTPSprotocol. You canachieve this byusing
pre‑loaded certificates in theNetScaler. As an extrameasure to avoid any possibleman‑in‑the‑middle
(MITM) attack, the NetScaler Ingress Controller also allows you to validate the SSL server certificate
provided by the NetScaler.

To enable certificate signature and common name validation of the ADC server certificate by the
NetScaler Ingress Controller, security administrators can optionally install signed (or self‑signed)
certificates in the NetScaler and configure the NetScaler Ingress Controller with the corresponding
CA certificate bundle. Once the validation is enabled and CA certificate bundles are configured, the
NetScaler Ingress Controller starts validating the certificate (including certificate name validation).
If the validation fails, the NetScaler Ingress Controller logs the same and none of the configurations
are used on an unsecure channel.

This validation is turned off by default and an administrator can chose to enable the validation in the
NetScaler Ingress Controller as follows.

Prerequisites

• For enabling certificate validation, you must configure a NetScaler with proper SSL server cer‑
tificates (with proper server name or IP address in certificate subject). For more information,
see NetScaler documentation.

• The CA certificate for the installed server certificate‑key pair is used to configure the NetScaler
Ingress Controller to enable validation of these certificates.

Configure the NetScaler Ingress Controller for certificate validation

To make a CA certificate available for configuration, you need to configure the CA certificate as a Ku‑
bernetes secret so that the NetScaler Ingress Controller can access it on amounted storage volume.

To generate a Kubernetes secret for an existing certificate, use the following kubectl command:

1 $ kubectl create secret generic ciccacert --from-file=path/myCA.pem
– namespace default

2
3 secret “ ciccacert ” created

Alternatively, you can also generate the Kubernetes secret using the following YAML definition:

1 apiVersion: v1
2 kind: Secret
3 metadata:
4 name: ciccacert
5 data:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 390

https://docs.citrix.com/en-us/citrix-adc/13/ssl/ssl-certificates/add-group-certs.html

NetScaler ingress controller

6 myCA.pem: <base64 encoded cert>

The following is a sample YAML file with the NetScaler Ingress Controller configuration for enabling
certificate validation.

1 kind: Pod
2 metadata:
3 name: cic
4 labels:
5 app: cic
6 spec:
7 serviceAccountName: cpx
8 # Make secret available as a volume
9 volumes:

10 - name: certs
11 secret:
12 secretName: ciccacert
13 containers:
14 - name: cic
15 image: "xxxx"
16 imagePullPolicy: Always
17 args: []
18 # Mounting certs in a volume path
19 volumeMounts:
20 - name: certs
21 mountPath: <Path to mount the certificate>
22 readOnly: true
23 env:
24 # Set NetScaler ADM Management IP
25 - name: "NS_IP"
26 value: "xx.xx.xx.xx"
27 # Set port for Nitro
28 - name: "NS_PORT"
29 value: "xx"
30 # Set Protocol for Nitro
31 - name: "NS_PROTOCOL"
32 # Enable HTTPS protocol for secure communication
33 value: "HTTPS"
34 # Set username for Nitro
35 - name: "NS_USER"
36 value: "nsroot"
37 # Set user password for Nitro
38 - name: "NS_PASSWORD"
39 value: "nsroot"
40 # Certificate validation configurations
41 - name: "NS_VALIDATE_CERT"
42 value: "yes"
43 - name: "NS_CACERT_PATH"
44 value: " <Mounted volume path>/myCA.pem"
45 <!--NeedCopy-->

As specified in the example YAML file, following are the specific changes required for enabling certifi‑
cate validation in the NetScaler Ingress Controller.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 391

NetScaler ingress controller

Configure Kubernetes secret as a volume

• Configure a volume section declared with secret as the source. Here, secretName should
match the Kubernetes secret name created for the CA certificate.

Configure a volumemount location for the CA certificate

• Configure a volumeMounts section with the same name as that of secretName in the vol‑
ume section

• Declare a mountPath directory to mount the CA certificate
• Set the volume as ReadOnly

Configure secure communication

• Set the environment variable NS_PROTOCOL as HTTPS
• Set the environment variable NS_PORT as ADC HTTPS port

Enable and configure CA validation and certificate path

• Set the environment variable NS_VALIDATE_CERT to yes (no for disabling)
• Set the environment variable NS_CACERT_PATH as the mount path (volumeMounts‑
>mountPath)/ PEM file name (used while creating the secret).

Disable API server certificate verification

December 31, 2023

While communicatingwith the API server fromNetScaler Ingress Controller or GSLB ingress, you have
the option to disable the API server certificate verification on NetScaler Ingress Controller.

Disable API server certificate verification on NetScaler Ingress Controller or GSLB
ingress

When you deploy NetScaler Ingress Controller using YAML, you can disable the API server certificate
verificationbyproviding the followingargument in theNetScaler IngressController deployment YAML
file.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 392

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/citrix-k8s-ingress-controller.yaml

NetScaler ingress controller

1 args:
2 - --disable-apiserver-cert-verify
3 true

WhenyoudeployNetScaler IngressControllerusingHelmcharts, theparameterdisableAPIServerCertVerify
can bementioned as True in the Helm values file as follows:

1 disableAPIServerCertVerify: True

Create a self‑signed certificate and linking into Kubernetes secret

December 31, 2023

Use the steps in the procedure to create a self‑signed certificate using OpenSSL and link into Kuber‑
netes secret. You can use this secret to secure your Ingress.

Create a self‑signed certificate

You can create a TLS secret by using the following steps. In this procedure, a self‑signed certificate
and key are created.
You can link it to the Kubernetes secret and use that secret in the Ingress for securing the Ingress.

1 openssl genrsa -out cert_key.pem 2048
2 openssl req -new -key cert_key.pem -out cert_csr.pem -subj "/CN=

example.com"
3 openssl x509 -req -in cert_csr.pem -sha256 -days 365 -extensions

v3_ca -signkey cert_key.pem -CAcreateserial -out cert_cert.pem

Note:

Here, example.com is used for reference. You must replace example.comwith the required
domain name.

In the example, the generated certificate has a validity of one year as the days are mentioned as 365
days.

Linking the certificate to a Kubernetes secret

Perform the following steps to link the certificate to the Kubernetes secret.

1. Run the following command to create a Kubernetes secret based on the TLS certificate that you
have created.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 393

NetScaler ingress controller

1 kubectl create secret tls tls-secret --cert=cert_cert.pem --key=
cert_key.pem

2. Run the following command to view the secret that contains the TLS certificate information:

1 kubectl get secret tls-secret

Deploy the Ingress

Create and apply the Ingress configuration. The following YAML can be used for reference.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 name: ingress-demo
5 namespace: netscaler
6 annotations:
7 kubernetes.io/ingress.class: "netscaler"
8 spec:
9 tls:

10 - secretName: tls-secret
11 hosts:
12 - "example.com"
13 rules:
14 - host: "example.com"
15 http:
16 paths:
17 - path: /
18 pathType: Prefix
19 backend:
20 service:
21 name: service-test
22 port:
23 number: 80

Viewmetrics of NetScalers using Prometheus and Grafana

December 31, 2023

You can use the NetScaler Metrics Exporter and Prometheus‑Operator to monitor NetScaler VPX or
CPX ingress devices and NetScaler CPX (east‑west) devices.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 394

https://github.com/citrix/citrix-adc-metrics-exporter
https://github.com/coreos/prometheus-operator

NetScaler ingress controller

NetScaler Metrics Exporter

NetScaler Metrics Exporter is a simple server that collects NetScaler stats and exports them to
Prometheus using HTTP. You can then add Prometheus as a data source to Grafana and graphically
view the NetScaler stats. For more information see, NetScaler Metrics Exporter.

Note:

NetScaler Metrics Exporter supports exporting metrics from the admin partitions of NetScaler.

Launch prometheus operator

The Prometheus Operator has an expansive method of monitoring services on Kubernetes. To get
started, this topic uses kube-prometheus and its manifest files. The manifest files help you to
deploy a basic working model. Deploy the Prometheus Operator in your Kubernetes environment
using the following commands:

1 git clone https://github.com/coreos/kube-prometheus.git
2 kubectl create -f kube-prometheus/manifests/setup/
3 kubectl create -f kube-prometheus/manifests/

Once you deploy Prometheus‑Operator, several pods and services are deployed. From the deployed
pods, the prometheus-k8s-xx pods are for metrics aggregation and timestamping, and the
grafana pods are for visualization. If you view all the container images running in the cluster, you
can see the following output:

1 $ kubectl get pods -n monitoring
2 NAME READY STATUS RESTARTS

AGE
3 alertmanager-main-0 2/2 Running 0 2

h
4 alertmanager-main-1 2/2 Running 0 2

h
5 alertmanager-main-2 2/2 Running 0 2

h
6 grafana-5b68464b84-5fvxq 1/1 Running 0 2

h
7 kube-state-metrics-6588b6b755-d6ftg 4/4 Running 0 2

h
8 node-exporter-4hbcp 2/2 Running 0 2

h
9 node-exporter-kn9dg 2/2 Running 0 2

h
10 node-exporter-tpxhp 2/2 Running 0 2

h
11 prometheus-k8s-0 3/3 Running 1 2

h
12 prometheus-k8s-1 3/3 Running 1 2

h

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 395

https://github.com/citrix/citrix-adc-metrics-exporter
https://github.com/coreos/prometheus-operator

NetScaler ingress controller

13 prometheus-operator-7d9fd546c4-m8t7v 1/1 Running 0 2
h

Note:
The files in the manifests folder are interdependent and hence the order in which they are
created is important. In certain scenarios the manifest files might be created out of order and
this leads to an error messages from Kubernetes.
To resolve this scenario, re‑execute the kubectl create -f kube-prometheus/
manifests/ command. Any YAML files that were not created the first time due to unmet
dependencies, are created now.

It is recommended to expose the Prometheus and Grafana pods through NodePorts. To do so,
you need to modify the prometheus-service.yaml and grafana-service.yaml files as
follows:

Modify Prometheus service

1 apiVersion: v1
2 kind: Service
3 metadata:
4 labels:
5 prometheus: k8s
6 name: prometheus-k8s
7 namespace: monitoring
8 spec:
9 type: NodePort

10 ports:
11 - name: web
12 port: 9090
13 targetPort: web
14 selector:
15 app: prometheus
16 prometheus: k8s
17 <!--NeedCopy-->

After you modify the prometheus-service.yamlfile, apply the changes to the Kubernetes clus‑
ter using the following command:

1 kubectl apply -f prometheus-service.yaml

Modify Grafana service

1 apiVersion: v1
2 kind: Service
3 metadata:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 396

NetScaler ingress controller

4 name: grafana
5 namespace: monitoring
6 spec:
7 type: NodePort
8 ports:
9 - name: http

10 port: 3000
11 targetPort: http
12 selector:
13 app: grafana
14 <!--NeedCopy-->

After you modify the grafana-service.yamlfile, apply the changes to the Kubernetes cluster
using the following command:

1 kubectl apply -f grafana-service.yaml

Configure NetScaler Metrics Exporter

This topic describes how to integrate theNetScalerMetrics ExporterwithNetScaler VPXor CPX ingress
or NetScaler CPX (east‑west) devices.

Configure NetScaler Metrics Exporter for NetScaler VPX Ingress device

Tomonitor an ingress NetScaler VPX device, the NetScaler Metrics Exporter is run as a pod within the
Kubernetes cluster. The IP address of the NetScaler VPX ingress device is provided as an argument
to the NetScaler Metrics Exporter. To provide the login credentials to access ADC, create a secret and
mount the volume at mountpath “/mnt/nslogin”.

1 kubectl create secret generic nslogin --from-literal=username=<citrix-
adc-user> --from-literal=password=<citrix-adc-password> -n <
namespace>

2 <!--NeedCopy-->

The following is a sample YAML file to deploy the exporter:

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: exporter-vpx-ingress
5 labels:
6 app: exporter-vpx-ingress
7 spec:
8 containers:
9 - name: exporter

10 image: "quay.io/citrix/citrix-adc-metrics-exporter:1.4.8"
11 imagePullPolicy: IfNotPresent
12 args:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 397

https://github.com/citrix/citrix-adc-metrics-exporter

NetScaler ingress controller

13 - "--target-nsip=<IP_of_VPX>"
14 - "--port=8888"
15 volumeMounts:
16 - name: nslogin
17 mountPath: "/mnt/nslogin"
18 readOnly: true
19 securityContext:
20 readOnlyRootFilesystem: true
21 volumes:
22 - name: nslogin
23 secret:
24 secretName: nslogin
25 ---
26 kind: Service
27 apiVersion: v1
28 metadata:
29 name: exporter-vpx-ingress
30 labels:
31 service-type: citrix-adc-monitor
32 spec:
33 selector:
34 app: exporter-vpx-ingress
35 ports:
36 - name: exporter-port
37 port: 8888
38 targetPort: 8888
39 <!--NeedCopy-->

The IPaddress and theport of theNetScaler VPXdeviceneeds tobeprovided in the--target-nsip
parameter. For example, --target-nsip=10.0.0.20.

Configure NetScaler Metrics Exporter for NetScaler CPX Ingress device

Tomonitor a NetScaler CPX ingress device, the NetScaler Metrics Exporter is added as a sidecar to the
NetScaler CPX.The following is a sample YAML file of a NetScaler CPX ingress device with the exporter
as a side car:

1 ---
2 apiVersion: apps/v1
3 kind: Deployment
4 metadata:
5 labels:
6 app: cpx-ingress
7 name: cpx-ingress
8 spec:
9 replicas: 1

10 selector:
11 matchLabels:
12 app: cpx-ingress
13 template:
14 metadata:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 398

NetScaler ingress controller

15 annotations:
16 NETSCALER_AS_APP: "True"
17 labels:
18 app: cpx-ingress
19 spec:
20 containers:
21 - env:
22 - name: EULA
23 value: "YES"
24 - name: NS_PROTOCOL
25 value: HTTP
26 - name: NS_PORT
27 value: "9080"
28 #Define the NITRO port here
29 image: quay.io/citrix/citrix-k8s-cpx-ingress:13.0-52.24
30 imagePullPolicy: IfNotPresent
31 name: cpx-ingress
32 ports:
33 - containerPort: 80
34 name: http
35 protocol: TCP
36 - containerPort: 443
37 name: https
38 protocol: TCP
39 - containerPort: 9080
40 name: nitro-http
41 protocol: TCP
42 - containerPort: 9443
43 name: nitro-https
44 protocol: TCP
45 securityContext:
46 privileged: true
47 # Adding exporter as a sidecar
48 - args:
49 - --target-nsip=192.0.0.2
50 - --port=8888
51 - --secure=no
52 env:
53 - name: NS_USER
54 value: nsroot
55 - name: NS_PASSWORD
56 value: nsroot
57 image: quay.io/citrix/citrix-adc-metrics-exporter:1.4.8
58 imagePullPolicy: IfNotPresent
59 name: exporter
60 securityContext:
61 readOnlyRootFilesystem: true
62 serviceAccountName: cpx
63 ---
64 kind: Service
65 apiVersion: v1
66 metadata:
67 name: exporter-cpx-ingress

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 399

NetScaler ingress controller

68 labels:
69 service-type: citrix-adc-monitor
70 spec:
71 selector:
72 app: cpx-ingress
73 ports:
74 - name: exporter-port
75 port: 8888
76 targetPort: 8888
77 <!--NeedCopy-->

Here, the exporter uses the local IP address (192.0.0.2) to fetchmetrics from the NetScaler CPX.

Configure NetScaler Metrics Exporter for NetScaler CPX (east‑west) device

Tomonitor a NetScaler CPX (east‑west) device, the NetScaler Metrics Exporter is added as a sidecar to
the NetScalerCPX.The following is a sample YAML file of a NetScaler CPX (east‑west) device with the
exporter as a side car:

1 apiVersion: apps/v1
2 kind: DaemonSet
3 metadata:
4 annotations:
5 deprecated.daemonset.template.generation: "0"
6 labels:
7 app: cpx-ew
8 name: cpx-ew
9 spec:

10 selector:
11 matchLabels:
12 app: cpx-ew
13 template:
14 metadata:
15 annotations:
16 NETSCALER_AS_APP: "True"
17 labels:
18 app: cpx-ew
19 name: cpx-ew
20 spec:
21 containers:
22 - env:
23 - name: EULA
24 value: "yes"
25 - name: NS_NETMODE
26 value: HOST
27 #- name: "kubernetes_url"
28 # value: "https://10..xx.xx:6443"
29 image: quay.io/citrix/citrix-k8s-cpx-ingress:13.0-52.24
30 imagePullPolicy: IfNotPresent
31 name: cpx
32 securityContext:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 400

NetScaler ingress controller

33 privileged: true
34 # Add exporter as a sidecar
35 - args:
36 - --target-nsip=192.168.0.2
37 - --port=8888
38 - --secure=no
39 env:
40 - name: NS_USER
41 value: nsroot
42 - name: NS_PASSWORD
43 value: nsroot
44 image: quay.io/citrix/citrix-adc-metrics-exporter:1.4.8
45 imagePullPolicy: IfNotPresent
46 name: exporter
47 securityContext:
48 readOnlyRootFilesystem: true
49 serviceAccountName: cpx
50 ---
51 kind: Service
52 apiVersion: v1
53 metadata:
54 name: exporter-cpx-ew
55 labels:
56 service-type: citrix-adc-monitor
57 spec:
58 selector:
59 app: cpx-ew
60 ports:
61 - name: exporter-port
62 port: 8888
63 targetPort: 8888
64 <!--NeedCopy-->

Here, the exporter uses the local IP (192.168.0.2) to fetch metrics from the NetScaler CPX (east‑
west) device.

ServiceMonitors to detect NetScaler

TheNetScalerMetrics Exporter helps collect data from theNetScaler VPXor CPX ingress andNetScaler
CPX (east‑west) devices. ThePrometheusOperatorneeds todetect theseexporters so that themetrics
can be timestamped, stored, and exposed for visualization on Grafana. The Prometheus Operator
uses the concept of ServiceMonitors to detect pods that belong to a service, using the labels attached
to that service.

The followingexampleYAML filedetectsall theexporter services (given in the sampleYAML files)which
have the label service-type: citrix-adc-monitor associated with them.

1 apiVersion: monitoring.coreos.com/v1
2 kind: ServiceMonitor
3 metadata:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 401

NetScaler ingress controller

4 name: citrix-adc-servicemonitor
5 labels:
6 servicemonitor: citrix-adc
7 spec:
8 endpoints:
9 - interval: 30s

10 port: exporter-port
11 selector:
12 matchLabels:
13 service-type: citrix-adc-monitor
14 namespaceSelector:
15 matchNames:
16 - monitoring
17 - default
18 <!--NeedCopy-->

The ServiceMonitor directs Prometheus to detect Exporters in the default and monitoring
namespaces only. To detect Exporters from other namespaces add the names of those namespaces
under the namespaceSelector: field.

Note:

If the Exporter that needs to be monitored exists in a namespace other than the default or
monitoring namespace, then additional RBAC privileges must be provided to Prometheus
to access those namespaces. The following is sample YAML (prometheus-clusterRole.
yaml) file the provides Prometheus full access to resources across the namespaces:

1 apiVersion: rbac.authorization.k8s.io/v1
2 kind: ClusterRole
3 metadata:
4 name: prometheus-k8s
5 rules:
6 - apiGroups:
7 - ""
8 resources:
9 - nodes/metrics

10 - namespaces
11 - services
12 - endpoints
13 - pods
14 verbs: ["*"]
15 - nonResourceURLs:
16 - /metrics
17 verbs: ["*"]
18 <!--NeedCopy-->

To provide additional privileges Prometheus, deploy the sample YAML using the following com‑
mand:

1 kubectl apply -f prometheus-clusterRole.yaml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 402

NetScaler ingress controller

View themetrics in grafana

The NetScaler instances that are detected for monitoring appears in the Targets page of the
prometheus container. You can be access the Targets page using the following URL: http://<
k8s_cluster_ip>:<prometheus_nodeport>/targets:

To view the metrics graphically:

1. Log into grafana using http://<k8s_cluster_ip>:<grafafa_nodeport> with
default credentials admin:admin

2. On the left panel, select + and click Import to import the sample grafana dashboard.

A dashboard containing the graphs similar to the following appears:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 403

https://github.com/citrix/citrix-adc-metrics-exporter/blob/master/sample_lb_stats.json

NetScaler ingress controller

You can further enhance the dashboard using Grafana’s documentation or demo videos.

Analytics and observability

December 31, 2023

Analytics from NetScaler instances provides you deep‑level insights about application performance
which helps you to quickly identify issues and take any necessary action.

Enabling analytics using annotations in the NetScaler Ingress Controller YAML file

You can enable analytics using the analytics profile which is defined as a smart annotation in Ingress
or service of type LoadBalancer configuration. You can define the specific parameters you need to
monitor by specifying them in the Ingress or service configuration of the application.
The following is a sample Ingress annotation with analytics profile for HTTP records:

ingress.citrix.com/analyticsprofile: '{ "webinsight": { "httpurl":"
ENABLED", "httpuseragent":"ENABLED", "httpHost":"ENABLED","httpMethod
":"ENABLED","httpContentType":"ENABLED" } } '

The following is a sample Ingress configuration with the analytics profile for a web application.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 annotations:
5 ingress.citrix.com/analyticsprofile: '{
6 "webinsight": {

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 404

http://docs.grafana.org/
https://www.youtube.com/watch?v=mgcJPREl3CU

NetScaler ingress controller

7 "httpurl":"ENABLED", "httpuseragent":"ENABLED",
8 "httphost":"ENABLED", "httpmethod":"ENABLED", "httpcontenttype":"

ENABLED" }
9 }

10 '
11 ingress.citrix.com/insecure-termination: allow
12 name: webserver-ingress
13 spec:
14 rules:
15 - http:
16 paths:
17 - backend:
18 service:
19 name: webserver
20 port:
21 number: 80
22 path: /
23 pathType: Prefix
24 tls:
25 - secretName: name
26 <!--NeedCopy-->

The following is a service annotation:

service.citrix.com/analyticsprofile: '{ "80-tcp":{ "webinsight": { "
httpurl":"ENABLED", "httpuseragent":"ENABLED" } } } '

The following is a sample service configuration with the analytics profile which exposes an Apache
web application.

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: apache
5 annotations:
6 service.citrix.com/csvserver: '{
7 "l2conn":"on" }
8 '
9 service.citrix.com/lbvserver: '{

10 "80-tcp":{
11 "lbmethod":"SRCIPDESTIPHASH" }
12 }
13 '
14 service.citrix.com/servicegroup: '{
15 "80-tcp":{
16 "usip":"yes" }
17 }
18 '
19 service.citrix.com/monitor: '{
20 "80-tcp":{
21 "type":"http" }
22 }
23 '

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 405

NetScaler ingress controller

24 service.citrix.com/frontend-ip: "192.0.2.16"
25 service.citrix.com/analyticsprofile: '{
26 "80-tcp":{
27 "webinsight": {
28 "httpurl":"ENABLED", "httpuseragent":"ENABLED" }
29 }
30 }
31 '
32 NETSCALER_VPORT: "80"
33 labels:
34 name: apache
35 spec:
36 externalTrafficPolicy: Local
37 type: LoadBalancer
38 selector:
39 name: apache
40 ports:
41 - name: http
42 port: 80
43 targetPort: http
44 selector:
45 app: apache
46 <!--NeedCopy-->

For information about annotations, see the annotation documentation.

Analytics using NetScaler ADM

NetScaler ADMprovides a comprehensive observability solution including analytics on various events
happening in the systemanda service graph formonitoring services in an easy to use user interface.

NetScaler ADM analytics provide an easy and scalable way to get various insights out of the data from
NetScaler instances to describe, predict, and improve the application performance. You can use one
or more analytics features simultaneously on NetScaler ADM. For more information on the service
graph, see the service graph documentation.

To use the ADM analytics or service graph:

• You must install an ADM agent and ensure the communication between NetScaler ADM and
Kubernetes cluster or managed instances in your data center or cloud. It makes NetScaler in‑
stances discoverable by NetScaler ADM.

• Ensure that an appropriate license is available and auto licensing is enabled on ADM.

Analytics with open source tools

NetScaler can be integrated with various open source tools for observability using NetScaler Observ‑
ability Exporter. NetScaler Observability Exporter is a container which collects metrics and transac‑

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 406

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/annotations.html#smart-annotations-for-services
https://docs.citrix.com/en-us/citrix-application-delivery-management-service/application-analytics-and-management/service-graph.html

NetScaler ingress controller

tions from NetScalers and transforms them to suitable formats (such as JSON, AVRO) for supported
endpoints. You can export the collected data to the desired endpoint. By analyzing the data, you can
get valuable insights at a microservice level for applications proxied by NetScalers.
For more information on NetScaler Observability Exporter, see the NetScaler Observability Exporter
documentation.

Analytics configuration support using ConfigMap

December 31, 2023

You can use NetScaler Observability Exporter to export metrics and transactions from NetScaler CPX,
MPX, or VPX and analyze the exported data to get meaningful insights. The NetScaler Observability
Exporter support is enabled with in the NetScaler Ingress Controller configuration. You can now en‑
able the NetScaler Observability Exporter configurationwith in the NetScaler Ingress Controller using
a ConfigMap.

Supported environment variables for analytics configuration using ConfigMap

You can configure the following parameters under NS_ANALYTICS_CONFIG using a ConfigMap:

• distributed_tracing: This variableenablesordisablesOpenTracing inNetScaler andhas
the following attributes:

– enable: Set this value to true to enable OpenTracing. The default value is false.
– samplingrate: Specifies the OpenTracing sampling rate in percentage. The default
value is 100.

• endpoint: Specifies the IP address or DNS address of the analytics server.

– server: Set this value as the IP address or DNS address of the server.
– service: Specifies the IP address or service name of the NetScaler Observability Ex‑
porter service depending on whether the service is running on a virtual machine or as a
Kubernetes service.
If the NetScaler Observability Exporter instance is running on a virtual machine this pa‑
rameter specifies the IP address. If the NetScaler Observability Exporter instance is run‑
ning as a service in the Kubernetes cluster, this parameter specifies the instance as name‑
space/service name.

• timeseries: Enablesexporting timeseriesdata fromNetScaler. Youcanspecify the following
attributes for time series configuration.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 407

https://developer-docs.citrix.com/projects/citrix-observability-exporter/en/latest/
https://developer-docs.citrix.com/projects/citrix-observability-exporter/en/latest/
https://github.com/citrix/citrix-observability-exporter
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/config-map.html

NetScaler ingress controller

– port: Specifies the port number of time series end point of the analytics server. The de‑
fault value is 5563.

– metrics: Enables exporting metrics from NetScaler.

* enable: Set this value to true to enable sending metrics. The default value is
false.

* mode: Specifies the mode of metric endpoint. The default value is avro.
– auditlogs: Enables exporting audit log data from NetScaler.

* enable: Set this value to true to enable audit log data. The default value is false.
– events: Enables exporting events from the NetScaler.

* enable: Set this value to true to enable exporting events. The default value is
false.

• transactions: Enables exporting transactions from NetScaler.

– enable: Set this value to true to enable sending transactions. The default value is
false.

– port: Specifies theport numberof transactional endpoint of analytics server. Thedefault
value is 5557.

The following configurations cannot be changedwhile theNetScaler Ingress Controller is running and
you need to reboot the NetScaler Ingress Controller to apply these settings.

• server configuration (endpoint)
• port configuration (time series)
• port configuration (transactions)

You can change other ConfigMap settings at runtime while the NetScaler Ingress Controller is run‑
ning.

Note:

When the user specifies value for a service as namespace/service name, NetScaler Ingress
Controller derives the endpoint associated to that service and dynamically bind them to the
transactional service group in NetScaler tier‑1 ADC . If a user specifies the value for a service as
IP address, the IP address is direclty bound to the transactional service group. NetScaler Ingress
Controller is enhanced to create default web or TCP based analytics profiles and bind them to
the logging virtual server. The default analytics profiles are bound to all load balancing virtual
servers of applications if the NetScaler Observability Exporter is enabled in the cluster. If the
user wants to change the analytics profile, they can use the analyticsprofile annotation.

The attributes of NS_ANALYTICS_CONFIG should follow a well‑defined schema. If any value pro‑
vided does not confirm with the schema, then the entire configuration is rejected. For reference, see
the schema file ns_analytics_config_schema.yaml.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 408

NetScaler ingress controller

Creating a ConfigMap for analytics configuration

This topic provides information on how to create a ConfigMap for analytics configuration.

Create a YAML file cic-configmap.yamlwith the required key‑value pairs in the ConfigMap.

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: cic-configmap
5 labels:
6 app: citrix-ingress-controller
7 data:
8 LOGLEVEL: 'info'
9 NS_PROTOCOL: 'http'

10 NS_PORT: '80'
11 NS_HTTP2_SERVER_SIDE: 'ON'
12 NS_ANALYTICS_CONFIG: |
13 distributed_tracing:
14 enable: 'false'
15 samplingrate: 100
16 endpoint:
17 server: '1.1.1.1'
18 service: 'default/coe-kafka'
19 timeseries:
20 port: 5563
21 metrics:
22 enable: 'false'
23 mode: 'avro'
24 auditlogs:
25 enable: 'false'
26 events:
27 enable: 'false'
28 transactions:
29 enable: 'true'
30 port: 5557

Formore information onhow to configure ConfigMap support on theNetScaler Ingress Controller, see
configuring ConfigMap support for the NetScaler Ingress Controller.

Schema for NS_ANALYTICS_CONFIG

Following is the schema for NS_ANALYTICS_CONFIG. The attributes should confirm with this
schema.

1 type: map
2 mapping:
3 NS_ANALYTICS_CONFIG:
4 required: no
5 type: map
6 mapping:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 409

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/config-map.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/config-map.html

NetScaler ingress controller

7 endpoint:
8 required: yes
9 type: map

10 mapping:
11 server:
12 required: yes
13 type: str
14 distributed_tracing:
15 required: no
16 type: map
17 mapping:
18 enable:
19 required: yes
20 type: str
21 enum:
22 - 'true'
23 - 'false'
24 samplingrate:
25 required: no
26 type: int
27 range:
28 max: 100
29 min: 0
30 timeseries:
31 required: no
32 type: map
33 mapping:
34 port:
35 required: no
36 type: int
37 metrics:
38 required: no
39 type: map
40 mapping:
41 enable:
42 required: yes
43 type: str
44 enum:
45 - 'true'
46 - 'false'
47 mode:
48 required: yes
49 type: str
50 enum:
51 - prometheus
52 - avro
53 - influx
54 auditlogs:
55 required: no
56 type: map
57 mapping:
58 enable:
59 required: yes

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 410

NetScaler ingress controller

60 type: str
61 enum:
62 - 'true'
63 - 'false'
64 events:
65 required: no
66 type: map
67 mapping:
68 enable:
69 required: yes
70 type: str
71 enum:
72 - 'true'
73 - 'false'
74 transactions:
75 required: no
76 type: map
77 mapping:
78 enable:
79 required: yes
80 type: str
81 enum:
82 - 'true'
83 - 'false'
84 port:
85 required: no
86 type: int

Troubleshooting

December 31, 2023

The following table describes some of the common issues and workarounds.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 411

NetScaler ingress controller

Problem Log Workaround

NetScaler instance is not
reachable

2019‑01‑10 05:05:27,250 ‑
ERROR ‑ [nitrointer‑
face.py:login_logout:94]
(MainThread) Exception:
HTTPConnectionPool(host=’
10.106.76.200’, port=80):
Max retries exceededwith
url: /nitro/v1/config/login
(Caused by
NewConnectionError(‘<url‑
lib3.connection.HTTPConnection
object at 0x7f4d45bd63d0>:
Failed to establish a new
connection: [Errno 113] No
route to host’,))

Ensure that the NetScaler is up
and running, and you can ping
the NSIP address.

Wrong user name password 2019‑01‑10 05:03:05,958 ‑
ERROR ‑ [nitrointer‑
face.py:login_logout:90]
(MainThread) Nitro Excep‑
tion::login_logout::errorcode=354,message=Invalid
username or password

SNIP is not enabled with
management access

2019‑01‑10 05:43:03,418 ‑
ERROR ‑ [nitrointer‑
face.py:login_logout:94]
(MainThread) Exception:
HTTPConnectionPool(host=’
10.106.76.242’, port=80):
Max retries exceededwith
url: /nitro/v1/config/login
(Caused by
NewConnectionError(‘<url‑
lib3.connection.HTTPConnection
object at 0x7f302a8cfad0>:
Failed to establish a new
connection: [Errno 110]
Connection timed out’,))

Ensure that you have enabled
the management access in
NetScaler (for NetScaler VPX
high availability) and set the IP
address,NSIP, with
management access enabled.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 412

NetScaler ingress controller

Problem Log Workaround

Error while parsing annotations 2019‑01‑10 05:16:10,611 ‑
ERROR ‑ [kuber‑
netes.py:set_annotations_to_csapp:1040]
(MainThread)
set_annotations_to_csapp:
Error message=No JSON
object could be
decodedInvalid Annotation
$service_weights please fix
and apply ${“frontend”:,
“catalog”:95}

Wrong port for NITRO access 2019‑01‑10 05:18:53,964 ‑
ERROR ‑ [nitrointer‑
face.py:login_logout:94]
(MainThread) Exception:
HTTPConnectionPool(host=’
10.106.76.242’, port=34438):
Max retries exceededwith
url: /nitro/v1/config/login
(Caused by
NewConnectionError(‘<url‑
lib3.connection.HTTPConnection
object at 0x7fc592cb8b10>:
Failed to establish a new
connection: [Errno 111]
Connection refused’,))

Verify if the correct port is
specified for NITRO access. By
default, NetScaler Ingress
Controller uses the port 80 for
communication.

Ingress class is wrong 2019‑01‑10 05:27:27,149 ‑
INFO ‑ [kuber‑
netes.py:get_all_ingresses:1329]
(MainThread) Unsupported
Ingress class for ingress
object web‑ingress.default

Verify that the ingress file
belongs to the ingress class

that NetScaler Ingress
Controller monitors. See the
following log for information

about the ingress classes
listened by NetScaler Ingress

Controller

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 413

NetScaler ingress controller

Problem Log Workaround

Kubernetes API is not reachable 2019‑01‑10 05:32:09,729 ‑
ERROR ‑
[kubernetes.py:_get:222]
(Thread‑1) Error while calling
/ser‑
vices:HTTPSConnectionPool(host=’
10.106.76.237’, port=6443):
Max retries exceededwith
url: /api/v1/services (Caused
by NewConnectionError(
‘<url‑
lib3.connection.VerifiedHTTPSConnection
object at 0x7fb3013e7dd0>:
Failed to establish a new
connection: [Errno 111]
Connection refused’,))

Check if the kubernetes_url is
correct. Use the command,
kubectl cluster-info to
get the URL information.
Ensure that the Kubernetes
main node is running at
https://
kubernetes_master_address
:6443 and the Kubernetes API
server pod is up and running.

Incorrect service port specified
in the YAML file

Provide the correct port details
in the ingress YAML file and
reapply to solve the issue.

Load balancing virtual server
and service group are created
but they are down

Check for the service name and
port used in the YAML file. For
NetScaler VPX, ensure that
--feature-node-watch is
set to true, when bringing up
the NetScaler Ingress
Controller.

CS virtual server is not getting
created for NetScaler VPX.

Use the annotation,
ingress.citrix.com/
frontend-ip, in the ingress
YAML file for NetScaler VPX.

Incorrect secret provided in the
TLS section in the ingress YAML
file

2019‑01‑10 09:30:50,673 ‑
INFO ‑
[kubernetes.py:_get:231]
(MainThread) Resource not
found:
/secrets/default‑secret12345
namespace default

Correct the values in the YAML
file and reapply to solve the
issue.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 414

NetScaler ingress controller

Problem Log Workaround

2019‑01‑10 09:30:50,673 ‑
INFO ‑ [kuber‑
netes.py:get_secret:1712]
(MainThread) Failed to get
secret for the app
default‑secret12345.default

The feature-node-watch
argument is specified, but
static routes are not added in
the NetScaler VPX

ERROR ‑ [nitrointer‑
face.py:add_ns_route:4495]
(MainThread) Nitro Excep‑
tion::add_ns_route::errorcode=604,message=The
gateway is not directly
reachable

This error occurs when
feature-node-watch is
enabled and the NetScaler VPX
and Kubernetes cluster are not
in the same network. Youmust
remove the- --feature-
node-watch argument from
the NetScaler Ingress
Controller YAML file. Static
routes do not work when the
NetScaler VPX and Kubernetes
cluster are in different network.
Use node controller to create
tunnels between NetScaler VPX
and cluster nodes.

CRD status not updated ERROR ‑
[crdinfrautils.py:update_crd_status:42]
(MainThread) Exception
during CRD status update for
negrwaddmuloccmod: 403
Client Error: Forbidden for
url: https://
10.96.0.1:443/apis/
citrix.com/v1/
namespaces/default/
rewritepolicies/
negrwaddmuloccmod/
status

Verify that permission to push
CRD status is provided in the
RBAC. The permission should

be similar to the following

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 415

NetScaler ingress controller

Problem Log Workaround

• apiGroups: [“citrix.com”]
resources: [
“rewritepolicies/status”,
“canarycrds/status”,
“authpolicies/status”,
“ratelimits/status”,
“listeners/status”,
“httproutes/status”,
“wafs/status”]

NetScaler Ingress Controller
event not updated

ERROR ‑
[clienthelper.py:post:94]
(MainThread) Reuqest
/events to api server is
forbidden

Verify that the permission to
update the NetScaler Ingress
Controller pod events is
provided in the RBAC.

• apiGroups: [””] resources:
[“events”] verbs: [
“create”]

Rewrite‑responder policy not
added

ERROR ‑ [con‑
fig_dispatcher.py:__dispatch_config_pack:324]
(Dispatcher) Status: 104,
ErrorCode: 3081, Reason:
Nitro Exception: Expression
syntax error [D(10,
20).^RE_SELECT(, Offset 15] <

Such errors are due to incorrect
expressions in
rewrite‑responder CRDs. Fix
the expression and reapply the
CRD.

ERROR ‑ [con‑
fig_dispatcher.py:__dispatch_config_pack:324]
(Dispatcher) Status: 104,
ErrorCode: 3098, Reason:
Nitro Exception: Invalid
expression data type
[ent.ip.src^, Offset 13]

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 416

NetScaler ingress controller

Problem Log Workaround

Application of a CRD failed. The
NetScaler Ingress Controller
converts a CRD into a set of
configurations to configure the
NetScaler to the desired state
as per the specified CRD. If the
configuration fails, then the
CRD instance may not get
applied on the NetScaler.

2020‑07‑13 08:49:07,620 ‑
ERROR ‑ [con‑
fig_dispatcher.py:__dispatch_config_pack:256]
(Dispatcher) Failed to execute
config
ADD_sslprofile_k8s_crd_k8service_kuard‑
service_default_80tcp_backend{name:k8s_crd_k8service_kuard‑
service_default_80_tcp_backend
sslprofiletype:BackEnd
tls12:enabled } from
ConfigPack
‘default.k8service.kuard‑
service.add_spec’

Log shows that the NITRO
command has failed. The same
log appears in NetScaler as
well. Check the NetScaler
ns.log and search for the
error string using the grep
command to figure out the
NetScaler command which
failed during the application of
CRD. Try to delete the CRD and
add it again. If you see the
issue again, report it on the
cloud native slack channel.

2020‑07‑13 08:49:07,620 ‑
ERROR ‑ [con‑
fig_dispatcher.py:__dispatch_config_pack:257]
(Dispatcher) Status: 104,
ErrorCode: 1074, Reason:
Nitro Exception: Invalid value
[sslProfileType, value differs
from existing entity and it
cant be updated.]

2020‑07‑13 08:49:07,620 ‑
INFO ‑ [con‑
fig_dispatcher.py:__dispatch_config_pack:263]
(Dispatcher) Processing of
ConfigPack
‘default.k8service.kuard‑
service.add_spec’failed

Troubleshooting ‑ Prometheus and Grafana Integration

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 417

NetScaler ingress controller

Problem Description Workaround

Grafana dashboard has no plots If the graphs on the Grafana
dashboards do not have any
values plotted, then Grafana is
unable to obtain statistics from
its datasource.

Check if the Prometheus
datasource is saved and
working properly. On saving
the datasource after providing
the Name and IP, a Data
source is working
message appears in green
indicating the datasource is
reachable and detected.
If the dashboard is created
using
sample_grafana_dashboard
.json, ensure that the name
given to the Prometheus
datasource begins with the
word prometheus in the
lowercase.
Check the Targets page of
Prometheus to see if the
required target exporter is in
DOWN state.

DOWN: Context deadline
exceeded

If the message appears against
any of the exporter targets of
Prometheus, then Prometheus
is either unable to connect to
the exporter or unable to fetch
all the metrics within the given
scrape_timeout.

If you are using the Prometheus
Operator, scrape_timeout
is adjusted automatically and
the error means that the
exporter itself is not reachable.

If a standalone Prometheus
container or pod is used, try
increasing the
scrape_interval and
scrape_timeout values in
the /etc/prometheus/
prometheus.cfg file to
increase the time interval for
collecting the metrics.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 418

NetScaler ingress controller

Troubleshooting ‑ OpenShift feature node watch

Problem: While using OpenShift‑ovn CNI feature-node-watch is not adding correct routes.

Description: NetScaler Ingress Controller looks for Node annotations for fetching the necessary de‑
tails to add the static routes.

Workaround: Do the following steps as a workaround.

1. Makesure that followingRBACpermission isprovided toNetScaler IngressController alongwith
route.openshift.io to run in the OpenShift environment with OVN CNI.

1 - apiGroups: ["config.openshift.io"]
2 resources: ["networks"]
3 verbs: ["get", "list"]

2. NetScaler Ingress Controller looks for the following two annotations added by OVN, make sure
that it exists on the
cluster nodes.

1 "k8s.ovn.org/node-subnets": {
2 \"default\":\"10.128.0.0/23\" }
3 ",
4 "k8s.ovn.org/node-primary-ifaddr": "{
5 \"ipv4\":\"x.x.x.x/24\" }
6 "

3. If the annotation does not exist, feature-node-watchmight not work for OVN CNI. In that
case, youmust manually configure the static routes on NetScaler VPX.

Problem: While using OpenShift‑sdn CNI, feature‑node‑watch is not adding correct routes.

Description: NetScaler Ingress Controller looks for the Host subnet CRD for fetching the necessary
details to add the static routes.

Workaround: Do the following steps as a workaround.

1. Makesure that followingRBACpermission isprovided toNetScaler IngressController alongwith
route.openshift.io to run in the OpenShift environment with SDN CNI.

1 - apiGroups: ["network.openshift.io"]
2 resources: ["hostsubnets"]
3 verbs: ["get", "list", "watch"]
4 - apiGroups: ["config.openshift.io"]
5 resources: ["networks"]
6 verbs: ["get", "list"]

2. NetScaler Ingress Controller looks for the following CRD and specification.

1 oc get hostsubnets.network.openshift.io <cluster node-name> -
ojson

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 419

NetScaler ingress controller

2
3 {
4 "apiVersion": "network.openshift.io/v1",
5 "host": <cluster node-name,
6 "hostIP": "x.x.x.x",
7 "kind": "HostSubnet",
8 "metadata": {
9

10 "annotations": {
11
12 ...
13 }
14 ,
15 "subnet": "10.129.0.0/23"
16 }

3. If the CRD does not exist with the expected specification, feature-node-watchmight not
work for OpenShfit‑SDN CNI. In that case, you must manually configure the static routes on
NetScaler VPX.

Troubleshooting the NetScaler Ingress Controller during runtime

December 31, 2023

You can debug the NetScaler Ingress Controller using the following methods:

• Event based debugging
• Log based debugging

Event based debugging

Events are Kubernetes entities which can provide information about the flow of execution on other
Kubernetes entities.

Event based debugging for the NetScaler Ingress Controller is enabled at the pod level. To enable
event based debugging, the RBAC cluster role permissions for the pod should be the same as the
cluster role permissions present in the citrix‑k8s‑ingress‑controller.yaml file.

Use the following command to view the events for NetScaler Ingress Controller.

1 Kubectl describe pods <citrix-k8s-ingress-controller pod name> -n <
namespace of pod>

You can view the events under the events section.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 420

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/citrix-k8s-ingress-controller.yaml

NetScaler ingress controller

In this example, theNetScaler has beendeliberatelymadeunreachable and the same information can
be seen under the events section.

1 kubectl describe pods cic-vpx-functionaltest -n functionaltest
2
3 Name: cic-vpx-functionaltest
4 Namespace: functionaltest
5
6 Events:
7 Type Reason Age From

Message
8 ---- ------ ---- ----

9 Normal Pulled 33m kubelet, rak-asp4-node2

Container image "citrix-ingress-controller:latest" already
present on machine

10 Normal Created 33m kubelet, rak-asp4-node2
Created container cic-vpx-functionaltest

11 Normal Started 33m kubelet, rak-asp4-node2
Started container cic-vpx-functionaltest

12 Normal Scheduled 33m default-scheduler
Successfully assigned functionaltest/cic-vpx-functionaltest
to rak-asp4-node2

13
14 Normal Created 33m CIC ENGINE, cic-vpx-functionaltest

CONNECTED: NetScaler:<NetScaler IP>:80
15 Normal Created 33m CIC ENGINE, cic-vpx-functionaltest

SUCCESS: Test LB Vserver Creation on NetScaler:
16 Normal Created 33m CIC ENGINE, cic-vpx-functionaltest

SUCCESS: ENABLING INIT features on NetScaler:
17 Normal Created 33m CIC ENGINE, cic-vpx-functionaltest

SUCCESS: GET Default VIP from NetScaler:
18 Warning Created 17s CIC ENGINE, cic-vpx-functionaltest

UNREACHABLE: NetScaler: Check Connectivity::<NetScaler IP
>:80

You can use the events section to check the flow of events within the NetScaler Ingress Controller.
Events provide information on the flow of events. For further debugging, you should check the logs
of the NetScaler Ingress Controller pod.

Log based debugging

You can change the log level of the NetScaler Ingress Controller at runtime using the ConfigMap fea‑
ture. For changing the log level during runtime, see the ConfigMap documentation.

To check logs on the NetScaler Ingress Controller, use the following command.

1 kubectl logs <citrix-k8s-ingress-controller> -n namespace

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 421

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/config-map.html

NetScaler ingress controller

Call Home enablement for the NetScaler Ingress Controller in NetScaler

December 31, 2023

Sometimes, NetScaler needs to collect informationabout theperformanceof aproduct todiagnose is‑
sues and resolve them. TheCall Home feature is designed to gather customer information andupload
it to a Citrix server. Now, the Call Home feature available on NetScaler is enabled for the NetScaler
Ingress Controller.
The Call Home feature is enabled by default and requires no specific configuration by users. When
the latest version of the NetScaler Ingress Controller is deployed, a string map is configured on the
NetScaler with the NetScaler Ingress Controller specific information.

Upgrade NetScaler Ingress Controller

December 31, 2023

This topic explains how to upgrade the NetScaler Ingress Controller instance for NetScaler CPX
with the NetScaler Ingress Controller as sidecar and NetScaler Ingress Controller standalone
deployments.

Upgrade NetScaler CPXwith NetScaler Ingress Controller as a sidecar

To upgrade a NetScaler CPX with the NetScaler Ingress Controller as a sidecar, you can either modify
the associated YAML definition file (for example, citrix‑k8s‑cpx‑ingress.yml) or use the Helm chart.

If you want to upgrade bymodifying the YAML definition file, perform the following:

1. Change the version of the NetScaler Ingress Controller and NetScaler CPX image under
containers section to the following:

• NetScaler CPX version: 13.0‑83.27 (quay.io/citrix/citrix-k8s-cpx-ingress
:13.0-83.27)

• NetScaler Ingress Controller version: 1.29.5 (quay.io/citrix/citrix-k8s-
ingress-controller:1.29.5)

2. Update the CluterRole as follows:

1 kind: ClusterRole
2 apiVersion: rbac.authorization.k8s.io/v1
3 metadata:
4 name: cic-k8s-role

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 422

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/baremetal/citrix-k8s-cpx-ingress.yml

NetScaler ingress controller

5 rules:
6 - apiGroups: [""]
7 resources: ["endpoints", "ingresses", "services", "pods", "

secrets", "nodes", "routes", "namespaces"]
8 verbs: ["get", "list", "watch"]
9 # services/status is needed to update the loadbalancer IP in

service status for integrating
10 # service of type LoadBalancer with external-dns
11 - apiGroups: [""]
12 resources: ["services/status"]
13 verbs: ["patch"]
14 - apiGroups: ["extensions"]
15 resources: ["ingresses", "ingresses/status"]
16 verbs: ["get", "list", "watch"]
17 - apiGroups: ["apiextensions.k8s.io"]
18 resources: ["customresourcedefinitions"]
19 verbs: ["get", "list", "watch"]
20 - apiGroups: ["apps"]
21 resources: ["deployments"]
22 verbs: ["get", "list", "watch"]
23 - apiGroups: ["citrix.com"]
24 resources: ["rewritepolicies", "canarycrds", "authpolicies", "

ratelimits"]
25 verbs: ["get", "list", "watch"]
26 - apiGroups: ["citrix.com"]
27 resources: ["vips"]
28 verb s: ["get", "list", "watch", "create", "delete"]
29 - apiGroups: ["route.openshift.io"]
30 resources: ["routes"]
31 verbs: ["get", "list", "watch"]

3. Save the YAML definition file and reapply the file.

Upgrade a standalone NetScaler Ingress Controller to version 1.21.9

To upgrade a standalone NetScaler Ingress Controller instance, you can either modify the YAML defi‑
nition file or use the Helm chart.

If youwant toupgradeNetScaler Ingress Controller to version 1.21.9 bymodifying theYAMLdefinition
file, perform the following:

1. Change the version for theNetScaler Ingress Controller imageundercontainers section. For
example, consider you have the following YAML file.

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: cic-k8s-ingress-controller
5
6 labels:
7 app: ...

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 423

NetScaler ingress controller

8 spec:
9 serviceAccountName: ...

10 containers:
11 - name: cic-k8s-ingress-controller
12 image: "citrix-k8s-ingress-controller:1.21.9"
13 env: ...
14 args: ...

You should change the version of the image to version 1.21.9. For example,quay.io/citrix
/citrix-k8s-ingress-controller:1.21.9.

2. Update the ClusterRole as follows:

1 kind: ClusterRole
2 apiVersion: rbac.authorization.k8s.io/v1
3 metadata:
4 name: cic-k8s-role
5 rules:
6 - apiGroups: [""]
7 resources: ["endpoints", "ingresses", "pods", "secrets", "

nodes", "routes", "namespaces"]
8 verbs: ["get", "list", "watch"]
9 # services/status is needed to update the loadbalancer IP in

service status for integrating
10 # service of type LoadBalancer with external-dns
11 - apiGroups: [""]
12 resources: ["services/status"]
13 verbs: ["patch"]
14 - apiGroups: [""]
15 resources: ["services"]
16 verbs: ["get", "list", "watch", "patch"]
17 - apiGroups: ["extensions"]
18 resources: ["ingresses", "ingresses/status"]
19 verbs: ["get", "list", "watch"]
20 - apiGroups: ["apiextensions.k8s.io"]
21 resources: ["customresourcedefinitions"]
22 verbs: ["get", "list", "watch"]
23 - apiGroups: ["apps"]
24 resources: ["deployments"]
25 verbs: ["get", "list", "watch"]
26 - apiGroups: ["citrix.com"]
27 resources: ["rewritepolicies", "canarycrds", "authpolicies", "

ratelimits"]
28 verbs: ["get", "list", "watch"]
29 - apiGroups: ["citrix.com"]
30 resources: ["vips"]
31 verbs: ["get", "list", "watch", "create", "delete"]
32 - apiGroups: ["route.openshift.io"]
33 resources: ["routes"]
34 verbs: ["get", "list", "watch"]

3. Save the YAML definition file and reapply the file.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 424

NetScaler ingress controller

IP address management using the IPAM controller

April 4, 2024

The IPAM controller is a container provided by NetScaler for IP address management and it runs in
parallel to NetScaler Ingress Controller as a pod in the Kubernetes cluster. For services of type Load‑
Balancer, you can use the IPAM controller to automatically allocate IP addresses to services from a
specified IP address range. You can specify this IP range in the YAML file while deploying the IPAM
controller using YAML. NetScaler Ingress Controller configures the IP address allocated to the service
as a virtual IP address (VIP) in NetScaler MPX or VPX.
Using this IP address, you can externally access the service.

Overview of services of type LoadBalancer

In a Kubernetes environment, a microservice is deployed as a set of pods that are created and de‑
stroyed dynamically. Since the set of pods that refer to a microservice are constantly changing, Ku‑
bernetes provides a logical abstraction knownas service to expose yourmicroservice running on a set
of pods. A service defines a logical set of pods, and policies to access them.

A service of type LoadBalancer is the simplest way to expose amicroservice inside a Kubernetes clus‑
ter to the external world. Services of type LoadBalancer are natively supported in Kubernetes deploy‑
ments on public clouds such as, AWS, GCP, or Azure. In cloud deployments, when you create a service
of type LoadBalancer, a cloud managed load balancer is assigned to the service. The service is then
exposed using the load balancer.

NetScaler IPAM solution for services of type LoadBalancer

There may be several situations where you want to deploy your Kubernetes cluster on bare metal
or on‑premises rather than deploy it on public cloud. When you are running your applications on
bare metal Kubernetes clusters, it is much easier to route TCP or UDP traffic using a service of type
LoadBalancer than using ingress. Even for HTTP traffic, it is sometimes more convenient than
ingress. However, there is no load balancer implementation natively available for bare metal Kuber‑
netes clusters. NetScaler provides a way to load balance such services using the NetScaler Ingress
Controller and NetScaler.

In the NetScaler solution for services of typeLoadBalancer, NetScaler Ingress Controller deployed
inside the Kubernetes cluster configures a NetScaler deployed outside the cluster to load balance the
incoming traffic. Using the NetScaler solution, you can load balance the incoming traffic to the Kuber‑
netes cluster regardless of whether the deployment is on bare metal, on‑premises, or public cloud.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 425

https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer

NetScaler ingress controller

Since the NetScaler Ingress Controller provides flexible IP address management that enables multi‑
tenancy for NetScalers, you can use a single NetScaler to load balance multiple services as well as to
perform ingress functions. Hence, you can maximize the utilization of load balancer resources and
significantly reduce your operational expenses.

IP address management using the IPAM controller

NetScaler IPAM controller requires the VIP CRD provided by NetScaler. The VIP CRD contains fields for
service‑name, namespace, and IP address. The VIP CRD is used for internal communication between
the NetScaler Ingress Controller and the IPAM controller.

The following diagram shows a deployment of service type load balancer where the IPAM controller
is used to assign an IP address to a service.

When a new service of type Loadbalancer is created, the following events occur:

1. The NetScaler Ingress Controller creates a VIP CRD object for the service whenever the
loadBalancerIP field in the service is empty.

2. The IPAM controller assigns an IP address for the VIP CRD object.
3. Once the VIP CRD object is updated with the IP address, the NetScaler Ingress Controller auto‑

matically configures the NetScaler.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 426

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/vip.html

NetScaler ingress controller

Note:

Custom resource definitions (CRDs) offered by NetScaler
also support services of type LoadBalancer. That means, you can specify a service of type
LoadBalancer as a service name when you create a CRD object and apply the CRD to the ser‑
vice.

Expose services of type LoadBalancer with IP addresses assigned by the IPAM
controller

This topic provides information on how to expose services of type LoadBalancer with IP addresses
assigned by the IPAM controller.

To expose a service of type load balancer with an IP address from the IPAM controller, perform the
following steps:

1. Deploy NetScaler Ingress Controller.
2. Deploy NetScaler IPAM controller.
3. Deploy a sample application.
4. Expose the sample application using service of type LoadBalancer.
5. Access the service.

Deploy NetScaler Ingress Controller

Perform the following steps to deploy the NetScaler Ingress Controller with the IPAM controller argu‑
ment.

1. Add the NetScaler Helm chart repository to your local registry using the following command.

1 helm repo add netscaler https://netscaler.github.io/netscaler-helm
-charts/

2 <!--NeedCopy-->

2. Install NetScaler Ingress Controller using the following command.

1 helm install netscaler-ingress-controller netscaler/netscaler-
ingress-controller --set nsIP=<NS_IP>,license.accept=yes,
adcCredentialSecret=<>,ingressClass[0]=netscaler,serviceClass
[0]=netscaler,ipam=true,crds.install=true -n netscaler

2 <!--NeedCopy-->

For detailed information about deploying and configuring NetScaler Ingress Controller using
Helm charts, see the Helm chart repository.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 427

https://github.com/netscaler/citrix-helm-charts/tree/master/netscaler-ingress-controller

NetScaler ingress controller

Deploy IPAM controller

1. Add the NetScaler Helm chart repository to your local registry using the following command.

1 helm repo add netscaler https://netscaler.github.io/netscaler-helm
-charts/

2 <!--NeedCopy-->

2. Install NetScaler IPAM controller using the following command.

1 helm install netscaler-ipam-controller netscaler/netscaler-ipam-
controller --set vipRange='[{

2 "Prod": ["10.1.2.0 - 10.1.2.255"] }
3]' -n netscaler
4 <!--NeedCopy-->

Deploy a sample application

Perform the following steps to deploy an apache application in your Kubernetes cluster.

Note:

In this example, an apache application is used. You can deploy a sample application of your
choice.

1. Deploy a sample application using the following command:

1 kubectl apply -f - <<EOF
2 apiVersion: apps/v1
3 kind: Deployment
4 metadata:
5 name: apache
6 namespace: netscaler
7 labels:
8 name: apache
9 spec:

10 selector:
11 matchLabels:
12 app: apache
13 replicas: 2
14 template:
15 metadata:
16 labels:
17 app: apache
18 spec:
19 containers:
20 - name: apache
21 image: httpd:latest
22 ports:
23 - name: http
24 containerPort: 80

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 428

NetScaler ingress controller

25 imagePullPolicy: IfNotPresent
26 EOF
27 <!--NeedCopy-->

2. Verify if the pods are running using the following command:

1 kubectl get pods
2 <!--NeedCopy-->

Expose the sample application using service of type LoadBalancer

Perform the following steps to create a service of type LoadBalancer:

1. Deploy a service to expose apache application, for which the IP address is allocated from the
Prod VIP range specified during the IPAM installation.

1 kubectl apply -f - <<EOF
2 apiVersion: v1
3 kind: Service
4 metadata:
5 name: apache
6 namespace: netscaler
7 labels:
8 name: apache
9 annotations:

10 service.citrix.com/class: 'netscaler'
11 service.citrix.com/ipam-range: 'Prod'
12 spec:
13 externalTrafficPolicy: Local
14 type: LoadBalancer
15 ports:
16 - name: http
17 port: 80
18 targetPort: http
19 selector:
20 app: apache
21
22 EOF
23 <!--NeedCopy-->

When you create the service, the IPAM controller assigns an IP address to the apache service
from the IP address range you had defined in the IPAM controller deployment. The IP address
allocatedby the IPAMcontroller is provided in thestatus.loadBalancer.ingress: field
of the service definition. NetScaler Ingress Controller configures the IP address allocated to the
service as a virtual IP address (VIP) in NetScaler.

2. View the service using the following command:

1 kubectl get service apache --output yaml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 429

NetScaler ingress controller

2 <!--NeedCopy-->

Output:

Access the service

You can access the apache service using the IP address assigned by the IPAM controller to the ser‑
vice. You can find the IP address in the status.loadBalancer.ingress: field of the service
definition. Use the following curl command to access the service:

1 curl <IP_address>
2 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 430

NetScaler ingress controller

The response should be:

<html><body><h1>It works!</h1></body></html>

Securing Ingress

December 31, 2023

The topic covers thevariousways to secureyour IngressusingNetScaler and theannotationsprovided
by the NetScaler Ingress Controller.

The following table lists the TLS use cases with sample annotations that you can use to secure your
Ingress using the Ingress NetScaler and the NetScaler Ingress Controller:

Use cases Sample annotations

Enable TLSv1.3 protocol
ingress.citrix.com/frontend-sslprofile: '{ "tls13":"enabled", "

tls13sessionticketsperauthcontext":"1", "dhekeyexchangewithpsk":"yes" } '

HTTP strict transport security (HSTS)
ingress.citrix.com/frontend-sslprofile: '{ "hsts":"enabled", "maxage"

: "157680000", "includesubdomain":"yes" }

OCSP stapling
ingress.citrix.com/frontend-sslprofile: '{ "ocspstapling":"enabled" }

'

Set client authentication to mandatory
ingress.citrix.com/frontend-sslprofile: '{ "clientauth":"enabled", "

clientcert" : "mandatory" } '

TLS session ticket extension
ingress.citrix.com/frontend-sslprofile: '{ "sessionticket" : "enabled

", "sessionticketlifetime : "300" } '

SSL session reuse
ingress.citrix.com/frontend-sslprofile: '{ "sessreuse" : "enabled", "

sesstimeout : "120" } '

Cipher groups

ingress.citrix.com/frontend-sslprofile:'{ "snienable": "enabled", "
ciphers" : [{ "ciphername": "secure", "cipherpriority" :"1" } , { "ciphername": "secure", "cipherpriority" :"21"
}] } '

Cipher redirect

ingress.citrix.com/frontend-sslprofile:'{ "snienable": "enabled", "
ciphers" : [{ "ciphername": "secure", "cipherpriority" :"1" }], "cipherredirect":"enabled", "cipherurl": "https://
redirecturl" } '

Enable TLS v1.3 protocol

Using the annotations for SSL profiles, you can enable TLS 1.3 protocol support on the SSL profile
and set the tls13SessionTicketsPerAuthContext and dheKeyExchangeWithPsk para‑
meters in the SSL profile for the Ingress NetScaler.

Thetls13SessionTicketsPerAuthContext parameter enables you to set the number of tick‑
ets the Ingress NetScaler issues anytime TLS 1.3 is negotiated, ticket‑based resumption is enabled,

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 431

NetScaler ingress controller

and either a handshake completes or post‑handhsake client authentication completes. The value
can be increased to enable clients to open multiple parallel connections using a fresh ticket for each
connection. The minimum value you can set is 1 and the maximum is 10. By default, the value is set
to 1.

Note:

No tickets are sent if resumption is disabled.

The dheKeyExchangeWithPsk parameter allows you to specify whether the Ingress
NetScaler requires a DHE key exchange to occur when a preshared key is accepted during
a TLS 1.3 session resumption handshake. A DHE key exchange ensures forward secrecy, even if
ticket keys are compromised, at the expense of extra resources required to carry out the DHE key
exchange.

The following is a sample annotation for the HTTP profile to enable TLS 1.3 protocol support on SSL
profileandset thetls13SessionTicketsPerAuthContextanddheKeyExchangeWithPsk
parameters in the SSL profile.

1 ingress.citrix.com/frontend-sslprofile: '{
2 "tls13":"enabled", "tls13sessionticketsperauthcontext":"1", "

dhekeyexchangewithpsk":"yes" }
3 '

HTTP strict transport security (HSTS)

The Ingress NetScaler appliances support HTTP strict transport security (HSTS) as an inbuilt option in
SSL profiles. Using HSTS, a server can enforce the use of an HTTPS connection for all communication
with a client. That is, the site can be accessed only by using HTTPS. Support for HSTS is required for
A+ certification from SSL Labs. For more information, see NetScaler support for HSTS.

Using the annotations for SSL profiles, you can enable HSTS in an SSL front‑end profile on the Ingress
NetScaler. The following is a sample ingress annotation:

1 ingress.citrix.com/frontend-sslprofile: '{
2 "hsts":"enabled", "maxage" : "157680000", "includesubdomain":"yes" }
3 '

Where:

• HSTS ‑ The state of HTTP Strict Transport Security (HSTS) on the SSL profile. Using HSTS, a
server can enforce the use of an HTTPS connection for all communication with a client. The
supported values are ENABLED and DISABLED. By default, the value is set to DISABLED.

• maxage ‑ Allows you to set themaximum time, in seconds, in the strict transport security (STS)
header during which the client must send only HTTPS requests to the server. The minimum
time you can set is 0 and the maximum is 4294967294. By default the value is to 0.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 432

https://docs.citrix.com/en-us/citrix-adc/13/ssl/how-to-articles/ssl-support-for-hsts.html

NetScaler ingress controller

• IncludeSubdomains ‑ Allows you to enable HSTS for subdomains. If set to Yes, a client
must send only HTTPS requests for subdomains. By default the value is set to No.

OCSP stapling

The IngressNetScaler can send the revocation statusof a server certificate toa client, at the timeof the
SSL handshake, after validating the certificate status from an OCSP responder. The revocation status
of a server certificate is “stapled”to the response the appliance sends to the client as part of the SSL
handshake. For more information on NetScaler implementation of CRL and OCSP reports, see OCSP
stapling.

To use the OCSP stapling feature, you can enable it using an SSL profile with the following ingress
annotation:

1 ingress.citrix.com/frontend-sslprofile: '{
2 "ocspstapling":"enabled" }
3 '

Note:

To use OCSP stapling, youmust add an OCSP responder on the NetScaler appliance.

Set Client authentication tomandatory

Using the annotations for SSL profiles, you can enable client authentication, the Ingress NetScaler
appliance asks for the client certificate during the SSL handshake.

The appliance checks the certificate presented by the client for normal constraints, such as the issuer
signature and expiration date.

Here are some use cases:

• Require a valid client certificate before website content is displayed. This restricts website con‑
tent to only authorized machines and users.

• Request a valid client certificate. If a valid client certificate is not provided, thenprompt theuser
for multifactor authentication.

Client authentication can be set to mandatory, or optional.

• When it is set as mandatory, if the SSL Client does not transmit a valid Client Certificate, then
the connection is dropped. Valid means: signed/issued by a specific Certificate Authority, and
not expired or revoked.

• When it is optional, then the NetScaler requests the client certificate, but proceedswith the SSL
transaction even if the client presents an invalid certificate or no certificate. This configuration

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 433

https://docs.citrix.com/en-us/citrix-adc/12-1/ssl/ssl-11-1-ocsp-stapling-solution.html
https://docs.citrix.com/en-us/citrix-adc/12-1/ssl/ssl-11-1-ocsp-stapling-solution.html

NetScaler ingress controller

is useful for authentication scenarios (for example require two‑factor authentication if a valid
Client Certificate is not provided)

Using the annotations for SSL profiles, you can enable client authentication on an SSL virtual server
and set client authentication as Mandatory.

The following is a sample annotation of the SSL profile:

1 ingress.citrix.com/frontend-sslprofile: '{
2 "clientauth":"enabled", "clientcert" : "mandatory" }
3 '

Note:

Make sure that you bind the client‑certificate to the SSL virtual server on the Ingress NetScaler.

TLS session ticket extension

An SSL handshake is a CPU‑intensive operation. If session reuse is enabled, the server or client key
exchange operation is skipped for existing clients. They are allowed to resume their sessions. This
improves the response time and increases the number of SSL transactions per second that a server
can support. However, the server must store details of each session state, which consumes memory
and is difficult to share amongmultiple servers if requests are load balanced across servers.

The Ingress NetScaler appliances support the SessionTicket TLS extension. Use of this extension indi‑
cates that the session details are stored on the client instead of on the server. The clientmust indicate
that it supports this mechanism by including the session ticket TLS extension in the client Hello mes‑
sage. For new clients, this extension is empty. The server sends a new session ticket in the NewSes‑
sionTicket handshakemessage. The session ticket is encrypted by using a key‑pair known only to the
server. If a server cannot issue a new ticket currently, it completes a regular handshake.

Using the annotations for SSL profiles, you can enable the use of session tickets, as per the RFC
5077. Also, you can set the life time of the session tickets issued by the Ingress NetScaler, using the
sessionticketlifetime parameter.

The following is the sample ingress annotation:

1 ingress.citrix.com/frontend-sslprofile: '{
2 "sessionticket" : "enabled", "sessionticketlifetime : "300" }
3 '

SSL session reuse

You can reuse an existing SSL session on a NetScaler appliance. While the SSL renegotiation process
consistsof a full SSLhandshake, theSSL reuseconsistsof apartial handshakebecause theclient sends

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 434

NetScaler ingress controller

the SSL ID with the request.

Using the annotations for SSL profiles, you can enable session reuse and also set the session timeout
value (in seconds) on the Ingress NetScaler.

The following is the sample ingress annotation:

1 ingress.citrix.com/frontend-sslprofile: '{
2 "sessreuse" : "enabled", "sesstimeout : "120" }
3 '

By default, the session reuse option is enabled on the appliance and the timeout value for the same
is set to 120 seconds. Therefore, if a client sends a request on another TCP connection and the earlier
SSL session ID within 120 seconds, then the appliance performs a partial handshake.

Using cipher groups

The IngressNetScaler shipswithbuilt‑in cipher groups. Touse ciphers that arenotpart of theDEFAULT
cipher group, you have to explicitly bind them to an SSL profile. You can also create a user‑defined
cipher group to bind to the SSL virtual server on the Ingress NetScaler.

The built‑in cipher groups can be used in Tier‑1 and Tier‑2 NetScaler, and the user‑defined cipher
group can be used only in Tier‑1 NetScaler.

To use a user‑defined cipher group, ensure that the NetScaler has a user‑defined cipher group. Per‑
form the following:

1. Create a user‑defined cipher group. For example, testgroup.
2. Bind all the required ciphers to the user‑defined cipher group.
3. Note down the user‑defined cipher group name.

For detailed instructions, see Configure a user‑defined cipher group.

Using the annotations for SSL profiles, you can bind the built‑in cipher groups, a user‑defined cipher
group or both to the SSL profile.

The following is the syntaxof the ingress annotation that you canuse tobind thebuilt‑in cipher groups
and a user‑defined cipher group to an SSL profile:

1 ingress.citrix.com/frontend-sslprofile:'{
2 "snienable":"enabled", "ciphers" : [{
3 "ciphername": "secure", "cipherpriority" :"1" }
4 , {
5 "ciphername": "testgroup", "cipherpriority" :"2" }
6] }
7 '

The ingress annotation binds the built‑in cipher group, SECURE, and the user‑defined cipher group,
testgroup, to the SSL profile.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 435

https://docs.citrix.com/en-us/citrix-adc/13/ssl/ciphers-available-on-the-citrix-ADC-appliances.html
https://docs.citrix.com/en-us/citrix-adc/13/ssl/ciphers-available-on-the-citrix-ADC-appliances/configure-user-defined-cipher-groups-on-the-adc-appliance.html
https://docs.citrix.com/en-us/citrix-adc/13/ssl/ciphers-available-on-the-citrix-ADC-appliances/configure-user-defined-cipher-groups-on-the-adc-appliance.html
https://docs.citrix.com/en-us/citrix-adc/13/ssl/ciphers-available-on-the-citrix-ADC-appliances/configure-user-defined-cipher-groups-on-the-adc-appliance.html#configure-a-user-defined-cipher-group-by-using-the-cli

NetScaler ingress controller

Using cipher redirect

During the SSL handshake, the SSL client (usually a web browser) announces the suite of ciphers that
it supports, in the configured order of cipher preference. From that list, the SSL server then selects a
cipher that matches its own list of configured ciphers.

If the ciphers announced by the client does notmatch those ciphers configured on the SSL server, the
SSL handshake fails. The failure is announced by a cryptic error message displayed in the browser.
These messages rarely mention the exact cause of the error.

With cipher redirection, you can configure an SSL virtual server to deliver accurate, meaningful er‑
ror messages when an SSL handshake fails. When the SSL handshake fails, the NetScaler appliance
redirects the user to a previously configured URL or, if no URL is configured, displays an internally
generated error page.

The following is the syntaxof the ingress annotation that youcanuse tobindcipher groupsandenable
cipher redirect to redirect the request to redirecturl.

1 ingress.citrix.com/frontend-sslprofile:'{
2 "snienable": "enabled", "ciphers" : [{
3 "ciphername": "secure", "cipherpriority" :"1" }
4], "cipherredirect":"enabled", "cipherurl": "https://redirecturl" }
5 '

TCP use cases

December 31, 2023

This topic covers various TCP use cases that you can configure on the Ingress NetScaler using the
annotations in the NetScaler Ingress Controller.

The following table lists the TCP use cases with sample annotations:

Use case Sample annotation

Silently drop idle TCP connections ingress.citrix.com/frontend-
tcpprofile: '{ "apache":{ "
DropHalfClosedConnOnTimeout" : "
ENABLE", "DropEstConnOnTimeout":"
ENABLE" } } '

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 436

NetScaler ingress controller

Use case Sample annotation

Delayed TCP connection acknowledgments ingress.citrix.com/frontend-
tcpprofile: '{ "apache":{ "
delayack" : "150" } } '

Client side MPTCP session management ingress.citrix.com/frontend-
tcpprofile: '{ "apache":{ "mptcp
": "ENABLED", "
mptcpSessionTimeout":"7200" } } '

TCP Optimization N/A

Defending TCP against spoofing attacks ingress.citrix.com/
frontend_tcpprofile: '{ "
rstwindowattenuate" : "enabled",
"spoofSynDrop":"enabled" }

Silently drop idle TCP connections

In a network, large number of TCP connections become idle, and the Ingress NetScaler sends RST
packets to close them. The packets sent over the channels activate those channels unnecessarily,
causing a flood of messages that in turn causes the Ingress NetScaler to generate a flood of service‑
reject messages.

Using the drophalfclosedconnontimeout and dropestconnontimeout parameters
in TCP profiles, you can silently drop TCP half closed connections on idle timeout or drop TCP
established connections on an idle timeout. By default, these parameters are disabled on the Ingress
NetScaler. If you enable both of them, neither a half closed connection nor an established connection
causes an RST packet to be sent to the client when the connection times out. The NetScaler just
drops the connection.

Using theannotations forTCPprofiles, youcanenableordisable thedrophalfclosedconnontimeout
and dropestconnontimeout on the Ingress NetScaler. The following is a sample annotation of
TCP profile to enable these parameters:

1 ingress.citrix.com/frontend-tcpprofile: '{
2 "apache":{
3 "drophalfclosedconnontimeout" : "enable", "dropestconnontimeout":"

enable" }
4 }
5 '

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 437

NetScaler ingress controller

Delayed TCP connection acknowledgments

To avoid sending several ACK packets, Ingress NetScaler supports TCP delayed acknowledgment
mechanism. It sends delayed ACK with a default timeout of 100 ms. Ingress NetScaler accumulates
data packets and sends ACK only if it receives two data packets in continuation or if the timer expires.
The minimum delay you can set for the TCP deployed ACK is 10 ms and the maximum is 300 ms. By
default the delay is set to 100 ms.

Using the annotations for TCP profiles, you canmanage the delayed ACK parameter. The following is
a sample annotation of TCP profile to enable these parameters:

1 ingress.citrix.com/frontend-tcpprofile: '{
2 "apache":{
3 "delayack" : "150" }
4 }
5 '

Client side MPTCP sessionmanagement

You perform TCP configuration on the Ingress NetScaler for MPTCP connections between the client
and Ingress NetScaler. MPTCP connections are not supported between NetScaler and the back‑end
communication. Both the client and the Ingress NetScaler appliance must support the same MPTCP
version.

You can enable MPTCP and set the MPTCP session timeout (mptcpsessiontimeout) in seconds
using TCP profiles in the Ingress NetScaler. If the mptcpsessiontimeout value is not set then the
MPTCP sessions are flushed after the client idle timeout. Theminimum timeout value you can set is 0
and the maximum is 86400. By default, the timeout value is set to 0.

Using the annotations for TCPprofiles, you can enableMPTCP and set themptcpsessiontimeout
parameter value on the Ingress NetScaler. The following is a sample annotation of TCP profile to
enable MPTCP and set the mptcpsessiontimeout parameter value to 7200 on the Ingress
NetScaler:

1 ingress.citrix.com/frontend-tcpprofile: '{
2 "apache":{
3 "mptcp" : "ENABLED", "mptcpSessionTimeout":"7200" }
4 }
5 '

TCP Optimization

Most of the relevant TCP optimization capabilities of the Ingress NetScaler are exposed through a cor‑
responding TCP profile. Using the annotations for TCP profiles, you can enable the following TCP

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 438

NetScaler ingress controller

optimization capabilities on the Ingress NetScaler:

• Selective acknowledgment (SACK): TCP SACK addresses the problem of multiple
packet losses which reduces the overall throughput capacity. With selective acknowledgment
the receiver can inform the sender about all the segments which are received successfully,
enabling sender to only retransmit the segments which were lost. This technique helps T1
improve overall throughput and reduce the connection latency.

The following is a sample annotation of TCP profile to enable SACK on the Ingress NetScaler:

1 ingress.citrix.com/frontend_tcpprofile: '{
2 "sack" : "enabled" }

• Forward acknowledgment (FACK): To avoidTCPcongestionbyexplicitlymeasuring the
total number of data bytes outstanding in the network, and helping the sender (either T1 or a
client) control the amount of data injected into the network during retransmission timeouts.

The following is a sample annotation of TCP profile to enable FACK on the Ingress NetScaler:

1 ingress.citrix.com/frontend_tcpprofile: '{
2 "fack" : "enabled" }

• Window Scaling (WS): TCPWindowscaling allows increasing theTCP receivewindowsize
beyond 65535 bytes. It helps improving TCP performance overall and specially in high band‑
width and long delay networks. It helps with reducing latency and improving response time
over TCP.

The following is a sample annotation of TCP profile to enable WS on the Ingress NetScaler:

1 ingress.citrix.com/frontend_tcpprofile: '{
2 "ws" : "enabled", "wsval" : "9" }

Where wsval is the factor used to calculate the new window size. The argument is mandatory
only whenwindow scaling is enabled. Theminimum value you can set is 0 and themaximum is
14. By default, the value is set to 4.

• Maximum Segment Size (MSS): MSS of a single TCP segment. This value depends on the
MTU setting on intermediate routers and end clients. A value of 1460 corresponds to an MTU of
1500.

The following is a sample annotation of TCP profile to enable MSS on the Ingress NetScaler:

1 ingress.citrix.com/frontend_tcpprofile: '{
2 "mss" : "1460", "maxPktPerMss" : "512" }

Where:

– mss is theMSS to use for the TCP connection. Theminimum value you can set is 0 and the
maximum is 9176.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 439

NetScaler ingress controller

– maxPktPerMss is themaximumnumber of TCP packets allowed permaximumsegment
size (MSS). The minimum value you can set is 0 and the maximum is 1460.

• Keep-Alive (KA): Send periodic TCP keep‑alive (KA) probes to check if the peer is still up.

The following is a sample annotation of TCP profile to enable TCP keep‑alive (KA) on the Ingress
NetScaler:

1 ingress.citrix.com/frontend_tcpprofile: '{
2 "ka" : "enabled", "kaprobeupdatelastactivity":"enabled", "

KAconnIdleTime": "900", "kamaxprobes" : "3", "
kaprobeinterval" : "75" }

Where:

– ka is used to enable sending periodic TCP keep‑alive (KA) probes to check if the peer is
still up. Possible values: ENABLED, DISABLED. Default value: DISABLED.

– kaprobeupdatelastactivity updates the last activity for the connection after re‑
ceiving keep‑alive (KA) probes. Possible values: ENABLED, DISABLED. Default value: EN‑
ABLED.

– KAconnIdleTime is the duration (in seconds) for the connection to be idle, before send‑
ing a keep‑alive (KA) probe. Theminimumvalue you can set is 1 and themaximum is 4095.

– kaprobeinterval is the time internal (in seconds) before the next keep‑alive (KA)
probe, if the peer does not respond. The minimum value you can set is 1 and the
maximum is 4095.

• bufferSize: Specify the TCP buffer size, in bytes. The minimum value you can set is 8190
and the maximum is 20971520. By default the value is set to 8190.

The following is a sample annotation of TCP profile to specify the TCP buffer size:

1 ingress.citrix.com/frontend_tcpprofile: '{
2 "bufferSize" : "8190" }

• MPTCP: Enable MPTCP and set the optional MPTCP configuration. The following is a sample
annotation of TCP profile to enable MPTCP and se the optional MPTCP configurations:

1 ingress.citrix.com/frontend_tcpprofile: '{
2 "mptcp" : "enabled", "mptcpDropDataOnPreEstSF":"enabled", "

mptcpFastOpen": "enabled", "mptcpSessionTimeout":"7200" }

• flavor: Set the TCP congestion control algorithm. Valid values are Default, BIC, CUBIC, West‑
wood, and Nile. By default the value is set to Default. The following is a sample annotation of
TCP profile to set the TCP congestion control algorithm:

1 ingress.citrix.com/frontend_tcpprofile: '{
2 "flavor" : "westwood" }

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 440

NetScaler ingress controller

• Dynamic receive buffering: Enable or disable dynamic receive buffering. When en‑
abled, it allows the receive buffer to be adjusted dynamically based on memory and network
conditions. Possible values: ENABLED, DISABLED, and the Default value: DISABLED.

Note:

The buffer size argument must be set for dynamic adjustments to take place.

1 ingress.citrix.com/frontend_tcpprofile: '{
2 "dynamicReceiveBuffering" : "enabled" }

Defend TCP against spoofing attacks

Youcanenable the IngressNetScaler todefendTCPagainst spoofattacksusing therstWindowAttenuation
in TCP profiles. By default the rstWindowAttenuation parameter is disabled. This parameter
is enabled to protect the Ingress NetScaler against spoofing. If you enable, it replies with corrective
acknowledgment (ACK) for an invalid sequence number. Possible values are Enabled or Disabled.

The following is a sample annotation of TCP profile to enable rstWindowAttenuation on the
Ingress NetScaler:

1 ingress.citrix.com/frontend_tcpprofile: '{
2 "rstwindowattenuate" : "enabled", "spoofSynDrop":"enabled" }

HTTP use cases

December 31, 2023

This topic covers various HTTP use cases that you can configure on the Ingress NetScaler using the
annotations in the NetScaler Ingress Controller.

The following table lists the HTTP use cases with sample annotations:

Use case Sample annotation

Configuring HTTP/2 ingress.citrix.com/frontend-
httpprofile: '{ "http2":"enabled"
} '

ingress.citrix.com/backend-
httpprofile: '{ "apache":{ "
http2direct" : "enabled" } '

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 441

NetScaler ingress controller

Use case Sample annotation

ingress.citrix.com/backend-
httpprofile: '{ "apache":{ "
http2direct" : "enabled", "altsvc
":"enabled" } '

Handling HTTP session timeouts ingress.citrix.com/frontend-
httpprofile: '{ "reqtimeout" :
"10", "reqtimeoutaction":"drop" }
'

ingress.citrix.com/frontend-
httpprofile: '{ "reqtimeout" :
"10", "adptimeout" : "enable" } '

ingress.citrix.com/backend-
httpprofile: '{ "apache":{ "
reusepooltimeout" : "20000" } } '

Configuring HTTP/2

The Ingress NetScaler HTTP/2 on the client side as well on the server side. For more information, see
HTTP/2 support on NetScaler. For an HTTP load balancing configuration on the Ingress NetScaler, it
uses one of the following methods to start communicating with the client/server using HTTP/2.

The IngressNetScalerprovidesconfigurableoptions inanHTTPprofile for theHTTP/2methods. These
HTTP/2 options can be applied to the client side as well to the server side of an HTTPS or HTTP load
balancing setup. The NetScaler Ingress Controller provides annotations to configure the HTTP profile
on the Ingress NetScaler. You use these annotations to configure the various HTTP load balancing
configuration on the Ingress NetScaler to communicate with the client/server using HTTP/2.

Note:

Ensure that the HTTP/2 Service Side global parameter (HTTP2Serverside) is enabled on the
Ingress NetScaler.

HTTP/2 upgrade

In this method, a client sends an HTTP/1.1 request to a server. The request includes an upgrade
header, which asks the server for upgrading the connection to HTTP/2. If the server supports HTTP/2,

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 442

NetScaler ingress controller

the server accepts the upgrade request and notifies it in its response. The client and the server start
communicating using HTTP/2 after the client receives the upgrade confirmation response.

Using the annotations forHTTPprofiles, you can configure theHTTP/2upgrademethodon the Ingress
NetScaler. The following is a sample annotation of the HTTP profile to configure the HTTP/2 upgrade
method on the Ingress NetScaler:

1 ingress.citrix.com/frontend-httpprofile: '{
2 "http2":"enabled" }
3 '

Direct HTTP/2

In thismethod, a clientdirectly starts communicating toa server inHTTP/2 insteadofusing theHTTP/2
upgrademethod. If the server does not support HTTP/2 or is not configured to directly accept HTTP/2
requests, it drops the HTTP/2 packets from the client. Thismethod is helpful if the admin of the client
device already knows that the server supports HTTP/2.

Using the annotations for HTTP profiles, you can configure the direct HTTP/2 method on the Ingress
NetScaler. The following is a sample annotation of the HTTP profile to configure the direct HTTP/2
method on the Ingress NetScaler:

1 ingress.citrix.com/backend-httpprofile: '{
2 "apache":{
3 "http2direct" : "enabled" }
4 }
5 '

Direct HTTP/2 using Alternative Service (ALT‑SVC)

In this method, a server advertises that it supports HTTP/2 to a client by including an Alternative Ser‑
vice (ALT‑SVC) field in its HTTP/1.1 response. If the client is configured to understand the ALT‑SVC field,
the client and the server start directly communicating using HTTP/2 after the client receives the re‑
sponse.

The following is a sample annotation for the HTTP profile to configure the direct HTTP/2 using alter‑
native service (ALT‑SVC) method on the Ingress NetScaler:

1 ingress.citrix.com/backend-httpprofile: '{
2 "apache":{
3 "http2direct" : "enabled", "altsvc":"enabled" }
4 }
5 '

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 443

NetScaler ingress controller

Handling HTTP session timeouts

To handle the different types of HTTP request and also tomitigate attacks such as, Slowloris DDoS at‑
tack,where in the clients initiate connections that youmightwant to restrict. On the IngressNetScaler,
you can configure the following timeouts for these scenarios:

• reqTimeout and reqTimeoutAction
• adptTimeout
• reusePoolTimeout

reqTimeout and reqTimeoutAction

In NetScaler, you can configure the HTTP request timeout value and the request timeout action using
the reqTimeout and reqTimeoutAction parameter in the HTTP profile. The reqTimeout
value is set in seconds and the HTTP request must complete within the specified time in the
reqTimeout parameter. If the HTTP request does not complete within the defined time, the
specified request timeout action in the reqTimeoutAction is executed. The minimum timeout
value that you can set is 0 and the maximum is 86400. By default, the timeout value is set to 0.

Using the reqTimeoutAction parameter you can specify the type of action that must be taken
in case the HTTP request timeout value (reqTimeout) elapses. You can specify the following ac‑
tions:

• RESET
• DROP

Using the annotations for HTTP profiles, you can configure the HTTP request timeout and HTTP re‑
quest timeout action. The following is a sample annotation of the HTTP profile to configure the HTTP
request timeout and HTTP request timeout action on the Ingress NetScaler:

1 ingress.citrix.com/frontend-httpprofile: '{
2 "reqtimeout" : "10", "reqtimeoutaction":"drop" }
3 '

adptTimeout

Instead of using a set timeout value for the requested sessions, you can also enable adptTimeout
. The adptTimeout parameter adapts the request timeout as per the flow conditions. If enabled,
then request timeout is increased or decreased internally and applied on the flow. By default, this
parameter is set as DISABLED.

Using annotations for HTTP profiles, you can enable or disable the adpttimeout parameter as fol‑
lows:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 444

NetScaler ingress controller

1 ingress.citrix.com/frontend-httpprofile: '{
2 "reqtimeout" : "10", "adptimeout" : "enable" }
3 '

reusePoolTimeout

You can configure a reuse pool timeout value to flush any idle server connections in from the reuse
pool. If the server is idle for the configured amount of time, then the corresponding connections are
flushed.

Theminimum timeout value that you can set is 0 and themaximum is 31536000. By default, the time‑
out value is set to 0.

Using annotations for HTTP profiles, you can configure the required timeout value as follows:

1 ingress.citrix.com/backend-httpprofile: '{
2 "apache":{
3 "reusepooltimeout" : "20000" }
4 }
5 '

HTTP callout with the rewrite and responder policy

December 31, 2023

AnHTTPcalloutallowsNetScaler togenerateandsendanHTTPorHTTPS request toanexternal server
(callout agent) as part of the policy evaluation. The information that is retrieved from the server (call‑
out agent) can be analyzed by advanced policy expressions and an appropriate action can be per‑
formed. For more information about the HTTP callout, see the NetScaler documentation.

You can initiate the HTTP callout through the following expressions with the rewrite and responder
CRD provided by NetScaler:

• sys.http_callout(): This expression is used for blocking the call when the httpcallout
agent response needs to be evaluated.

• sys.non_blocking_http_callout(): This expression is used fornon‑blocking calls (for
example: traffic mirroring)

These expressions accept the httpcallout_policy name defined in the CRD as a parameter,
where the name needs to be specified in double quotes.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 445

https://docs.citrix.com/en-us/citrix-adc/current-release/appexpert/http-callout.html
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/rewrite-responder-policies-deployment.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/rewrite-responder-policies-deployment.yaml

NetScaler ingress controller

For example: sys.http_callout("callout_name").
In this expression, callout_name refers to the appropriate httpcallout_policy defined in
the rewrite and responder CRD YAML file.

The following table explains the attributes of the HTTP callout request in the rewrite and responder
CRD.

Parameter Description

name Specifies the name of the callout, maximum is
up to 32 characters.

server_ip Specifies the IP Address of the server (callout
agent) to which the callout is sent.

server_port Specifies the Port of the server (callout agent) to
which the callout is sent.

http_method Specifies the method used in the HTTP request
that this callout sends. The default value is GET.

host_expr Specifies the text expression to configure the
host header. This expression can be a literal
value (for example, 192.101.10.11) or it can be an
advanced expression (for example,
http.req.header(“Host”)) that derives the value.
The literal value can be an IP address or a fully
qualified domain name. Mutually exclusive with
the full HTTP request expression.

url_stem_expr Specifies a string expression for generating the
URL stem. The string expression can contain a
literal string (for example, “/mysite/index.html”)
or an expression that derives the value (for
example, http.req.url).

headers Specifies one or more headers to insert into the
HTTP request. Each header name and exp,
where exp is an expression that is evaluated at
runtime to provide the value for the named
header.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 446

NetScaler ingress controller

Parameter Description

parameters Specifies one or more query parameters to insert
into the HTTP request URL (for a GET request) or
into the request body (for a POST request). Each
parameter is represented by a name and an
expr, where expr is an expression that is
evaluated at run time to provide the value for the
named parameter (name=value). The parameter
values are URL encoded.

body_expr An advanced string expression for generating the
body of the request. The expression can contain
a literal string or an expression that derives the
value (for example, client.ip.src).

full_req_expr Specifies the exact HTTP request, in the form of
an expression, which the NetScaler sends to the
callout agent. The request expression is
constrained by the feature for which the callout
is used. For example, an HTTP.RES expression
cannot be used in a request‑time policy bank or
in a TCP content switching policy bank.

scheme Specifies the type of scheme for the callout
server. Example: HTTP, HTTPS

return_type Specifies the type of data that the target callout
agent returns in response to the callout. The
available settings function as follows: TEXT ‑
Treat the returned value as a text string. NUM ‑
Treat the returned value as a number. BOOL ‑
Treat the returned value as a boolean value.

cache_for_secs Specifies the duration, in seconds, for which the
callout response is cached. The cached
responses are stored in an integrated caching
content group named
calloutContentGroup. If the duration is not
configured, the callout responses are not cached
unless a normal caching configuration is used to
cache them. This parameter takes precedence
over any normal caching configuration that
would otherwise apply to these responses.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 447

NetScaler ingress controller

Parameter Description

result_expr Specifies the expression that extracts the callout
results from the response sent by the HTTP
callout agent. This expression must be a
response based expression, that is, it must begin
with HTTP.RES. The operations in this
expression must match the return type. For
example, if you configure a return type of TEXT,
the result expression must be a text based
expression. If the return type is NUM, the result
expression (result_expr) must return a numeric
value, as in the following example:
http.res.body(10000).length

comment Specifies any comments to preserve the
information about this HTTP callout.

Using the rewrite and responder CRD to validate whether a client IP address is
blocklisted

This section shows how to initiate an HTTP callout using the rewrite and responder CRD to validate
whether a client IP address is blocklisted or not and take appropriate action.

The following diagramexplains theworkflowof a requestwhere each number in the diagramdenotes
a step in the workflow:

1. Client request

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 448

NetScaler ingress controller

2. HTTP callout request to check if the client is blocklisted (The client IP address is sent as a query
parameter with the name Cip)

3. Response from the HTTP callout server

4. Request is forwarded to the service if the response in step3 indicates a safe IPaddress (the client
IP address is not matching with the blocklisted IP addresses on the callout server).

5. Respond to the client as Access denied, if the response in step 3 indicates a bad IP address
(the client IP address is matching with the blocklisted IP addresses on the callout server).

The following is a sample YAML file (ip_validate_responder.yaml) for validating a blocklisted
IP address:

Note:

Youmustdeploy the rewriteand responderCRDbeforedeploying theip_validate_responder
YAML file.

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: validateip
5 spec:
6 responder-policies:
7 - servicenames:
8 - frontend
9 responder-policy:

10 respondwith:
11 http-payload-string: '"HTTP/1.1 401 Access denied\r\n\r\n"'
12 respond-criteria: 'sys.http_callout("blocklist_callout").

CONTAINS("IP Matched")' #Callout name needs to be given in
double quotes to pick httpcallout_policy

13 comment: 'Invalid access'
14
15 httpcallout_policy:
16 - name: blocklist_callout
17 server_ip: "192.2.156.160"
18 server_port: 80
19 http_method: GET
20 host_expr: '"192.2.156.160"'
21 url_stem_expr: '"/validateIP.pl"'
22 headers:
23 - name: X-Request
24 expr: '"Callout Request"'
25 parameters:
26 - name: Cip
27 expr: 'CLIENT.IP.SRC'
28 return_type: TEXT
29 result_expr: 'HTTP.RES.BODY(100)'
30 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 449

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/rewrite-responder-policies-deployment.yaml

NetScaler ingress controller

Using the rewrite and responder CRD to update the URLwith a valid path requested by
the client

This section shows how to initiate an HTTP callout using the rewrite and responder CRD when a path
exposed to the client is different from the actual path due to security reasons.

The work flow of a request is explained in the following diagram where each number in the diagram
denotes a step in the workflow.

1. Client request

2. HTTP callout request to get the valid path (the path requested from the client is sent as a query
parameter with the name path to the callout server)

3. Response from the HTTP callout server

4. TheURL request is rewrittenwith a validpath and forwarded to the service (where the validpath
is mentioned between the tags newpath in the callout response).

The following is a sample YAML (path_rewrite) file.

Note:

You must deploy the rewrite and responder CRD before deploying the path_rewrite YAML
file.

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: getvalidpath
5 spec:
6 rewrite-policies:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 450

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/rewrite-responder-policies-deployment.yaml

NetScaler ingress controller

7 - servicenames:
8 - frontend
9 rewrite-policy:

10 operation: replace
11 target: http.req.url
12 modify-expression: 'sys.http_callout("mapping_callout")' #

Callout name needs to be given in double quotes to pick
httpcallout_policy

13 comment: 'Get the valid path'
14 direction: REQUEST
15 rewrite-criteria: 'TRUE'
16
17 httpcallout_policy:
18 - name: mapping_callout
19 server_ip: "192.2.156.160"
20 server_port: 80
21 http_method: GET
22 host_expr: '"192.2.156.160"'
23 url_stem_expr: '"/getPath.pl"'
24 headers:
25 - name: X-Request
26 expr: '"Callout Request"'
27 parameters:
28 - name: path
29 expr: 'http.req.url'
30 return_type: TEXT
31 result_expr: '"HTTP.RES.BODY(500).AFTER_STR(\"<newpath>\").

BEFORE_STR(\"</newpath>\")"'
32 <!--NeedCopy-->

Configure session affinity or persistence on the Ingress NetScaler

December 31, 2023

Session affinity or persistence settings on the Ingress NetScaler allows you to direct client requests
to the same selected server regardless of which virtual server in the group receives the client request.
When the configured time for persistence expires, any virtual server in the group is selected for the
incoming client requests.

If persistence is configured, it overrides the loadbalancingmethodsonce the server hasbeen selected.
Itmaintains the states of connections on the servers represented by that virtual server. The NetScaler
then uses the configured load balancing method for the initial selection of a server, but forwards to
that same server all subsequent requests from the same client.

The most commonly used persistence type is persistence based on cookies.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 451

NetScaler ingress controller

Configure persistence based on cookies

When you enable persistence based on cookies, the NetScaler adds an HTTP cookie into the Set-
Cookie header field of the HTTP response. The cookie contains information about the service to
which the HTTP requests must be sent. The client stores the cookie and includes it in all subsequent
requests, and the ADC uses it to select the service for those requests.

The NetScaler inserts the cookie <NSC_XXXX>= <ServiceIP> <ServicePort>.

Where:

• <<NSC_XXXX> is the virtual server ID that is derived from the virtual server name.
• <<ServiceIP> is the hexadecimal value of the IP address of the service.
• <<ServicePort> is the hexadecimal value of the port of the service.

TheNetScaler encryptsServiceIP andServicePortwhen it inserts a cookie, anddecrypts them
when it receives a cookie.

For example, a.com=ffffffff02091f1045525d5f4f58455e445a4a423660;expires=
Fri, 23-Aug-2019 07:01:45.

You can configure persistence setting on the ingress NetScaler, using the following Ingress annotation
provided by the NetScaler Ingress Controller:

1 ingress.citrix.com/lbvserver: '{
2 "apache":{
3 "persistenceType":"COOKIEINSERT", "timeout":"20", "cookiename":"

k8s_cookie" }
4 }
5 '

Where:

• timeout specifies the duration of persistence. If session cookies are used with a timeout
value of 0, no expiry time is specified by NetScaler regardless of the HTTP cookie version used.
The session cookie expires when the Web browser is closed

• cookiename specifies the name of cookie with a maximum of 32 characters. If not specified,
cookie name is internally generated.

• persistenceTypehere specifies the typeofpersistence tobeused,COOKIEINSERT is used
to cookie based persistence. Apart from cookie, other options can also be used along with ap‑
propriate arguments and other required parameters.

Possible values are SOURCEIP, SSLSESSION, DESTIP, SRCIPDESTIP, and so on.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 452

NetScaler ingress controller

Source IP address persistence

When source IP persistence is configured on the Ingress NetScaler, you can set persistence to an load
balancing virtual server, that creating a stickiness for the subsequest requests from the same client.

The following is a sample Ingress annotation to configure source IP address persistence:

1 ingress.citrix.com/lbvserver: '{
2 "apache":{
3 "persistenceType":"SOURCEIP", "timeout":"10" }
4 }
5 '

SSL session ID persistence

When SSL session ID persistence is configured, theNetScaler appliance uses the SSL session ID, which
is part of the SSL handshake process, to create a persistence session before the initial request is di‑
rected to a service. The load balancing virtual server directs subsequent requests that have the same
SSL session ID to the same service. This type of persistence is used for SSL bridge services.

The following is a sample Ingress annotation to configure SSL session ID persistence:

1 ingress.citrix.com/lbvserver: '{
2 "apache":{
3 "persistenceType":"SSLSESSION" }
4 }
5 '

Destination IP address‑based persistence

In this type of persistence, when the Ingress NetScaler receives a request from a new client, it creates
a persistence session based on the IP address of the service selected by the virtual server (the desti‑
nation IP address). Subsequently, it directs requests to the same destination IP to the same service.
This type of persistence is used with link load balancing.

The following is a sample Ingress annotation to configure destination IP address‑basedpersistence:

1 ingress.citrix.com/lbvserver: '{
2 "apache":{
3 "persistenceType":"DESTIP" }
4 }
5 '

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 453

NetScaler ingress controller

Source and destination IP address‑based persistence

In this type of persistence, when the NetScaler appliance receives a request, it creates a persistence
session based on both the IP address of the client (the source IP address) and the IP address of the
service selected by the virtual server (the destination IP address). Subsequently, it directs requests
from the same source IP and to the same destination IP to the same service.

The following is a sample Ingress annotation to configure source and destination IP address‑based
persistence:

1 ingress.citrix.com/lbvserver: '{
2 "apache":{
3 "persistenceType":"SRCIPDESTIP" }
4 }
5 '

Allowlisting or blocklisting IP addresses

December 31, 2023

Allowlisting IP addresses allows you to create a list of trusted IP addresses or IP address
ranges from which users can access your domains. It is a security feature that is often used to limit
and control access only to trusted users.

Blocklisting IP addresses is a basic access controlmechanism. It denies access to theusers
accessing your domain using the IP addresses that you have blocklisted.

The Rewrite and Responder CRD provided by NetScaler enables you to define extensive rewrite and
responder policies using datasets, patsets, and string maps and also enable audit logs for statistics
on the Ingress NetScaler.

Using the rewrite or responder policies you can allowlist or blocklist the IP addresses/CIDR using
which users can access your domain.

The following sections cover various ways you can allowlist or blocklist the IP addresses/CIDR using
the rewrite or responder policies.

Allowlist IP addresses

Usinga responderpolicy, you canallowlist IP addresses and silently drop the requests from the clients
using IP addresses different from the allowlisted IP addresses.

Create a file named allowlist-ip.yamlwith the following rewrite policy configuration:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 454

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/rewrite-responder.html

NetScaler ingress controller

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: allowlistip
5 spec:
6 responder-policies:
7 - servicenames:
8 - frontend
9 responder-policy:

10 drop:
11 respond-criteria: '!client.ip.src.TYPECAST_text_t.equals_any("

allowlistip")'
12 comment: 'Allowlist certain IP addresses'
13 patset:
14 - name: allowlistip
15 values:
16 - '10.xxx.170.xx'
17 - '10.xxx.16.xx'
18 <!--NeedCopy-->

You can also provide the IP addresses as a list:

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: allowlistip
5 spec:
6 responder-policies:
7 - servicenames:
8 - frontend
9 responder-policy:

10 drop:
11 respond-criteria: '!client.ip.src.TYPECAST_text_t.equals_any("

allowlistip")'
12 comment: 'Allowlist certain IP addresses'
13 patset:
14 - name: allowlistip
15 values: ['10.xxx.170.xx', '10.xxx.16.xx']
16 <!--NeedCopy-->

Then, deploy the YAML file (allowlist-ip.yaml) using the following command:

1 kubectl create -f allowlist-ip.yaml

Allowlist IP addresses and send 403 response to the request from clients not in the
allowlist

Using a responder policy, you can allowlist a list of IP addresses and send the HTTP/1.1 403
Forbidden response to the requests from the clients using IP addresses different from the

allowlisted IP addresses.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 455

NetScaler ingress controller

Create a file named allowlist-ip-403.yamlwith the following rewrite policy configuration:

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: allowlistip
5 spec:
6 responder-policies:
7 - servicenames:
8 - frontend
9 responder-policy:

10 respondwith:
11 http-payload-string: '"HTTP/1.1 403 Forbidden\r\n\r\n" + "

Client: " + CLIENT.IP.SRC + " is not authorized to access
URL:" + HTTP.REQ.URL.HTTP_URL_SAFE +"\n"'

12 respond-criteria: '!client.ip.src.TYPECAST_text_t.equals_any("
allowlistip")'

13 comment: 'Allowlist a list of IP addresses'
14 patset:
15 - name: allowlistip
16 values: ['10.xxx.170.xx', '10.xxx.16.xx']
17 <!--NeedCopy-->

Then, deploy the YAML file (allowlist-ip-403.yaml) using the following command:

1 kubectl create -f allowlist-ip-403.yaml

Allowlist a CIDR

You can allowlist a CIDR using a responder policy. The following is a sample responder policy config‑
uration to allowlist a CIDR:

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: blocklistips1
5 spec:
6 responder-policies:
7 - servicenames:
8 - frontend
9 responder-policy:

10 respondwith:
11 http-payload-string: '"HTTP/1.1 403 Forbidden\r\n\r\n" + "

Client: " + CLIENT.IP.SRC + " is not authorized to access
URL:" + HTTP.REQ.URL.HTTP_URL_SAFE +"\n"'

12 respond-criteria: '!client.ip.src.IN_SUBNET(10.xxx.170.xx/24)'
13 comment: 'Allowlist certain IPs'
14 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 456

NetScaler ingress controller

Blocklist IP addresses

Usinga responderpolicy, you canblocklist IP addresses and silently drop the requests fromthe clients
using the blocklisted IP addresses.

Create a file named blocklist-ip.yamlwith the following responder policy configuration:

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: blocklistips
5 spec:
6 responder-policies:
7 - servicenames:
8 - frontend
9 responder-policy:

10 respondwith:
11 drop:
12 respond-criteria: 'client.ip.src.TYPECAST_text_t.equals_any("

blocklistips")'
13 comment: 'Blocklist certain IPS'
14
15 patset:
16 - name: blocklistips
17 values:
18 - '10.xxx.170.xx'
19 - '10.xxx.16.xx'
20 <!--NeedCopy-->

Then, deploy the YAML file (blocklist-ip.yaml) using the following command:

1 kubectl create -f blocklist-ip.yaml

Blocklist a CIDR

You can blocklist a CIDR using a responder policy. The following is a sample responder policy config‑
uration to blocklist a CIDR:

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: blocklistips1
5 spec:
6 responder-policies:
7 - servicenames:
8 - frontend
9 responder-policy:

10 respondwith:
11 http-payload-string: '"HTTP/1.1 403 Forbidden\r\n\r\n" + "

Client: " + CLIENT.IP.SRC + " is not authorized to access
URL:" + HTTP.REQ.URL.HTTP_URL_SAFE +"\n"'

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 457

NetScaler ingress controller

12 respond-criteria: 'client.ip.src.IN_SUBNET(10.xxx.170.xx/24)'
13 comment: 'Blocklist certain IPs'
14 <!--NeedCopy-->

Allowlist a CIDR and blocklist IP addresses

You can allowlist a CIDR and also blocklist IP addresses using a responder policy. The following is a
sample responder policy configuration:

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: allowlistsub
5 spec:
6 responder-policies:
7 - servicenames:
8 - frontend
9 responder-policy:

10 drop:
11 respond-criteria: 'client.ip.src.TYPECAST_text_t.equals_any("

blocklistips") || !client.ip.src.IN_SUBNET(10.xxx.170.xx/24)
'

12 comment: 'Allowlist a subnet and blocklist few IP's'
13
14 patset:
15 - name: blocklistips
16 values:
17 - '10.xxx.170.xx'
18 <!--NeedCopy-->

Blocklist a CIDR and allowlist IP addresses

You can blocklist a CIDR and also allowlist IP addresses using a responder policy. The following is a
sample responder policy configuration:

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: blocklistips1
5 spec:
6 responder-policies:
7 - servicenames:
8 - frontend
9 responder-policy:

10 drop:
11 respond-criteria: 'client.ip.src.IN_SUBNET(10.xxx.170.xx/24) &&

!client.ip.src.TYPECAST_text_t.equals_any("allowlistips")'
12 comment: 'Blocklist a subnet and allowlist few IP's'
13

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 458

NetScaler ingress controller

14 patset:
15 - name: allowlistips
16 values:
17 - '10.xxx.170.xx'
18 - '10.xxx.16.xx'
19 <!--NeedCopy-->

Interoperability with ExternalDNS

December 31, 2023

InaKubernetesenvironment, youcanexposeyourdeploymentusingaserviceof typeLoadBalancer
. Also, an IP address can be assigned to the service using . The assigns IP address to the service from
a defined pool of IP addresses. For more information, see Expose services of type LoadBalancer with
IP addresses assigned by the IPAM controller.

The service can be accessed using the IP address assigned by the IPAM controller and for service dis‑
covery you need to manually register the IP address to a DNS provider. If the IP address assigned to
the service changes, the associated DNS recordmust bemanually updated and the entire process be‑
comes cumbersome. In such cases, you can use a ExternalDNS to keep the DNS records synchronized
with your external entry points. Also, ExternalDNS allows you to control DNS records dynamically
through Kubernetes resources in a DNS provider‑agnostic way.

For the ExternalDNS integration to work, the external-dns.alpha.kubernetes.io/
hostname annotation must contain the host name.

Note:

For ExtenalDNS to work, ensure that you add the annotation external-dns.alpha.
kubernetes.io/hostname in the service specification and specify a host name for the
service using the annotation.

To integrate with ExternalDNS:

1. Install the ExternalDNS with Infoblox provider.

Note:

The interoperability solutionhasbeen testedwith Infobloxproviderand the solutionmight
work for other providers as well.

2. Specify the domain name in the ExternalDNS configuration.

3. In the service of type LoadBalancer specification, add the following annotation and specify
a host name for the service using the annotation:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 459

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/network/type_loadbalancer.md
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/network/type_loadbalancer.md
https://github.com/kubernetes-sigs/external-dns
https://github.com/kubernetes-sigs/external-dns

NetScaler ingress controller

1 external-dns.alpha.kubernetes.io/hostname

4. Deploy the service using the following command:

1 kubectl create -f <service-name>.yml

Using NetScaler credentials stored in a Vault server for the NetScaler
Ingress Controller

December 31, 2023

Inmost organizations, tier 1 NetScaler Ingress devices and Kubernetes clusters aremanaged by sepa‑
rate teams. Usually, network administrators manage tier 1 NetScaler Ingress devices, while develop‑
ersmanageKubernetes clusters. TheNetScaler IngressController requiresNetScaler credentials such
as NetScaler user name and password to configure the NetScaler. You can specify NetScaler creden‑
tials as part of the NetScaler Ingress Controller specification and store the ADC credentials as Kuber‑
netes secrets. However, you can also storeNetScaler credentials in a Vault server andpass credentials
to the NetScaler Ingress Controller to minimize any security risk. This topic provides information on
how to use NetScaler credentials stored in a Vault server for the NetScaler Ingress Controller.

The following diagram explains the steps for using NetScaler credentials which are stored in a Vault
server with the NetScaler Ingress Controller.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 460

NetScaler ingress controller

Prerequisites

Ensure that you have setup a Vault server and enabled key‑value (KV) secret store. For more informa‑
tion, see Vault documentation.

Using NetScaler credentials from a Vault server for the NetScaler Ingress Controller

Perform the following tasks to use NetScaler credentials from a Vault server for the NetScaler Ingress
Controller.

1. Create a service account for Kubernetes authentication.

2. Create a Key Vault secret and setup Kubernetes authentication on Vault server.

3. Leverage Vault Auto‑Auth functionality to fetch NetScaler credentials for the NetScaler Ingress
Controller.

Create a service account for Kubernetes authentication

Create a service account for Kubernetes authentication by using the following steps:

1. Create a service account cic-k8s-role and provide the service account necessary permis‑
sions to access the Kubernetes TokenReview API by using the following command.

1 $ kubectl apply -f cic-k8s-role-service-account.yml
2
3
4 serviceaccount/cic-k8s-role created
5 clusterrole.rbac.authorization.k8s.io/cic-k8s-role configured
6 clusterrolebinding.rbac.authorization.k8s.io/cic-k8s-role

configured
7 clusterrolebinding.rbac.authorization.k8s.io/role-tokenreview-

binding configured

Following is a part of the sample cic‑k8s‑role‑service‑account.yml file.

1 apiVersion: rbac.authorization.k8s.io/v1
2 kind: ClusterRoleBinding
3 metadata:
4 name: role-tokenreview-binding
5 namespace: default
6 roleRef:
7 apiGroup: rbac.authorization.k8s.io
8 kind: ClusterRole
9 name: system:auth-delegator

10 subjects:
11 - kind: ServiceAccount
12 name: cic-k8s-role

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 461

https://www.vaultproject.io/docs/install/index.html
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/how-to/examples-yamls/cic-k8s-role-service-account.yml

NetScaler ingress controller

13 namespace: default

2. Set the VAULT_SA_NAME environment variable to the name of the service account you have
already created.

1 export VAULT_SA_NAME=$(kubectl get sa cic-k8s-role -o
jsonpath="{

2 .secrets[*]['name'] }
3 ")
4 <!--NeedCopy-->

3. Set the SA_JWT_TOKEN environment variable to the JWT of the service account that you used
to access the TokenReview API.

1 export SA_JWT_TOKEN=$(kubectl get secret $VAULT_SA_NAME -o
jsonpath="{

2 .data.token }
3 " | base64 --decode; echo)
4 <!--NeedCopy-->

4. Get a Kubernetes CA signed certificate to communicate with Kubernetes API.

1 export SA_CA_CRT=$(kubectl get secret $VAULT_SA_NAME -o
jsonpath="{

2 .data['ca\.crt'] }
3 " | base64 --decode; echo)
4 <!--NeedCopy-->

Create a key vault secret and setup Kubernetes authentication on the Vault server

Log in to the Vault server and perform the following steps to create a Key Vault secret and setup Ku‑
bernetes authentication.

1. Review the sample vault policy file citrix‑adc‑kv‑ro.hcl and create a read‑only policy, citrix-
adc-kv-ro in Vault.

1 $ tee citrix-adc-kv-ro.hcl <<EOF
2 # If working with K/V v1
3 path "secret/citrix-adc/*"
4 {
5
6 capabilities = ["read", "list"]
7 }
8
9 # If working with K/V v2

10 path "secret/data/citrix-adc/*"
11 {
12
13 capabilities = ["read", "list"]
14 }

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 462

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/how-to/examples-yamls/citrix-adc-kv-ro.hcl

NetScaler ingress controller

15
16 EOF
17
18 # Create a policy named citrix-adc-kv-ro
19 $ vault policy write citrix-adc-kv-ro citrix-adc-kv-ro.hcl

2. Create a KV secret with NetScaler credentials at the secret/citrix-adc/ path.

1 vault kv put secret/citrix-adc/credential username='<ADC
username>' \

2 password='<ADC password>' \
3 ttl='30m'

3. Enable Kubernetes authentication at the default path (auth/kubernetes).

1 # $ vault auth enable kubernetes

4. Specify how to communicate with the Kubernetes cluster.

1 $ vault write auth/kubernetes/config \
2 token_reviewer_jwt="$SA_JWT_TOKEN" \
3 kubernetes_host="https://<K8S_CLUSTER_URL>:<API_SERVER_PORT>" \
4 kubernetes_ca_cert="$SA_CA_CRT"

5. Create a role tomap the Kubernetes service account to Vault policies and the default token TTL.
This role authorizes the cic-k8s-role service account in the default namespace and maps
the service account to the citrix-adc-kv-ro policy.

1 $ vault write auth/kubernetes/role/cic-vault-example\
2 bound_service_account_names=cic-k8s-role \
3 bound_service_account_namespaces=default \
4 policies=citrix-adc-kv-ro \
5 ttl=24h

Note:

Authorization with Kubernetes authentication back‑end is role based. Before a token is
used for login, it must be configured as part of a role.

Leverage Vault agent auto‑authentication for the NetScaler Ingress Controller

Perform the following steps to leverage Vault auto‑authentication.

1. Review the provided Vault Agent configuration file, vault-agent-config.hcl.

1 exit_after_auth = true
2 pid_file = "/home/vault/pidfile"
3
4 auto_auth {
5

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 463

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/how-to/examples-yamls/vault-agent-config.hcl

NetScaler ingress controller

6 method "kubernetes" {
7
8 mount_path = "auth/kubernetes"
9 config = {

10
11 role = "cic-vault-example"
12 }
13
14 }
15
16
17 sink "file" {
18
19 config = {
20
21 path = "/home/vault/.vault-token"
22 }
23
24 }
25
26 }

Note:

The Vault agent Auto-Auth is configured to use the Kubernetes authentication method
enabled at the auth/kubernetes path on the Vault server. The Vault Agent uses the
cic-vault-example role to authenticate.
The sink block specifies the location on disk where to write tokens. Vault Agent Auto-
Auth sink can be configuredmultiple times if youwant Vault Agent to place the token into
multiple locations. In this example, the sink is set to /home/vault/.vault-token.

2. Review the Consul template consul‑template‑config.hcl
file.

1 vault {
2
3 renew_token = false
4 vault_agent_token_file = "/home/vault/.vault-token"
5 retry {
6
7 backoff = "1s"
8 }
9

10 }
11
12
13 template {
14
15 destination = "/etc/citrix/.env"
16 contents = <<EOH
17 NS_USER=

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 464

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/how-to/examples-yamls/consul-template-config.hcl

NetScaler ingress controller

18 NS_PASSWORD=
19
20 EOH
21 }

This template reads secrets at the secret/citrix-adc/credential path and sets the
user name and password values.
If you are using KV store version 1, use the following template.

1 template {
2
3 destination = "/etc/citrix/.env"
4 contents = <<EOH
5 NS_USER=
6 NS_PASSWORD=
7
8 EOH
9 }

3. Create a Kubernetes config‑map from vault‑agent‑config.hcl and consul‑template‑config.hcl.

1 kubectl create configmap example-vault-agent-config --from-
file=./vault-agent-config.hcl --form-file=./consul-template
-config.hcl

4. Create aNetScaler Ingress Controller podwith Vault and consul template as init container citrix‑
k8s‑ingress‑controller‑vault.yaml. Vault fetches the token using the Kubernetes authentication
method and pass it on to a consul templatewhich creates the.env file on shared volume. This
token is used by the NetScaler Ingress Controller for authentication with tier 1 NetScaler.

1 kubectl apply citrix-k8s-ingress-controller-vault.yaml

The citrix-k8s-ingress-controller-vault.yaml file is as follows:

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 annotations:
5 name: cic-vault
6 namespace: default
7 spec:
8 containers:
9 - args:

10 - --ingress-classes tier-1-vpx
11 - --feature-node-watch true
12 env:
13 - name: NS_IP
14 value: <Tier 1 ADC IP-ADDRESS>
15 - name: EULA
16 value: "yes"
17 image: in-docker-reg.eng.citrite.net/cpx-dev/kumar-cic

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 465

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/how-to/examples-yamls/vault-agent-config.hcl
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/how-to/examples-yamls/consul-template-config.hcl
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/how-to/examples-yamls/citrix-k8s-ingress-controller-vault.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/how-to/examples-yamls/citrix-k8s-ingress-controller-vault.yaml

NetScaler ingress controller

:latest
18 imagePullPolicy: Always
19 name: cic-k8s-ingress-controller
20 volumeMounts:
21 - mountPath: /etc/citrix
22 name: shared-data
23 initContainers:
24 - args:
25 - agent
26 - -config=/etc/vault/vault-agent-config.hcl
27 - -log-level=debug
28 env:
29 - name: VAULT_ADDR
30 value: <VAULT URL>
31 image: vault
32 imagePullPolicy: Always
33 name: vault-agent-auth
34 volumeMounts:
35 - mountPath: /etc/vault
36 name: config
37 - mountPath: /home/vault
38 name: vault-token
39 - args:
40 - -config=/etc/consul-template/consul-template-config.

hcl
41 - -log-level=debug
42 - -once
43 env:
44 - name: HOME
45 value: /home/vault
46 - name: VAULT_ADDR
47 value: <VAULT_URL>
48 image: hashicorp/consul-template:alpine
49 imagePullPolicy: Always
50 name: consul-template
51 volumeMounts:
52 - mountPath: /home/vault
53 name: vault-token
54 - mountPath: /etc/consul-template
55 name: config
56 - mountPath: /etc/citrix
57 name: shared-data
58 serviceAccountName: vault-auth
59 volumes:
60 - emptyDir:
61 medium: Memory
62 name: vault-token
63 - configMap:
64 defaultMode: 420
65 items:
66 - key: vault-agent-config.hcl
67 path: vault-agent-config.hcl
68 - key: consul-template-config.hcl

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 466

NetScaler ingress controller

69 name: example-vault-agent-config
70 name: config
71 - emptyDir:
72 medium: Memory
73 name: shared-data

If the configuration is successful, the Vault server fetches a token and passes it on to a Consul tem‑
plate container. The Consul template uses the token to read NetScaler credentials and write it as an
environment variable in the path/etc/citrix/.env. TheNetScaler Ingress Controller uses these
credentials for communicating with the tier 1 NetScaler.

Verify that the NetScaler Ingress Controller is running successfully using credentials fetched from the
Vault server.

How to use Kubernetes secrets for storing NetScaler credentials

December 31, 2023

In most organizations, Tier 1 NetScaler Ingress devices and Kubernetes clusters are managed by sep‑
arate teams. The NetScaler Ingress Controller requires NetScaler credentials such as NetScaler user
name and password to configure the NetScaler. Usually, NetScaler credentials are specified as envi‑
ronment variables in the NetScaler Ingress Controller pod specification. But, another secure option
is to use Kubernetes secrets to store the NetScaler credentials.

This topic describes how to use Kubernetes secrets to store the ADC credentials and various ways to
provide the credentials stored as secret data for the NetScaler Ingress Controller.

Create a Kubernetes secret

Perform the following steps to create a Kubernetes secret.

1. Create a fileadc-credential-secret.yamlwhichdefines aKubernetes secret YAMLwith
NetScaler user name and password in the data section as follows.

1 apiVersion: v1
2 kind: Secret
3 metadata:
4 name: adc-credential
5 data:
6 username: <ADC user name>
7 password: <ADC password>

2. Apply the adc-credential-secret.yaml file to create a secret.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 467

NetScaler ingress controller

1 kubectl apply -f adc-credential-secret.yaml

Alternatively, you can also create the Kubernetes secret using--from-literaloption of the
kubectl command as shown as follows:

1 kubectl create secret generic adc-credentials --from-literal=
username=<username> --from-literal=password=<password>

Once you have created a Kubernetes secret, you can use one of the following options to use the secret
data in the NetScaler Ingress Controller pod specification.

• Use secret data as environment variables in the NetScaler Ingress Controller pod specification
• Use a secret volumemount to pass credentials to the NetScaler Ingress Controller

Use secret data as environment variables in the NetScaler Ingress Controller pod
specification

You can use secret data from the Kubernetes secret as the values for the environment variables in the
NetScaler Ingress Controller deployment specification.

A snippet of the YAML file is shown as follows.

1 - name: "NS_USER"
2 valueFrom:
3 secretKeyRef:
4 name: adc-credentials
5 key: username
6 # Set user password for Nitro
7 - name: "NS_PASSWORD"
8 valueFrom:
9 secretKeyRef:

10 name: adc-credentials
11 key: password

Here is an example of the NetScaler Ingress Controller deployment with value of environment vari‑
ables sourced from the secret object.

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: cic-k8s-ingress-controller
5 spec:
6 selector:
7 matchLabels:
8 app: cic-k8s-ingress-controller
9 replicas: 1

10 template:
11 metadata:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 468

NetScaler ingress controller

12 name: cic-k8s-ingress-controller
13 labels:
14 app: cic-k8s-ingress-controller
15 annotations:
16 spec:
17 serviceAccountName: cic-k8s-role
18 containers:
19 - name: cic-k8s-ingress-controller
20 image: <image location>
21 env:
22 # Set NetScaler NSIP/SNIP, SNIP in case of HA (mgmt has to be

enabled)
23 - name: "NS_IP"
24 value: "x.x.x.x"
25 # Set username for Nitro
26 - name: "NS_USER"
27 valueFrom:
28 secretKeyRef:
29 name: adc-credentials
30 key: username
31 # Set user password for Nitro
32 - name: "NS_PASSWORD"
33 valueFrom:
34 secretKeyRef:
35 name: adc-credentials
36 key: password
37 # Set log level
38 - name: "EULA"
39 value: "yes"
40 imagePullPolicy: Always
41 <!--NeedCopy-->

Use a secret volumemount to pass credentials to the NetScaler Ingress Controller

Alternatively, you can also use a volume mount using the secret object as a source for the NetScaler
credentials. The NetScaler Ingress Controller expects the secret to be mounted at path /etc/
citrix and it looks for the credentials in files username and password.

You can create a volume from the secret object and then mount the volume using volumeMounts at
/etc/citrix as shown in the following deployment example.

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: cic-k8s-ingress-controller
5 spec:
6 selector:
7 matchLabels:
8 app: cic-k8s-ingress-controller
9 replicas: 1

10 template:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 469

NetScaler ingress controller

11 metadata:
12 name: cic-k8s-ingress-controller
13 labels:
14 app: cic-k8s-ingress-controller
15 annotations:
16 spec:
17 serviceAccountName: cic-k8s-role
18 containers:
19 - name: cic-k8s-ingress-controller
20 image: <image location>
21 env:
22 # Set NetScaler NSIP/SNIP, SNIP in case of HA (mgmt has to be

enabled)
23 - name: "NS_IP"
24 value: "x.x.x.x"
25 # Set log level
26 - name: "EULA"
27 value: "yes"
28 volumeMounts:
29 # name must match the volume name below
30 - name: secret-volume
31 mountPath: /etc/citrix
32 imagePullPolicy: Always
33 # The secret data is exposed to Containers in the Pod through a

Volume.
34 volumes:
35 - name: secret-volume
36 secret:
37 secretName: adc-credentials
38 <!--NeedCopy-->

Use NetScaler credentials stored in a Hashicorp Vault server

You can also use the NetScaler credentials stored in a Hashicorp Vault server for the NetScaler Ingress
Controller and push the credentials through a sidecar container.

For more information, see Using NetScaler credentials stored in a Vault server.

How to load balance ingress traffic to TCP or UDP based application

April 8, 2024

In a Kubernetes environment, an ingress object allows access to the Kubernetes services fromoutside
the Kubernetes cluster. Standard Kubernetes ingress resources assume that all the traffic is HTTP‑
basedanddonot cater to non‑HTTPbasedprotocols such as TCP,UDP, andSSL.Hence, anynon‑HTTP
applications such as DNS, FTP or LDAP cannot be exposed using the standard Kubernetes ingress.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 470

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/how-to/use-vault-stored-credentials-for-cic.md

NetScaler ingress controller

NetScaler provides a solution using ingress annotations to load balance TCP or UDP‑based ingress
traffic. When you specify these annotations in the ingress resource definition, NetScaler Ingress Con‑
troller configures NetScaler to load balance TCP or UDP‑based ingress traffic.

You can use the following annotations in your Kubernetes ingress resource definition to load balance
the TCP or UDP‑based ingress traffic:

• ingress.citrix.com/insecure-service-type: This annotation enables L4 load
balancing with TCP, UDP, or ANY as a protocol for NetScaler.

• ingress.citrix.com/insecure-port: This annotation configures the port for HTTP,
TCP or UDP traffic. It is helpful when micro service access is required on a non‑standard port.
By default, port 80 is configured.

For more information about annotations, see annotations.

You can also use the standard Kubernetes solution of creating a service of typeLoadBalancerwith
NetScaler. You can find out more about Service Type LoadBalancer in NetScaler.

Sample: Ingress definition for TCP‑based ingress.

1 kubectl apply -f - <<EOF
2 apiVersion: networking.k8s.io/v1
3 kind: Ingress
4 metadata:
5 annotations:
6 ingress.citrix.com/insecure-port: '6379'
7 ingress.citrix.com/insecure-service-type: tcp
8 name: redis-master-ingress
9 spec:

10 ingressClassName: guestbook
11 defaultBackend:
12 service:
13 name: redis-master-pods
14 port:
15 number: 6379
16 ---
17 apiVersion: networking.k8s.io/v1
18 kind: IngressClass
19 metadata:
20 name: guestbook
21 spec:
22 controller: citrix.com/ingress-controller
23 EOF
24 <!--NeedCopy-->

Sample: Ingress definition for UDP‑based ingress.

1 kubectl apply -f - <<EOF
2 apiVersion: networking.k8s.io/v1
3 kind: Ingress
4 metadata:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 471

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/annotations.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer#overview-of-services-of-type-loadbalancer

NetScaler ingress controller

5 annotations:
6 ingress.citrix.com/insecure-port: "5084"
7 ingress.citrix.com/insecure-service-type: "udp"
8 name: udp-ingress
9 spec:

10 defaultBackend:
11 service:
12 name: frontend
13 port:
14 name: udp-53 # Service port name defined in the service

defination
15 EOF
16 <!--NeedCopy-->

Sample: Service definition where the service port name is defined as udp-53:

1 kubectl apply -f - <<EOF
2 apiVersion: v1
3 kind: Service
4 metadata:
5 name: bind
6 labels:
7 app: bind
8 spec:
9 ports:

10 - name: udp-53
11 port: 53
12 targetPort: 53
13 protocol: UDP
14 selector:
15 name: bind
16 EOF
17 <!--NeedCopy-->

Load balance ingress traffic based on SSL over TCP

NetScaler Ingress Controller provides ingress.citrix.com/secure-service-type:
ssl_tcp annotation that you can use to load balance ingress traffic based on SSL over TCP.

Sample: Ingress definition for SSL over TCP based Ingress.

1 kubectl apply -f - <<EOF
2 apiVersion: networking.k8s.io/v1
3 kind: Ingress
4 metadata:
5 annotations:
6 ingress.citrix.com/secure-service-type: "ssl_tcp"
7 ingress.citrix.com/secure-backend: '{
8 "frontendcolddrinks":"True" }
9 '

10 name: colddrinks-ingress

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 472

NetScaler ingress controller

11 spec:
12 ingressClassName: colddrink
13 defaultBackend:
14 service:
15 name: frontend-colddrinks
16 port:
17 number: 443
18 tls:
19 - secretName: "colddrink-secret"
20 ---
21 apiVersion: networking.k8s.io/v1
22 kind: IngressClass
23 metadata:
24 name: colddrink
25 spec:
26 controller: citrix.com/ingress-controller
27 EOF
28 <!--NeedCopy-->

Monitor and improve the performance of your TCP or UDP‑based applications

Application developers can closelymonitor the health of TCP or UDP‑based applications through rich
monitors (such as TCP‑ECV, UDP‑ECV) in NetScaler. The ECV (extended content validation) monitors
help in checking whether the
application returns expected content or not. NetScaler Ingress Controller provides ingress
.citrix.com/monitor annotation that can be used to monitor the health of the backend
service.

Also, the application performance can be improved by using persistence methods such as Source
IP. You can use these NetScaler features through Smart Annotations in
Kubernetes.

The following ingress resource example uses smart annotations:

1 kubectl apply -f - <<EOF
2 apiVersion: networking.k8s.io/v1
3 kind: Ingress
4 metadata:
5 annotations:
6 ingress.citrix.com/frontend-ip: "192.168.1.1"
7 ingress.citrix.com/insecure-port: "80"
8 ingress.citrix.com/lbvserver: '{
9 "mongodb-svc":{

10 "lbmethod":"SRCIPDESTIPHASH" }
11 }
12 '
13 ingress.citrix.com/monitor: '{
14 "mongodbsvc":{
15 "type":"tcp-ecv" }

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 473

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/annotations#smart-annotations-for-ingress

NetScaler ingress controller

16 }
17 '
18 name: mongodb
19 spec:
20 rules:
21 - host: mongodb.beverages.com
22 http:
23 paths:
24 - backend:
25 service:
26 name: mongodb-svc
27 port:
28 number: 80
29 path: /
30 pathType: Prefix
31 EOF
32 <!--NeedCopy-->

For more information about the different deployment options supported by NetScaler Ingress Con‑
troller, see Deployment topologies.

For more information about deploying NetScaler Ingress Controller:

• Deploy the NetScaler Ingress Controller using Helm charts

How to expose non‑standard HTTP ports in the NetScaler CPX service

Sometimes you need to expose ports other than 80 and 443 in a NetScaler CPX service for allowing
TCP or UDP traffic on other ports.
This section provides information on how to expose other non‑standard HTTP ports on the NetScaler
CPX service when you deploy it in the Kubernetes cluster.

For Helm chart deployments

Toexposenon‑standardHTTPportswhile deployingNetScaler CPXwith ingress controller usingHelm
charts, see the Helm chart installation guide.

For deployments using the OpenShift operator

Fordeploymentsusing theOpenShiftoperator, youneed toedit the YAMLdefinition to createCPXwith
ingress controller as specified in the step 6 of Deploy theNetScaler Ingress Controller as a sidecarwith
NetScaler CPX using NetScaler Operator and specify the ports as shown in the following example:

1 servicePorts:
2 - port: 80
3 protocol: TCP

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 474

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-helm.html
https://github.com/netscaler/netscaler-helm-charts/blob/master/netscaler-cpx-with-ingress-controller/README.md#netscaler-cpx-service-ports
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/nsic-openshift-operator#deploy-netscaler-ingress-controller-as-a-sidecar-with-netscaler-cpx
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/nsic-openshift-operator#deploy-netscaler-ingress-controller-as-a-sidecar-with-netscaler-cpx

NetScaler ingress controller

4 name: http
5 - port: 443
6 protocol: TCP
7 name: https
8 - port: 6379
9 protocol: TCP

10 name: tcp
11 <!--NeedCopy-->

The following sample configuration is an example for deployment using the OpenShift Operator. The
service port definitions are highlighted in green.

.

How to set up dual‑tier deployment

December 31, 2023

In a dual‑tier deployment, NetScaler VPX or MPX is deployed outside the Kubernetes cluster (Tier‑1)

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 475

NetScaler ingress controller

and NetScaler CPXs are deployed inside the Kubernetes cluster (Tier‑2).

NetScalerMPXorVPXdevices inTier‑1proxy the traffic (North‑South) fromtheclient toNetScalerCPXs
in Tier‑2. The Tier‑2 NetScaler CPX then routes the traffic to the microservices in the Kubernetes clus‑
ter. The NetScaler Ingress Controller deployed as a standalone pod configures the Tier‑1 NetScaler.
And, the sidecar NetScaler Ingress Controller in one or more NetScaler CPX pods configures the asso‑
ciated NetScaler CPX in the same pod.

TheDual‑Tier deployment canbe set up onKubernetes in baremetal environment or onpublic clouds
such as, AWS, GCP, or Azure.

The following diagram shows a Dual‑Tier deployment:

Setup process

The NetScaler Ingress Controller repo provides a sample Apache microservice and manifests for
NetScaler CPX for Tier‑2, ingress object for Tier‑2 NetScaler CPX, NetScaler Ingress Controller, and an
ingress object for Tier‑1 NetScaler for demonstration purpose. These samples are used in the setup
process to deploy a dual‑tier topology.

Perform the following:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 476

https://github.com/citrix/citrix-k8s-ingress-controller

NetScaler ingress controller

1. Create a Kubernetes cluster in cloud or on‑premises. The Kubernetes cluster in cloud can be a
managed Kubernetes (for example: GKE, EKS, or AKS) or a custom created Kubernetes deploy‑
ment.

2. Deploy NetScaler MPX or VPX on amulti‑NIC deployment mode outside the Kubernetes cluster.

• For instructions to deploy NetScaler MPX, see NetScaler documentation.

• For instructions to deploy NetScaler VPX, see Deploy a NetScaler VPX instance.

Perform the following after you deploy NetScaler VPX or MPX:

a) Configurean IPaddress fromthesubnetof theKubernetes cluster asSNIPon theNetScaler.
For information on configuring SNIPs in NetScaler, see Configuring Subnet IP Addresses
(SNIPs).

b) Enablemanagement access for the SNIP that is the same subnet of the Kubernetes cluster.
The SNIP should be used as NS_IP variable in the NetScaler Ingress Controller YAML file
to enable NetScaler Ingress Controller to configure the Tier‑1 NetScaler.

Note:

It is not mandatory to use SNIP as NS_IP. If the management IP address of the
NetScaler is reachable from NetScaler Ingress Controller then you can use the man‑
agement IP address as NS_IP.

c) In cloud deployments, enable MAC‑Based Forwarding mode on the Tier‑1 NetScaler VPX.
As NetScaler VPX is deployed in multi‑NIC mode, it would not have the return route to
reach the POD CNI network or the Client network. Hence, you need to enable MAC‑Based
Forwarding mode on the Tier‑1 NetScaler VPX to handle this scenario.

d) Create a NetScaler systemuser account specific to NetScaler Ingress Controller. NetScaler
Ingress Controller uses the system user account to automatically configure the Tier‑1
NetScaler.

e) Configure your on‑premises firewall or security groups on your cloud to allow inbound
traffic to the ports required for NetScaler. The Setup process uses port 80 and port 443,
you canmodify these ports based on your requirement.

3. Deploy a sample microservice. Use the following command:

1 kubectl create -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/deployment/dual-tier/manifest/
apache.yaml

4. Deploy NetScaler CPX as Tier‑2 ingress. Use the following command:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 477

https://docs.citrix.com/en-us/citrix-adc/13
https://docs.citrix.com/en-us/citrix-adc/13/deploying-vpx.html
https://docs.citrix.com/en-us/citrix-adc/13/networking/ip-addressing/configuring-citrix-adc-owned-ip-addresses/configuring-subnet-ip-addresses-snips.html
https://docs.citrix.com/en-us/citrix-adc/13/networking/ip-addressing/configuring-citrix-adc-owned-ip-addresses/configuring-subnet-ip-addresses-snips.html
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/dual-tier/manifest/tier-1-vpx-cic.yaml
https://docs.citrix.com/en-us/citrix-adc/13/networking/interfaces/configuring-mac-based-forwarding.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#create-system-user-account-for-citrix-ingress-controller-in-citrix-adc

NetScaler ingress controller

1 kubectl create -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/deployment/dual-tier/manifest/
tier-2-cpx.yaml

5. Create an ingress object for the Tier‑2 NetScaler CPX. Use the following command:

1 kubectl create -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/deployment/dual-tier/manifest/
ingress-tier-2-cpx.yaml

6. Deploy the NetScaler Ingress Controller for Tier‑1 NetScaler. Perform the following:

a) Download the NetScaler Ingress Controller manifest file. Use the following command:

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-
ingress-controller/master/deployment/dual-tier/manifest/
tier-1-vpx-cic.yaml

b) Edit the NetScaler Ingress Controller manifest file and enter the values for the following
environmental variables:

Environment Variable Mandatory or Optional Description

NS_IP Mandatory The IP address of the NetScaler
appliance. For more details,
see Prerequisites.

NS_USER and NS_PASSWORD Mandatory The user name and password
of the NetScaler VPX or MPX
appliance used as the Ingress
device. For more details, see
Prerequisites.

EULA Mandatory The End User License
Agreement. Specify the value
as Yes.

LOGLEVEL Optional The log levels to control the
logs generated by NetScaler
Ingress Controller. By default,
the value is set to DEBUG. The
supported values are:
CRITICAL, ERROR, WARNING,
INFO, and DEBUG. For more
information, see Log Levels

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 478

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#prerequisites
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#prerequisites
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/log-levels.html

NetScaler ingress controller

Environment Variable Mandatory or Optional Description

NS_PROTOCOL and NS_PORT Optional Defines the protocol and port
that must be used by NetScaler
Ingress Controller to
communicate with NetScaler.
By default, NetScaler Ingress
Controller uses HTTPS on port
443. You can also use HTTP on
port 80.

ingress‑classes Optional If multiple ingress load
balancers are used to load
balance different ingress
resources. You can use this
environment variable to specify
NetScaler Ingress Controller to
configure NetScaler associated
with specific ingress class. For
information on Ingress classes,
see Ingress class support

NS_VIP Optional NetScaler Ingress Controller
uses the IP address provided in
this environment variable to
configure a virtual IP address to
the NetScaler that receives
Ingress traffic.

c) Deploy the updated NetScaler Ingress Controller manifest file. Use the following com‑
mand:

1 kubectl create -f tier-1-vpx-cic.yaml

7. Create an ingress object for the Tier‑1 NetScaler. Use the following command:

1 kubectl create -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/deployment/dual-tier/manifest/
ingress-tier-1-vpx.yaml

8. Update DNS server details in the cloud or on‑premises to point your website to the VIP of the
Tier‑1 NetScaler.

For example: citrix-ingress.com 192.250.9.1

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 479

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/ingress-classes.html

NetScaler ingress controller

Where 192.250.9.1 is the VIP of the Tier‑1 NetScaler and citrix-ingress.com is the
microservice running in your Kubernetes cluster.

9. Access the URL of the microservice to verify the deployment.

Set up dual‑tier deployment using one step deploymentmanifest file

For easy deployment, the NetScaler Ingress Controller repo includes an all‑in‑one deployment man‑
ifest. You can download the file and update it with values for the following environmental variables
and deploy the manifest file.

Note:

Ensure that you have completed step 1–2 in the Setup process.

Perform the following:

1. Download the all‑in‑one deployment manifest file. Use the following command:

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-
controller/master/deployment/dual-tier/manifest/all-in-one-dual
-tier-demo.yaml

2. Edit the all‑in‑one deploymentmanifest file and enter the values for the following environmen‑
tal variables:

Environment Variable Mandatory or Optional Description

NS_IP Mandatory The IP address of the NetScaler
appliance. For more details,
see Prerequisites.

NS_USER and NS_PASSWORD Mandatory The user name and password
of the NetScaler VPX or MPX
appliance used as the Ingress
device. For more details, see
Prerequisites.

EULA Mandatory The End User License
Agreement. Specify the value
as Yes.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 480

https://github.com/citrix/citrix-k8s-ingress-controller
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#prerequisites
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#prerequisites

NetScaler ingress controller

Environment Variable Mandatory or Optional Description

LOGLEVEL Optional The log levels to control the
logs generated by NetScaler
Ingress Controller. By default,
the value is set to DEBUG. The
supported values are:
CRITICAL, ERROR, WARNING,
INFO, and DEBUG. For more
information, see Log Levels

NS_PROTOCOL and NS_PORT Optional Defines the protocol and port
that must be used by NetScaler
Ingress Controller to
communicate with NetScaler.
By default, NetScaler Ingress
Controller uses HTTPS on port
443. You can also use HTTP on
port 80.

ingress‑classes Optional If multiple ingress load
balancers are used to load
balance different ingress
resources. You can use this
environment variable to specify
NetScaler Ingress Controller to
configure NetScaler associated
with specific ingress class. For
information on Ingress classes,
see [Ingress class support](/en‑
us/netscaler‑k8s‑ingress‑
controller/configure/ingress‑
classes.html

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 481

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/log-levels.html

NetScaler ingress controller

Environment Variable Mandatory or Optional Description

NS_VIP Optional NetScaler Ingress Controller
uses the IP address provided in
this environment variable to
configure a virtual IP address to
the NetScaler that receives
Ingress traffic. Note: NS_VIP
acts as a fallback when the
frontend‑ip annotation is not
provided in Ingress yaml. Not
supported for Type
Loadbalancer service.

3. Deploy the updated all‑in‑one deployment manifest file. Use the following command:

1 kubectl create -f all-in-one-dual-tier-demo.yaml

Horizontal pod autoscaler for NetScaler CPXwith custommetrics

December 31, 2023

While deployingworkloads in a Kubernetes cluster for the first time, it is difficult to exactly predict the
resource requirements and how those requirements might change in a production environment. Us‑
ingHorizontal podautoscaler (HPA), youcanautomatically scale thenumberof pods in yourworkload
basedondifferentmetrics like actual resourceusage. HPA is a resourceprovidedbyKuberneteswhich
scales Kubernetes based resources like deployments, replicasets, and replication controllers.

Traditionally, HPA gets the required metrics from a metrics server. It then periodically adjusts the
numberof replicas in adeployment tomatch theobservedaveragemetrics to the target you specify.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 482

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/configure/annotations.md

NetScaler ingress controller

NetScaler provides a custom‑metric based HPA solution for NetScaler CPX.
By default, the metrics server only gives CPU andmemory metrics for a pod.
NetScaler provides a rich set of in‑built metrics for analyzing application performance and based on
these metrics you can take a better autoscaling judgment. A custom metric based HPA is a better
solution like autoscaling based on HTTP request rate, SSL transactions, or ADC bandwidth.

NetScaler CPX HPA solution

NetScaler CPX HPA solution consists of the following components:

• NetScaler VPX: NetScaler VPX or MPX is deployed at Tier‑1 and load balances the client requests
among the NetScaler CPX pods inside the cluster.

• NetScaler CPX: NetScaler CPX deployed inside the cluster acts as a Tier‑2 load balancer for the
endpoint application pods. The NetScaler CPX pod is running along with the NetScaler Ingress
Controller and NetScaler metric exporter as sidecars.

• NetScaler Ingress Controller: The NetScaler Ingress Controller is an ingress controller which
is built around the Kubernetes Ingress and automatically configures NetScaler based on the
Ingress resource configuration. TheNetScaler Ingress Controller deployed as a stand‑alonepod
configures the NetScaler VPX and other instances configures NetScaler CPXs.

• NetScaler Metrics Exporter: The NetScaler Metrics Exporter exports the application perfor‑
mance metrics to the open‑source monitoring system Prometheus. The NetScaler Metrics
Exporter collects metrics from NetScaler CPX and exposes it in a format that Prometheus can
understand.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 483

https://github.com/citrix/citrix-k8s-ingress-controller
(https://github.com/citrix/citrix-adc-metrics-exporter)

NetScaler ingress controller

• Prometheus: Prometheus is an open‑source systems monitoring and alerting toolkit.
Prometheus is used to collect metrics from NetScaler CPXs and expose them using a
Prometheus adapter which is queried by the HPA controller to keep a check onmetrics.

• Prometheus adapter: Prometheus adapter contains an implementation of the Kubernetes re‑
source metrics API and custom metrics API. This adapter is suitable for use with the autoscal‑
ing/v2 HPA in Kubernetes version 1.6+. It can also replace the metrics server on clusters that
already run Prometheus and collect the appropriate metrics.

The following diagram is a visual representation of how the NetScaler CPX HPA solution works.

The Tier‑1 NetScaler VPX load balances the NetScaler CPXs at Tier‑2. NetScaler CPXs load balance
applications. Other components like Prometheus, Prometheus‑adapter, and anHPA controller is also
deployed.

The HPA controller keeps polling the Prometheus‑adapter for custommetrics like HTTP requests rate
or bandwidth. Whenever the limit defined by the user in the HPA is reached, the HPA controller scales
the NetScaler CPX deployment and creates another NetScaler CPX pod to handle the load.

Deploy NetScaler CPX HPA solution

Perform the following steps to deploy the NetScaler CPX HPA solution.

1. Clone the citrix‑k8s‑ingress‑controller repository from GitHub using the following command.

1 git clone https://github.com/citrix/citrix-k8s-ingress-controller.
git

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 484

NetScaler ingress controller

After cloning, change your directory to the HPA folder with the following command.

1 cd citrix-k8s-ingress-controller/blob/master/docs/how-to/hpa

2. From the HPA directory, open and edit the values.sh file and set the following values for
NetScaler VPX.

• VPX_IP: IP address of the NetScaler VPX
• VPX_PASSWORD: The password of the nsroot user on the NetScaler VPX
• VIRTUAL_IP_VPX: The IP address on which the sample guesbook application is
accessed.

3. Create all the required resources by running the create_all.sh file.

1 ./create_all.sh

This step creates the following resources:

• Prometheus and Grafana for monitoring
• NetScaler CPX with the NetScaler Ingress Controller andmetrics exporter as sidecars
• NetScaler Ingress Controller as a stand‑alone pod to configure NetScaler VPX
• A sample guestbook application
• HPA controller for monitoring the NetScaler CPX autoscale deployment
• Prometheus adapter for exposing the custommetrics

4. Add an entry in the hosts file. The route must be added in the hosts file to route traffic for
the guestbook application to the NetScaler VPX virtual IP address.
For most Linux distros, the hosts file is present in the /etc folder.

5. Send some generated traffic and verify the NetScaler CPX autoscale deployment.

The NetScaler CPX deployment HPA has been configured in such a way that when the average
HTTP requests rate of the NetScaler CPX goes above 20 requests per second, it autoscales. You
can use the following scripts provided in the HPA folder for sending traffic:

• 16_curl.sh ‑ Send 16 HTTP requests per second (lesser than the threshold)
• 30_curl.sh ‑ Send 30 HTTP requests per second (greater than the threshold)

a. Run the 16_curl.sh script to send 16 HTTP requests per second to the NetScaler CPX.

1 ./16_curl.sh

The following diagram a Grafana dashboard which displays HTTP requests per second.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 485

http://www.guestbook.com
http://www.guestbook.com

NetScaler ingress controller

The following output shows the HPA state with 16 HTTP RPS.

b. Run the 30_curl.sh script to send 30 HTTP requests per second to NetScaler CPX.

1 ./30_curl.sh

When you run this script, the threshold of 20 requests that was set has been crossed and the
NetScaler CPX deployment autoscales fromone pod to two pods. The average value of themet‑
ric HTTP request rate also goes down from 30 to 15 as there are two NetScaler CPX pods.

The following output shows the state of HPA when the target is crossed.

The following output shows that the number of replicas of NetScaler CPX have gone up to 2 and
the average value of HTTP RPS comes down to 15.

The following diagram shows a Grafana dashboard with two NetScaler CPXs load balancing the
traffic.

6. Clean up by executing the delete_all.sh script.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 486

NetScaler ingress controller

1 ./delete_all.sh

Note:

If the Tier‑1 NetScaler VPX is not present, use NodePort to expose the NetScaler CPX service.

Deploy Direct Server Return

December 31, 2023

In a typical load‑balanced system, a load balancer acts as a mediator between
web servers and clients. Incoming client requests are received by the load balancer and it passes the
requests to the appropriate server with slight modifications to the data packets. The server responds
to the load balancer with the required data and then the load balancer forwards the response to the
client.

In a Direct Server Return (DSR) deployment, load balancer forwards the client request to the server,
but the back‑end server directly sends the response to the client. The use of different network paths
for request and response helps to avoid extra hops and reduces the latency. Because the server di‑
rectly responds to the client, DSR speeds up the response time between the client and the server and
also removes some extra load from the load balancer. Using DSR is a transparent way to achieve in‑
creased network performance for your applications with little to no infrastructure changes.
For more information on DSR using NetScaler, see the NetScaler documentation.

DSR solution is useful in the following situations:

• While handling applications that deliver video streaming where low latency (response time)
matters.

• Where intelligent load balancing is not required
• When the output capacity of the load‑balancer can be the bottleneck

However, when you use the DSR advanced layer 7 load balancing features are not supported.

DSR network topology for Kubernetes using NetScaler

In this topology, there is anexternal load‑balancer (Tier‑1ADC) thatdistributes the traffic to the ingress
ADC (Tier 2ADC)deployed inside theKubernetes cluster over anoverlay (L3DSR IPIP). Tier‑2 ADCpicks
up the packet, decapsulate the packet, and performs load balancing among services. The Tier‑2 ADC
sends the return traffic from service to the client instead of sending it via Tier‑1 ADC.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 487

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
https://docs.citrix.com/en-us/citrix-adc/13/load-balancing/load-balancing-dsrmode.html

NetScaler ingress controller

Deploying DSR for cloud native applications using NetScaler

Performthe steps in the following sections todeployDSR for applicationsdeployedon theKubernetes
cluster.

Deploy NetScaler CPX as Tier‑2 ADC

This section contains steps to create configurations required on the ingress device for DSR topology.

1. Create a namespace for DSR using the following command:

1 kubectl apply -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/example/dsr/KubernetesConfig/
dsr_namespace.yaml

2. Create a ConfigMap using the following command.

1 kubectl apply -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/example/dsr/KubernetesConfig/
cpx_config.yaml -n dsr

Note:

In this example, the node controller network is configured as 192.168.1.0/24. Hence, the
command to create IP tunnel is provided as add iptunnel dsr 192.168.1.254
255.255.255.0 *. You need to specify the value according to your CNC configuration.

3. Deploy NetScaler CPX on the namespace dsr.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 488

NetScaler ingress controller

1 kubectl apply -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/example/dsr/KubernetesConfig/
citrix-k8s-cpx-ingress.yml -n dsr

Deploying a sample application on the Kubernetes cluster

Perform the steps in this section to deploy a sample application on Kubernetes cluster.

1. Deploy the guestbook application using the following command.

1 kubectl apply -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/example/dsr/KubernetesConfig/
guestbook-all-in-one.yaml -n dsr

2. Expose the guestbook application using Ingress.

a) Download the guestbook ingress YAML file using the following command.

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-
ingress-controller/master/example/dsr/KubernetesConfig/
guestbook-all-in-one.yaml

b) Edit andprovide theDSR IPorpublic IPaddress throughwhichyouaccess yourapplication
using the ingress.citrix.com/frontend-ip: annotations.

1 ingress.citrix.com/frontend-ip: "<ip-address>"

c) Save the YAML file and deploy the Ingress resource using the following command.

1 kubectl apply -f guestbook-ingress.yaml -n dsr

Establish network connectivity between Tier‑1 and Tier‑2 ADCs

Perform the steps in this section to establish network connectivity between Tier‑1 and Tier‑2 ADCs.

1. Download the YAML to deploy node controller using the following command.

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-node-
controller/master/deploy/citrix-k8s-node-controller.yaml

2. Edit the YAML file and provide the values for NS_IP, NS_USER, NS_PASSWORD, and RE‑
MOTE_VTEPIP arguments. For detailed information, see node controller.

3. Save the YAML file and deploy the node controller.

1 kubectl create -f citrix-k8s-node-controller.yaml -n dsr

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 489

https://github.com/citrix/citrix-k8s-node-controller

NetScaler ingress controller

Deploy the NetScaler Ingress Controller for Tier‑1 ADC and expose NetScaler CPX as a service

Performthe following steps todeploy theNetScaler IngressController as a stand‑alonepodandcreate
an Ingress resource for Tier‑2 NetScaler CPX.

1. Download the NetScaler Ingress Controller YAML file using the following command.

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-
ingress-controller/master/example/dsr/KubernetesConfig/
citrix-k8s-ingress-controller.yaml

2. Edit the YAML file and update the following values for NetScaler Ingress Controller.

• NS_IP
• NS_USER
• NS_PASSWORD

For more information, see Deploy the NetScaler Ingress Controller using YAML.

3. Save the YAML file and deploy the NetScaler Ingress Controller.

1 kubectl create -f citrix-k8s-ingress-controller.yaml -n dsr

4. Create DSR configuration on Tier‑1 ADC by creating an ingress resource for the Tier‑2 NetScaler
CPX.

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-ingress
-controller/master/example/dsr/KubernetesConfig/vpx-ingress.
yaml

5. Edit the YAML file and provide the DSR or public IP address through which user access your
application using the ingress.citrix.com/frontend-ip: annotation. This IP address
must be same as the IP address you have specified in step 2.

1 kubectl apply -f vpx-ingress.yaml -n dsr

Test the DSR deployment

To test the DSR deployment, access the application from a browser using the IP address specified for
the ingress.citrix.com/frontend-ip: annotation. A guestbook page is populated.

A sample output is given as follows:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 490

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#deploy-citrix-ingress-controller-as-a-pod

NetScaler ingress controller

Troubleshooting

When you test the application, it might not populate any pages even though all the required config‑
urations are created. This is because of rp_filter<!--NeedCopy--> rules on the host. If you
experience such an issue, use the following commands on all the hosts to disable the rules.

1 sysctl -w net.ipv4.conf.all.rp_filter=0
2 sysctl -w net.ipv4.conf.cni0.rp_filter=0
3 sysctl -w net.ipv4.conf.eth0.rp_filter=0
4 sysctl -w net.ipv4.conf.cni0.rp_filter=0
5 sysctl -w net.ipv4.conf.default.rp_filter=0

Support for admission controller webhooks

December 31, 2023

Admission controllers are powerful tools for intercepting requests to the Kubernetes API server prior
to the persistence of the object. Using Kubernetes admission controllers, you can define and cus‑
tomize what is allowed to run on your cluster. Hence, they are useful tools for cluster administrators
to deploy preventive security controls on your cluster. But you need to compile the admission con‑
trollers into the kube-apiserver binary and they offer limited flexibility.

To overcome this limitation, Kubernetes supports dynamic admission controllers that can be devel‑
oped as extensions and run as webhooks configured at runtime.

Using the Admission controller webhooks Kubernetes cluster administrators can create additional
plug‑ins to the admission chain of API server without recompiling them. Admission controller web‑
hooks can be executed whenever a resource is created, updated, or deleted.

You can define two types of admission controller webhooks:

• validating admission webhook
• mutating admission webhook

Mutating admissionwebhooks are invoked first, and they canmodify objects sent to the API server to
enforce custom defaults. Once all the object modifications are complete, and the incoming object is

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 491

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/#admission-webhooks

NetScaler ingress controller

validated by the API server, validating admission webhooks are invoked. Validating admission hooks
process requests and accept or reject requests to enforce custom
policies.

The following diagram explains how the admission controller webhook works:

Here are some of the scenarios where admission webhooks are useful:

• To mandate a reasonable security baseline across an entire namespace or cluster mandating.
For example, disallowing containers from running as root or making sure the container’s root
filesystem is always mounted as read‑only.

• To enforce the adherence to certain standard and practices for labels, annotations, or resource
limits. For example, enforce label validation on different objects to ensure proper labels are
being used for various objects.

• To validate the configuration of the objects running in the cluster and prevent any obvious mis‑
configurations from hitting your cluster.
For example, to detect and fix images deployed without semantic tags.

How to apply admission controllers

Writing an admission controller for each specific use case is not scalable and it helps to have a sys‑
tem that that supports multiple configurations covering different resource types and fields. You can
use Open policy agent (OPA) and Gatekeeper to implement a customizable admission webhook for
Kubernetes.

OPA is an open source, general‑purpose policy engine that unifies policy enforcement across the
stack. Gatekeeper is a customizable validating webhook that enforces CRD‑based policies executed
by OPA.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 492

https://github.com/open-policy-agent
https://github.com/open-policy-agent/gatekeeper

NetScaler ingress controller

(image
credit)

Gatekeeper introduces the following functionalities

• An extensible, parameterized policy library
• Native Kubernetes CRDs for instantiating the policy library (constraints)
• Native Kubernetes CRDs for extending the policy library (constraint templates)
• Audit functionality

Writing and deploying an admission controller webhook

Prerequisites

• Kubernetes 1.14.0 or later with the admissionregistration.k8s.io/v1beta1 API enabled.
You can verify whether the API is enabled by using the following command:

1 kubectl api-versions | grep admissionregistration.k8s.io/v1beta1

The following output indicates that the API is enabled:

1 admissionregistration.k8s.io/v1beta1

• The mutating admission webhook and validate admission webhook admission controllers
should be added and listed in the correct order in the admission‑control flag of kube-
apiserver.

With Minikube, you can perform this task by starting Minikube with the following command:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 493

https://kubernetes.io/blog/2019/08/06/opa-gatekeeper-policy-and-governance-for-kubernetes/

NetScaler ingress controller

1 minikube start --extra-config=apiserver.enable-admission-plugins=
NamespaceLifecycle,LimitRanger,ServiceAccount,
DefaultStorageClass,DefaultTolerationSeconds,NodeRestriction,
MutatingAdmissionWebhook,ValidatingAdmissionWebhook`

• Ensure that you have cluster administrator permissions.

1 kubectl create clusterrolebinding cluster-admin-binding --
clusterrole cluster-admin --user <YOUR USER NAME>

Mutating admission webhook configuration

For more information on mutating admission webhook configuration, see ingress‑admission‑
webhook.

The following use cases are covered in the mutating admission webhook example:

• Update port in an Ingress based on the Ingress name
• Enable secure back‑end forcefully based on a namespace

Validating admission webhook configuration using Gatekeeper

Gatekeeper uses a CRD that allows you to create constraints as Kubernetes resources. This CRD is
called a ConstraintTemplate in Gatekeeper. The schema of the constraint allows an administra‑
tor to fine‑tune the behavior of a constraint, similar to arguments to a function. Constraints are used
to inform Gatekeeper that the administrator wants a constraint template to be enforced, and how.

You can apply various policies using constraint templates. Various examples are listed at the Gate‑
keeper library.

Deploying a sample policy

Perform the following steps to deploy HttpsOnly as a sample policy using Gatekeeper. The
HttpsOnly policy allows only an Ingress configuration with HTTPS.

1. Install Gatekeeper using the following command.

Note:

In this step, Gatekeeper is installedusingaprebuilt image. Youcan installGatekeeperusing
various methods mentioned in the Gatekeeper installation.

1 # kubectl apply -f https://raw.githubusercontent.com/open-policy-
agent/gatekeeper/master/deploy/gatekeeper.yaml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 494

https://github.com/citrix/ingress-admission-webhook
https://github.com/citrix/ingress-admission-webhook
https://github.com/open-policy-agent/gatekeeper/tree/master/library
https://github.com/open-policy-agent/gatekeeper/tree/master/library

NetScaler ingress controller

You can verify the installation using the following command.

1 kubectl get crd | grep -i constraintsonstrainttemplates.templates.
gatekeeper.sh

You can check all the constraint templates using the following command:

1 kubectl get constrainttemplates.templates.gatekeeper.sh

2. Apply the httpsonly constraint template.

1 kubectl apply -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/docs/how-to/webhook/httpsonly/
template.yaml

3. Apply a constraint to enforce the httpsonly policy.

1 kubectl apply -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/docs/how-to/webhook/httpsonly/
constraint.yaml

4. Deploy a sample Ingress which violates the policy to verify the policy. It should display an error
while creating the Ingress.

1 kubectl apply -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/docs/how-to/webhook/httpsonly/bad
-example-ingress.yaml

2
3 Error from server ([denied by ingress-https-only] Ingress must be

https. tls configuration is required for test-ingress): error
when creating "ingress.yaml": admission webhook "validation.
gatekeeper.sh" denied the request: [denied by ingress-https-
only] Ingress must be https. tls configuration is required for
test-ingress

5. Now, deploy an Ingress which has the required TLS section in Ingress.

1 # kubectl apply -f https://raw.githubusercontent.com/citrix/
citrix-k8s-ingress-controller/master/docs/how-to/webhook/
httpsonly/good-example-ingress.yaml

2
3 ingress.networking.k8s.io/test-ingress created

6. Clean up the installation using the following commands once you have finished the verification
of Gatekeeper policies.

1 Uninstall all packages and template installed.
2 kubectl delete -f https://raw.githubusercontent.com/citrix/citrix-

k8s-ingress-controller/master/docs/how-to/webhook/httpsonly/
good-example-ingress.yaml

3 kubectl delete -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/docs/how-to/webhook/httpsonly/
constraint.yaml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 495

NetScaler ingress controller

4 kubectl delete -f https://raw.githubusercontent.com/citrix/citrix-
k8s-ingress-controller/master/docs/how-to/webhook/httpsonly/
template.yaml

5 kubectl delete -f https://raw.githubusercontent.com/open-policy-
agent/gatekeeper/master/deploy/gatekeeper.yaml

More sample use cases

There are multiple use cases listed under the webhook directory.
The steps are similar to what is specified in the example and can be summarized as follows:

1. Apply the template YAML file given in each use case directory.
2. Apply the constraint YAML file.
3. Verify by applying bad or good sample YAML files to validate the use case.

For further use cases, see the Gatekeeper library.

Enable gRPC support using the NetScaler Ingress Controller

December 31, 2023

gRPC is a high performance, open‑source universal RPC framework created by Google. In gRPC, a
client application can directly callmethods on a server application fromadifferent server in the same
way you call local methods.
You can easily create distributed applications and services using GRPC.

Enable gRPC support

Perform the following steps to enable GRPC support using HTTP2.

1. Create a YAML file cic-configmap.yaml and enable the global parameter for HTTP2 server
side support using the following entry in the ConfigMap. For more information on using Con‑
figMap, see the ConfigMap documentation.

1 NS_HTTP2_SERVER_SIDE: 'ON'

2. Apply the ConfigMap using the following command.

1 kubectl apply -f cic-configmap.yaml

3. Edit the cic.yaml file for deploying the NetScaler Ingress Controller to support ConfigMap.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 496

https://github.com/open-policy-agent/gatekeeper/tree/master/library
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/config-map.html

NetScaler ingress controller

1 args:
2 - --ingress-classes
3 citrix
4 - --configmap
5 default/cic-configmap

4. Deploy the NetScaler Ingress Controller as a stand‑alone pod by applying the edited YAML file.

1 kubectl apply -f cic.yaml

5. To test the gRPC traffic, youmay need to installgrpcurl. Perform the following steps to install
grpcurl on a Linux machine.

1 go get github.com/fullstorydev/grpcurl
2 go install github.com/fullstorydev/grpcurl/cmd/grpcurl

6. Apply the gRPC test service YAML file (grpc-service.yaml).

1 kubectl apply -f grpc-service.yaml

Following is a sample content for the grpc-service.yaml file.

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: grpc-service
5 spec:
6 replicas: 1
7 selector:
8 matchLabels:
9 app: grpc-service

10 template:
11 metadata:
12 labels:
13 app: grpc-service
14 spec:
15 containers:
16 - image: registry.cn-hangzhou.aliyuncs.com/acs-sample/grpc

-server:latest
17 imagePullPolicy: Always
18 name: grpc-service
19 ports:
20 - containerPort: 50051
21 protocol: TCP
22 restartPolicy: Always
23 ---
24 apiVersion: v1
25 kind: Service
26 metadata:
27 name: grpc-service
28 spec:
29 ports:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 497

NetScaler ingress controller

30 - port: 50051
31 protocol: TCP
32 targetPort: 50051
33 selector:
34 app: grpc-service
35 sessionAffinity: None
36 type: NodePort

7. Create a certificate for the gRPC Ingress configuration.

1 openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout tls.
key -out tls.crt -subj "/CN=grpc.example.com/O=grpc.example.com
"

2
3 kubectl create secret tls grpc-secret --key tls.key --cert tls.crt
4
5 secret "grpc-secret" created

8. Enable HTTP2 using Ingress annotations. See HTTP/2 support for steps to enable HTTP2 using
the NetScaler Ingress Controller.

• Create a YAML file for the front‑end Ingress configuration and apply it to enable HTTP/2 on
the content switching virtual server.

kubectl apply ‑f frontend‑ingress.yaml

The content of the frontend-ingress.yaml file is provided as follows:

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 annotations:
5 ingress.citrix.com/frontend-httpprofile: '{
6 "http2":"enabled", "http2direct" : "enabled" }
7 '
8 ingress.citrix.com/frontend-ip: 192.0.2.1
9 ingress.citrix.com/secure-port: "443"

10 kubernetes.io/ingress.class: citrix
11 name: frontend-ingress
12 spec:
13 rules:
14 - {
15 }
16
17 tls:
18 - {
19 }

• Create a YAML file for the back‑end Ingress configuration with the following content and
apply it to enable HTTP2 on back‑end (service group).

kubectl apply ‑f backend‑ingress.yaml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 498

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/docs/how-to/http-use-cases.md

NetScaler ingress controller

The content of the backend-ingress.yaml file is provided as follows:

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 annotations:
5 ingress.citrix.com/backend-httpprofile: '{
6 "grpc-service":{
7 "http2": "enabled", "http2direct" : "enabled" }
8 }
9 '

10 ingress.citrix.com/frontend-ip: 192.0.2.2
11 ingress.citrix.com/secure-port: "443"
12 kubernetes.io/ingress.class: citrix
13 name: grpc-ingress
14 spec:
15 rules:
16 - host: grpc.example.com
17 http:
18 paths:
19 - backend:
20 service:
21 name: grpc-service
22 port:
23 number: 50051
24 path: /
25 pathType: Prefix
26 tls:
27 - hosts:
28 - grpc.example.com
29 secretName: grpc-secret

9. Test the gRPC traffic using the grpcurl command.

1 grpcurl -v -insecure -d '{
2 "name": "gRPC" }
3 ' grpc.example.com:443 helloworld.Greeter.SayHello

The output of the command is shown as follows:

1 Resolved method descriptor:
2 rpc SayHello (.helloworld.HelloRequest) returns (.helloworld.

HelloReply);
3
4
5 Request metadata to send:
6 (empty)
7
8
9 Response headers received:

10 content-type: application/grpc
11
12

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 499

NetScaler ingress controller

13 Response contents:
14 {
15
16 "message": "Hello gRPC"
17 }
18
19
20
21 Response trailers received:
22 (empty)
23 Sent 1 request and received 1 response

Validate the rate limit CRD

Perform the following steps to validate the rate limit CRD.

1. Apply the rate limit CRD using the ratelimit‑crd.yaml file.

kubectl create ‑f ratelimit‑crd.yaml

2. Create a YAML file (ratelimit‑crd‑object.yaml) with the following content for the rate limit policy.

1 apiVersion: citrix.com/v1beta1
2 kind: ratelimit
3 metadata:
4 name: throttle-req-per-clientip
5 spec:
6 servicenames:
7 - grpc-service
8 selector_keys:
9 basic:

10 path:
11 - "/"
12 per_client_ip: true
13 req_threshold: 5
14 timeslice: 60000
15 throttle_action: "RESPOND"

3. Apply the YAML file using the following command.

1 kubectl create -f ratelimit-crd-object.yaml

4. Test gRPC traffic using the grpcurl command.

1 grpcurl -v -insecure -d '{
2 "name": "gRPC" }
3 ' grpc.example.com:443 helloworld.Greeter.SayHello

The command returns the following error in response after the rate limit is reached:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 500

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/ratelimit/ratelimit-crd.yaml

NetScaler ingress controller

1 Error invoking method "helloworld.Greeter.SayHello": failed to
query for service descriptor "helloworld.Greeter": rpc error:
code = Unavailable desc =

2
3 Too Many Requests: HTTP status code 429; transport: missing

content-type field

Validate the Rewrite and Responder CRDwith gRPC

Perform the following steps to validate the Rewrite and Responder CRD.

1. Apply the Rewrite and Responder CRD using the rewrite‑responder‑policies‑deployment.yaml
file.

kubectl create ‑f rewrite‑responder‑policies‑deployment.yaml

2. Create a YAML file (rewrite‑crd‑object.yaml) with the following content for the rewrite policy.

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: addcustomheaders
5 spec:
6 rewrite-policies:
7 - servicenames:
8 - grpc-service
9 rewrite-policy:

10 operation: insert_http_header
11 target: 'sessionID'
12 modify-expression: '"48592th42gl24456284536tgt2"'
13 comment: 'insert SessionID in header'
14 direction: RESPONSE
15 rewrite-criteria: 'http.res.is_valid'

3. Apply the YAML file using the following command.

1 kubectl create -f rewrite-crd-object.yaml

4. Test the gRPC traffic using the grpcurl command.

1 grpcurl -v -insecure -d '{
2 "name": "gRPC" }
3 ' grpc.example.com:443 helloworld.Greeter.SayHello

This command adds a session id in the gRPC request response.

1 Resolved method descriptor:
2 rpc SayHello (.helloworld.HelloRequest) returns (.helloworld.

HelloReply);
3
4 Request metadata to send:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 501

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/rewrite-responder-policies-deployment.yaml

NetScaler ingress controller

5 (empty)
6
7 Response headers received:
8 content-type: application/grpc
9 sessionid: 48592th42gl24456284536tgt2

10
11 Response contents:
12 {
13
14 "message": "Hello gRPC"
15 }
16
17
18 Response trailers received:
19 (empty)
20 Sent 1 request and received 1 response

Policy based routing support for multiple Kubernetes clusters

December 31, 2023

When you are using a single NetScaler to load balance multiple Kubernetes clusters, the NetScaler
Ingress Controller adds pod CIDR networks through static routes. These routes establish networking
connectivity between Kubernetes pods and NetScaler. However, when the pod CIDRs overlap there
may be route conflicts. NetScaler supports policy based routing (PBR) to address the networking con‑
flicts in such scenarios. In PBR, decisions are taken based on the criteria that you specify. Typically,
a next hop is specified where you send the selected packets. In a multi‑cluster Kubernetes environ‑
ment, PBR is implemented by reserving a subnet IP address (SNIP) for each Kubernetes cluster or the
NetScaler Ingress Controller. Using net profile, the SNIP is bound to all service groups created by the
same NetScaler Ingress Controller. For all the traffic generated from service groups belonging to the
same cluster, the source IP address is the same SNIP.

Following is a sample topology where PBR is configured for two Kubernetes clusters which are load
balanced using a NetScaler VPX or MPX.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 502

NetScaler ingress controller

Configure PBR using the NetScaler Ingress Controller

To configure PBR, you need one SNIP or more per Kubernetes cluster. You can provide SNIP values
either using the environment variable in theNetScaler IngressController deployment YAML file during
bootup or using ConfigMap.

Perform the following steps to deploy the NetScaler Ingress Controller and configure PBR using Con‑
figMap.

1. Download the citrix-k8s-ingress-controller.yaml using the following command:

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-
controller/master/deployment/baremetal/citrix-k8s-ingress-
controller.yaml

2. Edit the NetScaler Ingress Controller YAML file:

1 - Specify the values of the environment variables as per your
requirements. For more information on specifying the
environment variables, see the [Deploy NetScaler Ingress
Controller](/en-us/netscaler-k8s-ingress-controller/cic-yaml.
html) documentation.

3. Deploy the NetScaler Ingress Controller using the edited YAML file with the following command
on each cluster.

1 kubectl create -f citrix-k8s-ingress-controller.yaml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 503

NetScaler ingress controller

4. Create a YAML file cic-configmap.yamlwith the required SNIP values in the ConfigMap.

Following is an example for a ConfigMap with the SNIP values:

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: pbr-test
5 namespace: default
6 data:
7 NS_SNIPS: '["192.0.2.2", "192.0.2.1"]'

5. Apply the ConfigMap.

1 kubectl create -f cic-configmap.yaml

You can also specify the SNIPs using the NS_SNIPS environment variable in the NetScaler Ingress
Controller deployment YAML file.

1 - name: "NS_SNIPS"
2 value: '["192.0.2.2", "192.0.2.1"]'

The following are the usage guidelines while using ConfigMap for configuring SNIP:

• Only SNIPs can be added or removed via ConfigMap. The feature-node-watch argument
can only be enabled during bootup.

• When you add a ConfigMap:

– If SNIPs are already provided using the environment variable during bootup and you
want to retain them, those SNIPs should be specified in the ConfigMap along with the
new SNIPs.

• When you delete ConfigMap:

– All PBRs generated by ConfigMap SNIPs are deleted. If SNIPs are provided via the environ‑
ment variable, PBR for those IP addresses is added.

– If SNIPs are not provided using the NS_SNIPS environment variable, static routes are
added since feature-node-watch is enabled.

Validate PBR configuration on a NetScaler after deploying the NetScaler Ingress Controller

This validation example uses a two node Kubernetes cluster with the NetScaler Ingress Controller de‑
ployed along with the following ConfigMap with two SNIPs.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 504

NetScaler ingress controller

You can verify that the NetScaler Ingress Controller adds the following configurations to the ADC:

1. An IPset of all NS_SNIPs provided by the ConfigMap is added.

2. A net profile is added with the SrcIP set to the IPset.

3. The service group added by the NetScaler Ingress Controller contains the net profile set.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 505

NetScaler ingress controller

4. Finally, the NetScaler Ingress Controller adds PBRs.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 506

NetScaler ingress controller

Here:

• The number of PBRs is equivalent to (number of SNIPs) * (number of Kubernetes nodes).
In this case, it adds four(2*2) PBRs.

• The srcIP of the PBR is the NS_SNIPS provided to the NetScaler Ingress Controller by
ConfigMap. The destIP is the CNI overlay subnet range of the Kubernetes node.

• NextHop is the IP address of the Kubernetes node.

5. You can also use the logs of the NetScaler Ingress Controller to validate the configuration.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 507

NetScaler ingress controller

Configure PBR using the node controller

You can configure PBR using the node controller for multiple Kubernetes clusters. When you are us‑
ing a single NetScaler to load balance multiple Kubernetes clusters with node controller for network‑
ing, the static routes added by it to forward packets to the IP address of the VXLAN tunnel interface
may cause route conflicts. To support PBR, node controller needs to works in conjunction with the
NetScaler Ingress Controller to bind the net profile to the service group.

Perform the following steps to configure PBR using the node controller:

1. While starting the node controller, provide the CLUSTER_NAME as an environment variable.
Specifying this variable indicates that it is a multi‑cluster deployment and the node controller
configures PBR instead of static routes.

Example:

1 - name: CLUSTER_NAME
2 value: "dev-cluster"

2. While deploying the NetScaler Ingress Controller, provide the CLUSTER_NAME as an environ‑
ment variable. This value should be the same as the value provided in node controller.

Example:

1 - name: CLUSTER_NAME
2 value: "dev-cluster "

3. Specify theargument--enable-cnc-pbrasTrue in thearguments sectionof theNetScaler
Ingress Controller deployment YAML file. When you specify this argument, NetScaler Ingress
Controller is aware that the node controller is configuring PBR on the NetScaler.

Example:

1 args:
2 - --enable-cnc-pbr True

Note:

• The value provided for CLUSTER_NAME in the node controller and NetScaler Ingress Con‑
troller deployment files shouldmatchwhen they aredeployed in the sameKubernetes clus‑
ter.

• The CLUSTER_NAME is used while creating the net profile entity and binding it to service

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 508

https://github.com/citrix/citrix-k8s-node-controller

NetScaler ingress controller

groups on NetScaler VPX or MPX.

Validate PBR configuration on a NetScaler after deploying the node controller

This validation example uses a two node Kubernetes cluster with node controller and NetScaler
Ingress Controller deployed.

You can verify that the following configurations are added to the ADC by node controller:

1. A net profile is added, with the value of srcIP set to the SNIP added by node controller while
creating the VXLAN tunnel network between the NetScaler and Kubernetes nodes.

2. NetScaler Ingress Controller binds the net profile to the service groups it creates.

3. Finally, node controller adds PBRs.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 509

NetScaler ingress controller

Here:

• The number of PBRs is equal to number of Kuberntes nodes. In this case, it adds two PBRs.

• The srcIP of the PBR is the SNIP added by node controller in tunnel network . The
destIP is the CNI overlay subnet range of the Kubernete node. The NextHop is the IP
address of Kubernetes node’s VXLAN Tunnel interface.

Note:

node controller adds PBRs instead of static routes. The rest of the configuration of
the VXLAN and bridge table remains the same. For more information, see the node
controller configuration.

Single tier NetScaler Ingress solution for MongoDB

December 31, 2023

MongoDB is oneof themost popularNoSQLdatabaseswhich is designed toprocess and storemassive
amounts of unstructured data. Cloud‑native applications widely use MongoDB as a NoSQL database
in the Kubernetes platform.

To identify and troubleshoot performance issues are a challenge in a Kubernetes environment due to
the massive scale of application deployments. For database deployments like MongoDB, monitoring

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 510

https://github.com/citrix/citrix-k8s-node-controller/tree/master/deploy#verify-the-deployment
https://github.com/citrix/citrix-k8s-node-controller/tree/master/deploy#verify-the-deployment

NetScaler ingress controller

is a critical component of database administration to ensure that high availability and high perfor‑
mance requirements are met.

NetScaler provides an ingress solution for load balancing and monitoring MongoDB databases on
a Kubernetes platform using the advanced load balancing and performance monitoring capabilities
of NetScalers. NetScaler Ingress solution for MongoDB provides you deeper visibility into MongoDB
transactions and helps you to quickly identify and address performance issues whenever they occur.
Using NetScaler Observability Exporter, you can export the MongoDB transactions to Elasticsearch
and visualize them using Kibana dashboards to get deeper insights.

The following diagram explains NetScaler Ingress solution for MongoDB using a single‑tier deploy‑
ment of NetScaler.

In this solution, a NetScaler VPX is deployed outside the Kubernetes cluster (Tier‑1) and NetScaler
Observability Exporter is deployed inside the Kubernetes cluster.

The Tier‑1 NetScaler VPX routes the traffic (North‑South) from MongoDB clients to Mongo DB query
routers (Mongos) in the Kubernetes cluster. NetScaler Observability Exporter is deployed inside the
Kubernetes cluster.

As part of this deployment, an Ingress resource is created for NetScaler VPX (Tier‑1 Ingress). The Tier‑
1 Ingress resource defines rules to enable load balancing for MongoDB traffic on NetScaler VPX and
specifies the port for Mongo. Whenever MongoDB traffic arrives on the specified port on a NetScaler
VPX, it routes this traffic to one of the Mongo service instances mentioned in the Ingress rule. Mongo
service is exposed by the MongoDB administrator, and the same service instance is specified in the
Ingress.

The NetScaler Observability Exporter instance aggregates transactions from NetScaler VPX and up‑
loads them to the Elasticsearch server. You can set up Kibana dashboards to visualize the required

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 511

https://github.com/citrix/citrix-observability-exporter
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/kibana

NetScaler ingress controller

data (for example, query response time, most queried collection names) and analyze them to get
meaningful insights. Only insert, update, delete, find, and reply operations are parsed and metrics
are sent to the NetScaler Observability Exporter.

Prerequisites

You must complete the following steps before deploying the NetScaler Ingress solution for Mon‑
goDB.

• Set up a Kubernetes cluster in cloud or on‑premises

• DeployMongoDB in theKubernetes clusterwithdeploymentmodeas sharded replica set. Other
deployment modes for MongoDB are not supported.

• Ensure that you have Elasticsearch installed and configured. Use the elasticsearch.yaml file for
deploying Elasticsearch.

• Ensure that you have installed Kibana to visualize your transaction data. Use the kibana.yaml
file for deploying Kibana.

• Deploy a NetScaler VPX instance outside the Kubernetes cluster. For instructions on how to
deploy NetScaler VPX, see Deploy a NetScaler VPX instance.

Perform the following after you deploy the NetScaler VPX:

1. Configure an IP address from the subnet of the Kubernetes cluster as SNIP on theNetScaler. For
information on configuring SNIPs in NetScaler, see Configuring Subnet IP Addresses (SNIPs).

2. Enablemanagement access for the SNIP that is the same subnet of the Kubernetes cluster. The
SNIP should be used as NS_IP variable in the NetScaler Ingress Controller YAML file to enable
the NetScaler Ingress Controller to configure the Tier‑1 NetScaler.

Note:

It is not mandatory to use SNIP as NS_IP. If the management IP address of the NetScaler
is reachable from the NetScaler Ingress Controller then you can use the management IP
address as NS_IP.

3. Create a NetScaler system user account specific to the NetScaler Ingress Controller. The
NetScaler Ingress Controller uses the systemuser account to automatically configure the Tier‑1
NetScaler.

4. ConfigureNetScaler VPX to forwardDNSqueries toCoreDNSpod IPaddresses in theKubernetes
cluster.

1 add dns nameServer <core-dns-pod-ip-address>

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 512

https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/elasticsearch/elasticsearch.yaml
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/elasticsearch/kibana.yaml
https://docs.citrix.com/en-us/citrix-adc/13/deploying-vpx.html
https://docs.citrix.com/en-us/citrix-adc/13/networking/ip-addressing/configuring-citrix-adc-owned-ip-addresses/configuring-subnet-ip-addresses-snips.html
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/deployment/dual-tier/manifest/tier-1-vpx-cic.yaml
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#create-system-user-account-for-citrix-ingress-controller-in-citrix-adc

NetScaler ingress controller

Forexample, if thepod IPaddressesare192.244.0.2and192.244.0.3, configure thenameservers
on NetScaler VPX as:

1 add dns nameServer 192.244.0.3
2 add dns nameServer 192.244.0.2

Deploy the NetScaler Ingress solution for MongoDB

When you deploy the NetScaler Ingress solution for MongoDB, you deploy the following components
in the Kubernetes cluster:

• A stand‑alone NetScaler Ingress Controller for NetScaler VPX
• An Ingress resource for NetScaler VPX
• NetScaler Observability Exporter

Perform the following steps to deploy the NetScaler Ingress solution for MongoDB.

1. Create a Kubernetes secret with the user name and password for NetScaler VPX.

1 kubectl create secret generic nslogin --from-literal=username='
username' --from-literal=password='mypassword'

2. Download the cic‑configmap.yaml file and then deploy it using the following command.

1 kubectl create -f cic-configmap.yaml

3. Deploy the NetScaler Ingress Controller as a pod using the following steps.

a) Download the NetScaler Ingress Controller manifest file. Use the following command:

1 wget https://raw.githubusercontent.com/citrix/citrix-k8s-
ingress-controller/master/deployment/dual-tier/manifest/
tier-1-vpx-cic.yaml

b) Edit the NetScaler Ingress Controller manifest file and enter the values for the following
environmental variables:

Environment Variable Mandatory or Optional Description

NS_IP Mandatory The IP address of the NetScaler
appliance. For more details,
see Prerequisites.

NS_USER and NS_PASSWORD Mandatory The user name and password
of the NetScaler VPX or MPX
appliance used as the Ingress
device.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 513

https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/cic-configmap.yaml
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-yaml.html#prerequisites

NetScaler ingress controller

Environment Variable Mandatory or Optional Description

EULA Mandatory The End User License
Agreement. Specify the value
as Yes.

LOGLEVEL Optional The log levels to control the
logs generated by NetScaler
Ingress Controller. By default,
the value is set to DEBUG. The
supported values are:
CRITICAL, ERROR, WARNING,
INFO, and DEBUG.

NS_PROTOCOL and NS_PORT Optional Defines the protocol and port
that must be used by the
NetScaler Ingress Controller to
communicate with NetScaler.
By default, the NetScaler
Ingress Controller uses HTTPS
on port 443. You can also use
HTTP on port 80.

ingress‑classes Optional If multiple Ingress load
balancers are used to load
balance different Ingress
resources. You can use this
environment variable to specify
the NetScaler Ingress
Controller to configure
NetScaler associated with a
specific Ingress class. For
information on Ingress classes,
see Ingress class support

NS_VIP Optional NetScaler Ingress Controller
uses the IP address provided in
this environment variable to
configure a virtual IP address to
the NetScaler that receives
Ingress traffic.

c) Specify or modify the following arguments in the NetScaler Ingress Controller YAML file.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 514

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/ingress-classes.html

NetScaler ingress controller

1 args:
2 - --configmap
3 default/cic-configmap
4 - --ingress-classes
5 tier-1-vpx

d) Deploy the updated NetScaler Ingress Controller manifest file using the following com‑
mand:

1 kubectl create -f tier-1-vpx-cic.yaml

4. Create an Ingress object for the Tier‑1 NetScaler using the tier‑1‑vpx‑ingress.yaml file.

1 kubectl apply -f tier-1-vpx-ingress.yaml

Following is the content for the tier-1-vpx-ingress.yaml file. As per the rules specified
in this Ingress resource, NetScaler Ingress Controller configures the NetScaler VPX to listen for
MongoDB traffic at port 27017. As shown in this example, youmust specify the service that you
have created for MongoDb query routers (for example:serviceName: mongodb-mongos
) so that the NetScaler VPX can route traffic to it. Here, mongodb-mongos is the service for
MongoDB query routers.

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 annotations:
5 ingress.citrix.com/analyticsprofile: '{
6 "tcpinsight": {
7 "tcpBurstReporting":"DISABLED" }
8 }
9 '

10 ingress.citrix.com/insecure-port: "27017"
11 ingress.citrix.com/insecure-service-type: mongo
12 ingress.citrix.com/insecure-termination: allow
13 kubernetes.io/ingress.class: tier-1-vpx
14 name: vpx-ingress
15 spec:
16 defaultBackend:
17 service:
18 name: mongodb-mongos
19 port:
20 number: 27017

5. Deploy NetScaler Observability Exporter with Elasticsearch as the endpoint using the coe‑es‑
mongo.yaml file.

1 kubectl apply -f coe-es-mongo.yaml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 515

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/example/mongodb/tier-1-vpx-ingress.yaml
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/elasticsearch/coe-es-mongodb.yaml
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/elasticsearch/coe-es-mongodb.yaml

NetScaler ingress controller

Note:

Youmust set the Elasticsearch server details in the ELKServer environment variable either
based on an IP address or the DNS name, along with the port information.

Following is a sample ConfigMap file.

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: coe-config-es
5 data:
6 lstreamd_default.conf: |
7 {
8
9 "Endpoints": {

10
11 "ES": {
12
13 "ServerUrl": "elasticsearch.default.svc.cluster.local

:9200",
14 "IndexPrefix":"adc_coe",
15 "IndexInterval": "daily",
16 "RecordType": {
17
18 "HTTP": "all",
19 "TCP": "all",
20 "SWG": "all",
21 "VPN": "all",
22 "NGS": "all",
23 "ICA": "all",
24 "APPFW": "none",
25 "BOT": "none",
26 "VIDEOOPT": "none",
27 "BURST_CQA": "none",
28 "SLA": "none",
29 "MONGO": "all"
30 }
31 ,
32 "ProcessAlways": "no",
33 "ProcessYieldTimeOut": "500",
34 "MaxConnections": "512",
35 "ElkMaxSendBuffersPerSec": "64",
36 "JsonFileDump": "no"
37 }
38
39 }
40
41 }
42
43 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 516

NetScaler ingress controller

Verify the deployment of NetScaler Ingress solution

You can use the command as shown in the following example to verify that all the applications are
deployed and list all services and ports.

You can use thekubectl get ingress command as shown in the following example to get infor‑
mation about the Ingress objects deployed.

1 # kubectl get ingress
2
3 NAME HOSTS ADDRESS PORTS AGE
4 vpx-ingress * 80 22d

Verify observability for MongoDB traffic

This topicprovides informationonhowtoget visibility intoMongoDB transactionsusing theNetScaler
Ingress solution and it uses Kibana dashboards to visualize the database performance statistics.

Before performing the steps in this topic ensure that:

• You have deployed MongoDB as a sharded replica set in the Kubernetes cluster
• Deployed the NetScaler Ingress solution for MongoDB
• A client application for MongoDB is installed to send traffic to the MongoDB.
• Kibana is installed for visualization

Perform the following steps to verify observability for MongoDB traffic.

1. Configure your client application for MongoDB to point to the virtual IP address of the Tier‑1
NetScaler VPX.

For example:

1 mongodb://<vip-of-vpx>:27017/

2. Send multiple requests (for example insert, update, delete) to the MongoDB database using
your MongoDB client application. The transactions are uploaded to the Elasticsearch server.

3. Set up a Kibana dashboard to visualize the MongoDB transactions. You can use the following
sample Kibana dashboard.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 517

NetScaler ingress controller

In this dashboard, you can see performance statistics for your MongoDB deployment including the
different typeof queries andquery response time. Analyzing this data helps you to find any anomalies
like latency in a transaction and take immediate action.

Export telemetry data to Prometheus

For your Kubernetes deployment, if you have your Prometheus server deployed in the same Kuber‑
netes cluster, you can configure annotations to enable Prometheus to automatically add NetScaler
Observability Exporter as a scrape target.

Following is a snippet of NetScaler Observability Exporter YAML file (coe‑es‑mongodb.yaml) with
these annotations.

1 template:
2 metadata:
3 name: coe-es
4 labels:
5 app: coe-es
6 annotations:
7 prometheus.io/scrape: "true"
8 prometheus.io/port: "5563"

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 518

https://github.com/citrix/citrix-observability-exporter/blob/master/examples/elasticsearch/coe-es-mongodb.yaml

NetScaler ingress controller

Alternatively, you can manually add NetScaler Observability Exporter as the scrape target on your
Prometheus server configuration file.

Also, ensure that metrics for Prometheus are enabled in the cic-configmap.yaml file as shown
in the following YAML file.

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: cic-configmap
5 namespace: default
6 data:
7 NS_ANALYTICS_CONFIG: |
8 distributed_tracing:
9 enable: 'false'

10 samplingrate: 0
11 endpoint:
12 server: 'coe-es.default.svc.cluster.local'
13 timeseries:
14 port: 5563
15 metrics:
16 enable: 'true'
17 mode: 'prometheus'
18 auditlogs:
19 enable: 'false'
20 events:
21 enable: 'false'
22 transactions:
23 enable: 'true'
24 port: 5557
25 <!--NeedCopy-->

In this YAML file, the following configuration enables metrics for Prometheus.

1 metrics:
2 enable: 'true'
3 mode: 'prometheus'

Canary and blue‑green deployment using NetScaler VPX and Azure
pipelines for Kubernetes based applications

December 31, 2023

This topic provides information on how to achieve canary and blue‑green deployment for Kubernetes
applications using NetScaler VPX and Azure pipelines.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 519

https://prometheus.io/docs/prometheus/latest/configuration/configuration/

NetScaler ingress controller

Canary deployment using NetScaler VPX and Azure pipelines for Kubernetes based
applications

Canary is a deployment strategy which involves deploying new versions of an application in small
and phased incremental steps. The idea of canary is to first deploy the new changes to a small set of
users to take a decision on whether to reject or promote the new deployments and then roll out the
changes to the rest of the users. This strategy limits the risk involved in deploying a new version of
the application in the production environment.

Azure pipelines are a cloud service provided by Azure DevOps which allows you to automatically run
builds, perform tests, and deploy code to various development and production environments.

This section provides information on how to achieve canary deployment for Kubernetes based appli‑
cation using NetScaler VPX and NetScaler Ingress Controller with Azure pipelines.

Benefits of Canary deployment

• Canary version of application acts as an early warning for potential problems that might be
present in the new code and the deployment issues.

• You can use the canary version for smoke tests and A/B testing.
• Canary offers easy rollback and zero‑downtime upgrades.
• You can runmultiple versions of applications together at the same time.

In this solution, NetScaler VPX is deployed on the Azure platform to enable load balancing of an appli‑
cation and achieve canary deployment using NetScaler VPX. For more information on how to deploy
NetScaler on Microsoft Azure, see the NetScaler documentation link.

Canary deployment using NetScaler

You can achieve canary deployment using NetScaler with Ingress annotations which is a rule based
canary deployment. In this approach, you need to define an additional Ingress object with specific
annotations to indicate that theapplication requestneeds tobeservedbasedon the rulebasedcanary
deployment strategy. In the Citrix solution, Canary based traffic routing at the Ingress level can be
achieved by defining various sets of rules as follows:

• Applying the canary rules based on weight
• Applying the canary rules based on the HTTP request header
• Applying the canary rules based on the HTTP header value

For more information, see simplified canary deployment using Ingress annotations

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 520

https://docs.microsoft.com/en-us/azure/devops/pipelines/create-first-pipeline
https://docs.citrix.com/en-us/citrix-adc/current-release/deploying-vpx/deploy-vpx-on-azure.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/canary/canary.html#simplified-canary-deployment-using-ingress-annotations

NetScaler ingress controller

Canary deployment using NetScaler VPXwith Azure pipelines

Citrix proposes a solution for canary deployment using NetScaler VPX and NetScaler Ingress Con‑
troller with Azure pipelines for Kubernetes based applications.

In this solution, there are three configuration directories:

• kubernetes_configs
• deployment_configs
• pipeline_configs

kubernetes_configs This directory includes the version based application specific deployment
YAML files and the Helm based configuration files to deploy NetScaler Ingress Controller which is
responsible to push NetScaler configuration to achieve canary deployment.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 521

NetScaler ingress controller

Note:

You can download the latest Helm charts from the NetScaler Ingress Controller Helm charts
repository and place it under the
cic_helm directory.

deployment_configs Thisdirectory includes thesetup_configandteardown_configJSON
files that specify the path of the YAML files available for the specific version of the application to be
deployed or brought down during canary deployment.

pipeline_configs Thisdirectory includes theAzurepipeline script and thepythonscriptwhich reads
the user configurations and triggers the pipeline based on the user request to introduce a newversion
of the application or teardown a version of an application. The change in percentage of traffic weight
in application ingress YAML would trigger the pipeline to switch the traffic between the available ver‑
sion of applications.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 522

https://github.com/citrix/citrix-helm-charts/tree/master/citrix-ingress-controller
https://github.com/citrix/citrix-helm-charts/tree/master/citrix-ingress-controller

NetScaler ingress controller

With all the three configuration files in place, any update to the files under deployment_configs
and kubernetes_configs directories in GitHub, would trigger the pipeline in Azure.

The traffic split percentage can be adjusted using the ingress.citrix.com/canary-weight
annotation in the ingress YAML of the application.

Deploy a sample application on Canary in Azure pipelines

This topic explains how to deploy a sample application on Canary mode using NetScaler and Azure
pipelines.

Prerequisites Ensure that:

• NetScaler VPX is already deployed on the Azure platform and is ready to be used by our sample
application.

• AKS cluster with Kubernetes service connection configured for the Azure pipeline.

Perform the following steps:

1. Clone the GitHub repository and go to the directory cd/canary-azure-devops.

2. Place the application deployment specific YAMLs (with the ingress file) under a versioned folder
v1 in the kubernetes_configs directory.

3. Create three Azure pipelines using the existing YAML files, deploy_cic.yaml, deploy.
yaml, and teardown.yaml, for deploying NetScaler Ingress Controller and deploying and
tearing down the applications. See, Azure pipelines for creating a pipeline.

4. Update the subscription, agent pool, service connection and NetScaler details in the pipeline
YAML.

5. Save the pipeline.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 523

https://docs.microsoft.com/en-us/azure/devops/pipelines/library/service-endpoints?view=azure-devops&tabs=yaml
https://docs.microsoft.com/en-us/azure/devops/pipelines/create-first-pipeline

NetScaler ingress controller

6. Update the path in deploy_config.json with the path specifying the directory where the
application YAMLs are placed.

1 {
2
3
4 "K8S_CONFIG_PATH" : "cd/canary-azure-devops/kubernetes_configs/v1

"
5
6 }

7. Commit the deploy_config.json file and v1 directory using Git to trigger the pipeline to
deploy the v1 version of the application.

8. Access the application through NetScaler.

9. Introduce thev2versionof theapplicationbycreating thev2directoryunderkubernetes_configs
. Make sure that the ingress under this version has the canary annotation specified with the
right weight to be set for traffic split.

10. Deploy the version v2 of the application by updating deploy_config.json with the path
specifying the v2 directory. Now, the traffic is split between version v1 and v2 based on the
canary weight set in the ingress annotation (for example, ingress.citrix.com/canary
-weight: "40")

11. Continue progressively increasing the traffic weight in the ingress annotation until the new ver‑
sion is ready to serve all the traffic.

Blue‑green deployment using NetScaler VPX and Azure pipelines for Kubernetes based
applications

Blue‑green deployment is a technique that reduces downtime and risk by running two identical pro‑
duction environments called blue and green. At any time, only one of the environments is live that
serves all the production traffic. The basis of the blue‑green method is side‑by‑side deployments of
two separate but identical environments. Deploying an application in both the environments can be
fully automated by using jobs and tasks. This approach enforces duplication of every resource of an
application. However, there are many different ways blue‑green deployments can be carried out in
various continuous deployment tools.

UsingNetScaler VPXwith Azure pipelines the same canary based solution canbeused to achieve blue‑
green deployment by adjusting the traffic weight to either zero or 100.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 524

NetScaler ingress controller

Traffic management for external services

December 31, 2023

Sometimes, all the available services of an application may not be deployed completely on a single
Kubernetes cluster. Youmay have applications that rely on the services outside of one cluster as well.
In this case,micro services need to define an ExternalName service to resolve the domain name. How‑
ever, in this approach, you would not be able to get features such as traffic management, policy en‑
forcement, fail overmanagement and so on. As an alternative, you can configure NetScaler to resolve
the domain names and leverage the features of NetScaler.

Configure NetScaler to reach external services

You can configure NetScaler as a domain name resolver using NetScaler Ingress Controller. When you
configure NetScaler as domain name resolver, you need to resolve:

• Reachability of NetScaler frommicroservices
• Domain name resolution at NetScaler to reach external services

Configure a service for reachability from Kubernetes cluster to NetScaler

To reachNetScaler frommicroservices, youhave todefine aheadless servicewhichwouldbe resolved
to a NetScaler service and thus the connectivity betweenmicroservices and NetScaler establishes.

1 apiversion: v1
2 kind: Service
3 metadata:
4 name: external-svc
5 spec:
6 selector:
7 app: cpx
8 ports:
9 - protocol: TCP

10 port: 80

Configure NetScaler as a domain name resolver using NetScaler Ingress Controller

You can configure NetScaler through NetScaler Ingress Controller to create a domain based service
group using the ingress annotation ingress.citrix.com/external-service. The value for
ingress.citrix.com/external-service is a list of external name services with their cor‑
responding domain names. For NetScaler VPX, name servers are configured on NetScaler using the
ConfigMap.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 525

https://kubernetes.io/docs/concepts/services-networking/service/#externalname

NetScaler ingress controller

Note:

ConfigMaps are used to configure name servers on NetScaler only for NetScaler VPX. For
NetScaler CPX, CoreDNS forwards the name resolution request to the upstream DNS server.

Traffic management using NetScaler CPX

The following diagram explains NetScaler CPX deployment to reach external services. An Ingress is
deployed where the external service annotation is specified to configure DNS on NetScaler CPX.

Note: A ConfigMap is used to configure name servers on NetScaler VPX.

In this deployment:

1. A microservice sends the DNS query for www.externalsvc.comwhich would get resolved to the
NetScaler CPX service.

2. NetScaler CPX resolves www.externalsvc.com and reaches external service.

Following are the steps to configure NetScaler CPX to load balance external services:

1. Define a headless service to reach NetScaler.

1 apiVersion: v1

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 526

NetScaler ingress controller

2 kind: Service
3 metadata:
4 name: external-svc
5 spec:
6 selector:
7 app: cpx
8 ports:
9 - protocol: TCP

10 port: 80

2. Define an ingress and specify the external‑service annotation as specified in the dbs‑
ingress.yaml file. When you specify this annotation, NetScaler Ingress Controller creates
DNS servers on NetScaler and binds the servers to the corresponding service group.

1 annotations:
2 ingress.citrix.com/external-service: '{
3 "external-svc": {
4 "domain": "www.externalsvc.com" }
5 }
6 '

3. Add the IP address of the DNS server on NetScaler using ConfigMap.

Note:

This step is applicable only for NetScaler VPX.

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: nameserver-cmap
5 namespace: default
6 data:
7 NS_DNS_NAMESERVER: '[]'
8 <!--NeedCopy-->

Support for external name service across namespaces

December 31, 2023

Namespaces are used to isolate resources within a Kubernetes cluster. Sometimes, services in a dif‑
ferent namespace might have to access a service located in another namespace. In such scenarios,
you can use the ExternalName service provided by Kubernetes. An ExternalName service is a
special service that does not have selectors and instead uses DNS names.

In the service definition, the externalName field must point to the namespace and also to the ser‑
vice which we are trying to access on that namespace. Citrix ingress controller supports services of

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 527

https://github.com/citrix/citrix-k8s-ingress-controller/tree/master/example/load-balance-external/db-ingress.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/tree/master/example/load-balance-external/db-ingress.yaml

NetScaler ingress controller

type ExternalNamewhen you have to access services within the cluster.

When you create the ExternalName service, the following criteria must be met:

• The externalName field in the service definition must follow the format:
svc: <name-of-the-service>.<namespace-of-the-service>.svc.cluster
.local

• The port number in the ExternalName service must exactly match the port number of the
targeted service.

Note:

When the service of an application is outside the Kubernetes cluster and you have created an
ExternalName service, you can resolve the domain name using the Traffic management for
external services feature.

Sample ExternalName service

In this example, a mysql service is running in the default namespace and a sample ExternalName
service is created to access the mysql service from the namespace1 namespace.

The following is a sample service definition for a MySQL service running in the default namespace.

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: mysql
5 namespace: default
6 spec:
7 clusterIP: None
8 ports:
9 - port: 3306

10 protocol: TCP
11 targetPort: 3306
12 selector:
13 app: mysql
14 type: ClusterIP
15
16 <!--NeedCopy-->

The following is a sample ExternalName service definition to access the mysql service from the
namespace1 namespace.

1 kind: Service
2 apiVersion: v1
3 metadata:
4 name: dbservice
5 namespace: namespace1
6 spec:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 528

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/how-to/external-load-balance-adc.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/how-to/external-load-balance-adc.html

NetScaler ingress controller

7 type: ExternalName
8 externalName: mysql.default.svc.cluster.local
9 ports:

10 - port: 3306
11 protocol: TCP
12 targetPort: 3306
13 <!--NeedCopy-->

In the example, the service points to the namespacewheremysql is deployed as specified in the field
externalName: mysql.default.svc.cluster.local. Here mysql is the service name
and default is the namespace. You can see that the port name is also the same as the mysql ser‑
vice.

Supported platforms and deployments

December 31, 2023

This topic provides details about various Kubernetes platforms, deployment topologies, features,
and CNIs supported in Cloud‑Native deployments that include NetScaler and NetScaler Ingress
Controller.

Kubernetes platforms

NetScaler Ingress Controller is supported on the following platforms:

• Kubernetes v1.10 (and later) on bare metal or self‑hosted on public clouds such as, AWS, GCP,
or Azure.

• Google Kubernetes Engine (GKE)
• Elastic Kubernetes Service (EKS)
• Azure Kubernetes Service (AKS)
• Red Hat OpenShift version 3.11 and later
• Pivotal Container Service (PKS)
• Diamanti Enterprise Kubernetes Platform
• Mirantis Kubernetes Engine
• VMware Tanzu

NetScaler platforms

The following table lists the NetScaler platforms supported by the NetScaler Ingress Controller:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 529

NetScaler ingress controller

NetScaler Platform Versions

NetScaler MPX 11.1–61.7 and later

NetScaler VPX 11.1–61.7 and later

NetScaler CPX 12.1–51.16 and later

Supported deployment topologies on platforms (on‑premises)

The following table lists the various deployment topologies supported by the NetScaler Ingress Con‑
troller on the supported Kubernetes (on‑premises) platforms:

Deployment
Topologies Kubernetes Red Hat OpenShift PKS

Single‑Tier (NetScaler
MPX or VPX in tier‑1)

Yes Yes Yes

Dual‑Tier (NetScaler
MPX or VPX in tier‑1
and NetScaler CPXs in
tier‑2)

Yes Yes Yes

Service mesh lite Yes Yes Yes

Services of type
LoadBalancer

Yes Yes Yes

Services of type
NodePort

Yes Yes Yes

Supported deployment topologies on cloud platforms

The following table lists the various deployment topologies supported by the NetScaler Ingress Con‑
troller on the supported cloud platforms:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 530

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html#single-tier-topology
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html/#dual-tier-topology
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html#service-mesh-lite
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html#services-of-type-loadbalancer
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html#services-of-type-loadbalancer
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html#services-of-type-nodeport
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html#services-of-type-nodeport

NetScaler ingress controller

Deployment
Topologies GKE EKS

AKS (Basic
mode ‑
Kubenet)

AKS
(Advanced
mode ‑ Azure
CNI)

Single‑Tier
Cloud
topology
(NetScaler
VPX in tier‑1)

Yes Yes Yes Yes

Dual‑Tier
Cloud
topology
(NetScaler
VPX in tier‑1
and NetScaler
CPXs in tier‑2)

Yes No Yes Yes

Dual‑Tier
Cloud
topology
(Cloud LB in
tier‑1 and
NetScaler
CPXs in tier‑2)

Yes No Yes Yes

Supported NetScaler Ingress Controller feature on platforms

The following table lists the NetScaler Ingress Controller features supported on various cloud‑native
platforms:

NetScaler
Ingress
Controller
features Kubernetes

Google
Cloud AWS Azure

Red Hat
OpenShift PKS

TCP
Ingress

Yes Yes Yes Yes Yes Yes

UDP
Ingress

Yes Yes Yes Yes Yes Yes

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 531

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html#cloud-topology
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html#cloud-topology
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deployment-topologies.html#cloud-topology
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/how-to/tcp-udp-ingress.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/how-to/tcp-udp-ingress.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/how-to/tcp-udp-ingress.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/how-to/tcp-udp-ingress.html

NetScaler ingress controller

NetScaler
Ingress
Controller
features Kubernetes

Google
Cloud AWS Azure

Red Hat
OpenShift PKS

SSL
Ingress

Yes Yes Yes Yes Yes Yes

TCP over
SSL
Ingress

Yes Yes Yes Yes Yes Yes

HTTP,
TCP, or
SSL
profiles

Yes Yes Yes Yes Yes Yes

NodePort
support

Yes Yes Yes Yes Yes Yes

Type
LoadBal‑
ancer
support

Yes No Yes No Yes Yes

Rewrite
and Re‑
sponder
CRD

Yes Yes Yes Yes Yes Yes

Rate limit
CRD

Yes Yes Yes Yes Yes Yes

Auth CRD Yes Yes Yes Yes Yes Yes

Advanced
content
routing

Yes Yes Yes Yes Yes Yes

WAF CRD Yes Yes Yes Yes Yes Yes

Bot CRD Yes Yes Yes Yes Yes Yes

OpenShift
Routes

N/A N/A N/A N/A Yes N/A

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 532

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/certificate-management/tls-certificates.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/certificate-management/tls-certificates.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/how-to/tcp-udp-ingress.html#load-balance-ingress-traffic-based-on-tcp-over-ssl
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/how-to/tcp-udp-ingress.html#load-balance-ingress-traffic-based-on-tcp-over-ssl
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/how-to/tcp-udp-ingress.html#load-balance-ingress-traffic-based-on-tcp-over-ssl
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/profiles.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/profiles.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/profiles.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/profiles.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/nodeport.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/nodeport.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/rewrite-responder.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/rewrite-responder.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/rewrite-responder.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/rewrite-responder.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/rate-limit.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/rate-limit.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/auth.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/content-routing.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/content-routing.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/content-routing.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/waf.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/bot.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-openshift.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-openshift.html

NetScaler ingress controller

NetScaler
Ingress
Controller
features Kubernetes

Google
Cloud AWS Azure

Red Hat
OpenShift PKS

OpenShift
router
sharding

N/A N/A N/A N/A Yes N/A

Simplified
canary
using
Ingress

Yes Yes Yes Yes Yes Yes

The following table lists the NetScaler Ingress Controller features supported on the respective
NetScaler Ingress Controller versions and NetScaler versions:

NetScaler Ingress
Controller features

NetScaler Ingress
Controller versions

NetScaler MPX or VPX
versions NetScaler CPX versions

TCP Ingress 1.1.1 and later 11.1–61.7 and later 12.1–51.16 and later

UDP Ingress 1.1.1 and later 11.1–61.7 and later 12.1–51.16 and later

SSL Ingress 1.1.1 and later 11.1–61.7 and later 12.1–51.16 and later

TCP over SSL Ingress 1.1.1 and later 11.1–61.7 and later 12.1–51.16 and later

HTTP, TCP, or SSL
profiles

1.4.392 11.1–61.7 and later 12.1–51.16 and later

NodePort support 1.1.1 and later 11.1–61.7 and later 12.1–51.16 and later

Type LoadBalancer
support

1.2.0 and later 11.1–61.7 and later 12.1–51.16 and later

Rewrite and
Responder CRD

1.1.1 and later 11.1–61.7 and later 12.1–51.16 and later

Rate limit CRD 1.4.392 11.1–61.7 and later 12.1–51.16 and later

Auth CRD 1.4.392 11.1–61.7 and later 12.1–51.16 and later

Advanced content
routing

1.7.46 12.1–51.16 and later 12.1–51.16 and later

WAF CRD 1.9.2 13.0–65.4 and later 13.0–65.4 and later

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 533

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/openshift-sharding.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/openshift-sharding.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/openshift-sharding.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/canary/canary.html#simplified-canary-deployment-using-ingress-annotations
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/canary/canary.html#simplified-canary-deployment-using-ingress-annotations
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/canary/canary.html#simplified-canary-deployment-using-ingress-annotations
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/canary/canary.html#simplified-canary-deployment-using-ingress-annotations
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/how-to/tcp-udp-ingress.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/how-to/tcp-udp-ingress.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/how-to/tcp-udp-ingress.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/how-to/tcp-udp-ingress.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/profiles.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/profiles.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/nodeport.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/network/type-loadbalancer.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/rewrite-responder.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/rewrite-responder.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/rate-limit.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/auth.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/content-routing.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/content-routing.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/waf.html

NetScaler ingress controller

NetScaler Ingress
Controller features

NetScaler Ingress
Controller versions

NetScaler MPX or VPX
versions NetScaler CPX versions

Bot CRD 1.11.3 NetScaler VPX version
13.0.67.39 and later

Not supported

OpenShift Routes 1.1.3 and later 12.1–51.16 and later 13.0–36.28 and later

OpenShift router
sharding

1.2.0 and later 12.1–51.16 and later 13.0–36.28 and later

Simplified canary
using Ingress

Version 1.13.15 and
later

11.1–61.7 and later 12.1–51.16 and later

Container network interfaces (CNIs) for NetScaler CPX

The following table lists the Container network interfaces (CNIs) supported by NetScaler CPX:

Container network interfaces (CNI) NetScaler CPX versions

Flannel 12.1–51.16 and later

Kubenet 12.1–51.16 and later

Calico 13.0–36.28

Canal 13.0–36.28

Calico on GKE 12.1–51.16 and later

OVS 13.0–36.28

Weave 12.1–51.16 and later

Cilium 13‑0‑71‑40 and later

Supported container runtime interfaces for NetScaler CPX

The following table lists the container runtime interfaces (CRIs) supported by NetScaler CPX.

CRI Supported versions of NetScaler CPX

Docker 11.1 and later

CRI‑O 13.0–47.103 and later

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 534

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/bot.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/cic-openshift.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/openshift-sharding.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/deploy/openshift-sharding.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/canary/canary.html#simplified-canary-deployment-using-ingress-annotations
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/canary/canary.html#simplified-canary-deployment-using-ingress-annotations
https://cri-o.io

NetScaler ingress controller

Support matrix for cloud native solution components

The followingmatrix provides information on compatibility between the different components of the
cloud native solution offered by Citrix.

For example, the first row of this table explains the versions of NetScaler CPX/VPX/MPX which sup‑
ports different components of the NetScaler cloud native solution. In this table NA is marked if the
components are not dependent on each other or when the components are the same.

Product/componentNetScaler
CPX/VPX/MPX

NetScaler
Ingress
Con‑
troller

NetScaler
Ob‑
serv‑
abil‑
ity
Ex‑
porter

Citrix
is‑
tio
adap‑
tor

node
con‑
troller

ADM
agent

ADM
ser‑
vice

ADM
on‑
prem

NetScaler
Met‑
rics
Ex‑
porter

—————
–

————
‑

————
‑

—————————————————
‑

——————————
–

——————————
–

——————————
–

——————————
–

NetScaler
CPX/VPX/MPX

NA NetScaler
Ingress
Con‑
troller
ver‑
sion
1.1.1
on‑
wards
is
sup‑
ported
with
CPX
ver‑
sion
12.1+
on‑
wards
and
VPX/MPX
11.1+
on‑
wards

COE
ver‑
sion
1.0.001
on‑
wards
is
sup‑
ported
with
VPX/M‑
PX/CPX:
13.0
on‑
wards

CIA
ver‑
sion
1.0.0‑
alpha
on‑
wards
is
sup‑
ported
with
CPX/VPX/MPX
12.1+
on‑
wards

CPX/VPX/MPX
12.0
on‑
wards

CPX/VPX/MPX
13.0–
47.22
on‑
wards

CPX/VPX/MPX
13.0–
47.22
on‑
wards

CPX/VPX/MPX
11.1
on‑
wards

CPX/VPX/MPX
12.1
on‑
wards

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 535

NetScaler ingress controller

NetScaler
Ingress
Con‑
troller

CPX
12.1+
on‑
wards
and
VPX/MPX
11.1+
on‑
wards
sup‑
ports
NetScaler
Ingress
Con‑
troller
ver‑
sion
1.1.1
on‑
wards

NA COE
ver‑
sion
1.0.001
and
on‑
wards
is
sup‑
ported
with
NetScaler
Ingress
Con‑
troller
ver‑
sion
1.5.6
on‑
wards

NA NA NA NA NA NA

NetScaler
Ob‑
serv‑
abil‑
ity
Ex‑
porter

CPX/VPX/MPX
13.0
on‑
wards
is
sup‑
ported
with
COE
ver‑
sion
1.0.001
on‑
wards

NetScaler
Ingress
Con‑
troller
ver‑
sion
1.5.6
on‑
wards
is
sup‑
ported
with
COE
ver‑
sion
1.0.001
on‑
wards

NA CIA
ver‑
sion
1.2.0‑
beta
on‑
wards
is
sup‑
ported
with
COE
ver‑
sion
1.0.001
on‑
wards

NA NA NA NA NA

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 536

https://github.com/citrix/citrix-k8s-ingress-controller
https://github.com/citrix/citrix-k8s-ingress-controller
https://github.com/citrix/citrix-k8s-ingress-controller
https://github.com/citrix/citrix-k8s-ingress-controller
https://github.com/citrix/citrix-observability-exporter
https://github.com/citrix/citrix-observability-exporter
https://github.com/citrix/citrix-observability-exporter
https://github.com/citrix/citrix-observability-exporter
https://github.com/citrix/citrix-observability-exporter
https://github.com/citrix/citrix-observability-exporter
https://github.com/citrix/citrix-observability-exporter

NetScaler ingress controller

Citrix
is‑
tio
adap‑
tor

CPX/VPX/MPX
12.1+
on‑
wards
is
sup‑
ported
with
CIA
ver‑
sion
1.2.0‑
beta
on‑
wards

NA COE
ver‑
sion
1.0.001
is
sup‑
ported
with
CIA
ver‑
sion
1.2.0‑
beta
on‑
wards

NA NA NA NA NA NA

node
con‑
troller

CPX/VPX/MPX
12.0
on‑
wards

NA NA NA NA NA NA NA NA

ADM
agent

CPX/VPX/MPX
13.0–
47.22
on‑
wards

NA NA NA NA NA NA NA NA

ADM
ser‑
vice

CPX/VPX/MPX
13.0–
47.22
on‑
wards

NA NA NA NA NA NA NA NA

ADM
on‑
prem

CPX/VPX/MPX
11.1
on‑
wards

NA NA NA NA NA NA NA NA

NetScaler
Met‑
rics
Ex‑
porter

CPX/VPX/MPX
12.1
on‑
wards

NA NA NA NA NA NA NA NA

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 537

https://github.com/citrix/citrix-istio-adaptor
https://github.com/citrix/citrix-istio-adaptor
https://github.com/citrix/citrix-istio-adaptor
https://github.com/citrix/citrix-istio-adaptor
https://github.com/citrix/citrix-istio-adaptor

NetScaler ingress controller

Note:

For better use case coverage, use the latest versions of the components provided in the compat‑
ibility table.

Authentication and authorization policies for Kubernetes with
NetScaler

December 31, 2023

Authentication and authorization policies are used to enforce access restrictions to the resources
hosted by an application or API server. While you can verify the identity using the authentication
policies, authorization policies are used to verify whether a specified request has the necessary per‑
missions to access a resource.

NetScaler provides a Kubernetes CustomResourceDefinition (CRD) called the Auth CRD that you can
usewith the NetScaler Ingress Controller to define authentication policies on the ingress NetScaler.

Auth CRD definition

The Auth CRD is available in the NetScaler Ingress Controller GitHub repo at: auth‑crd.yaml. The Auth
CRD provides attributes for the various options that are required to define the authentication policies
on the Ingress NetScaler.

Auth CRD attributes

The Auth CRD provides the following attributes that you use to define the authentication policies:

• servicenames
• authentication_mechanism
• authentication_providers
• authentication_policies
• authorization_policies

Servicenames

The name of the services for which the authentication and authorization policies need to be
applied.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 538

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/crd/auth/auth-crd.yaml

NetScaler ingress controller

Authenticationmechanism

The following authentication mechanisms are supported:

• Using request headers:
Enables user authentication using the request header. You can use this mechanism when the
credentials or API keys are passed in a header (typically Authorization header). For example,
you can use authentication using request headers for basic, digest, bearer authentication, or
API keys.

• Using forms:
You can use this mechanismwith user or web authentication including the relying party config‑
uration for OpenID connect and the service provider configuration for SAML.

When the authentication mechanism is not specified, the default is authentication using the request
header.

The following are the attributes for forms based authentication.

Attribute Description

authentication_host Specifies a fully qualified domain name (FQDN)
to which the user must be redirected for ADC
authentication service. This FQDN should be
unique and should resolve to the front‑end IP
address of NetScaler with Ingress/service type
LoadBalancer or the VIP address of the Listener
CRD.

authentication_host_cert Specifies the name of the SSL certificate to be
used with the authentication_host. This
certificate is mandatory while performing
authentication using the form.

ingress_name Specifies the Ingress name for which the
authentication using forms is applicable.

lb_service_name Specifies the name of the service of type
LoadBalancer for which the authentication using
forms is applicable.

listener_name The name of the Listener CRD for which the
authentication using forms is applicable.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 539

NetScaler ingress controller

Attribute Description

vip Specifies the front‑end IP address of the Ingress
for which the authentication using forms is
applicable. This attribute refers to the
frontend-ip address provided with the
Ingress. If there is more than one Ingress
resource which uses the same frontend‑ip, it is
recommended to use vip.

Note:

• While using forms, authentication can be enabled for all types of traffic. Currently, granular
authentication is not supported.

• Depending on the resource towhich you need to apply formbased authentication, you can
use one of the ingress_name, lb_service_name, listener_name, or vip attrib‑
utes to specify the resource.

Authentication providers

Theprovidersdefine the authenticationmechanismandparameters that are required for the authen‑
tication mechanism.

Basicauthentication Specifies that local authentication isusedwith theHTTPbasicauthentication
scheme. To use basic authentication, youmust create user accounts on the ingress NetScaler.

OAuth authentication The OAuth authentication mechanism, requires an external identity
provider to authenticate the client using oAuth2 and issue an Access token. When the client presents
the Access token to a NetScaler as an access credential, the NetScaler validates the token using the
configured values. If the token validation is successful then NetScaler grants access to the client.

OAuth authentication attributes The following are the attributes for OAuth authentication:

Attribute Description

Issuer The identity (usually a URL) of the server whose
tokens need to be accepted for authentication.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 540

NetScaler ingress controller

Attribute Description

jwks_uri The URL of the endpoint that contains JWKs
(JSONWeb Key) for JWT (JSONWeb Token)
verification.

audience The identity of the service or application for
which the token is applicable.

token_in_hdr The custom header name where the token is
present. The default value is the
Authorization header.
Note: You can specify more than one header.

token_in_param The query parameter where the token is present.

signature_algorithms Specifies the list of signature algorithms which
are allowed. By default HS256, RS256, and
RS512 algorithms are allowed.

introspect_url The URL of the introspection endpoint of the
authentication server (IdP). If the access token
presented is an opaque token, introspection is
used for the token verification.

client_credentials The name of the Kubernetes secrets object that
contains the client id and client secret required
to authenticate with the authentication server.

claims_to_save The list of claims to be saved. Claims are used to
create authorization policies.

OpenID Connect (OIDC) is a simple identity layer on top of the OAuth 2.0 protocol. OIDC allows clients
to verify the identity of the end‑user based on the authentication performed by an authorization
server, as well as to obtain basic profile information about the end‑user. In addition to the OAuth
attributes, you can use the following attributes to configure OIDC.

Attribute Description

metadata_url Specifies the URL that is used to get OAUTH or
OIDC provider metadata.

user_field Specifies the attribute in the token fromwhich
the user name should be extracted. By default,
NetScaler examines the email attribute for user
ID.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 541

NetScaler ingress controller

Attribute Description

default_group Specifies the group assigned to the request if
authentication succeeds. This group is in
addition to any extracted groups from the token.

grant_type Specifies the type of flow to the token end point.
The default value is CODE.

pkce Specifies whether to enable Proof Key for Code
Exchange (PKCE). The default value is ENABLED.

token_ep_auth_method Specifies the authentication method to be used
with the token end point. The default value is
client_secret_post.

SAML authentication Security assertion markup language (SAML) is an XML‑based open standard
which enables authentication of users across products or organizations. The SAML authentication
mechanism, requires an external identity provider to authenticate the client. SAML works by trans‑
ferring the client identity from the identity provider to the NetScaler. On successful validation of the
client identity, the NetScaler grants access to the client.

The following are the attributes for SAML authentication.

Attribute Description

metadata_url Specifies the URL used for obtaining SAML
metadata.

metadata_refresh_interval Specifies the interval in minutes for fetching
metadata from the specified metadata URL.

signing_cert Specifies the SSL certificate to sign requests
from the service provider (SP) to the identity
provider (IdP).

audience Specifies the identity of the service or
application for which the token is applicable.

issuer_name Specifies the name used in requests sent from
SP to IdP to identify the NetScaler.

binding Specifies the transport mechanism of the SAML
message. The default value is POST.

artifact_resolution_service_url Specifies the URL of the artifact resolution
service on IdP.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 542

NetScaler ingress controller

Attribute Description

logout_binding Specifies the transport mechanism of the SAML
logout. The default value is POST.

reject_unsigned_assertion Rejects unsigned SAML assertions. If this value is
ON, it rejects assertion without signature.

user_field Specifies the SAML user ID specified in the SAML
assertion

default_authentication_group Specifies the default group that is chosen when
the authentication succeeds in addition to
extracted groups.

skewtime Specifies the allowed clock skew time in minutes
on an incoming SAML assertion.

attributes_to_save Specifies the list of attribute names separated by
commas which needs to be extracted and stored
as key‑value pairs for the session on NetScaler.

LDAP authentication LDAP (Lightweight Directory Access Protocol) is an open, vendor‑neutral, in‑
dustry standard application protocol for accessing andmaintaining distributed directory information
services over an Internet Protocol (IP) network. A common use of LDAP is to provide a central place to
store user names and passwords. LDAP allowsmany different applications and services to connect to
the LDAP server to validate users.

Note:

LDAP authentication is supported through both the authentication mechanisms using the re‑
quest header or using forms.

The following are the attributes for LDAP authentication.

Attribute Description

server_ip Specifies the IP address assigned to the LDAP
server.

server_name Specifies the LDAP server name as an FQDN.

server_port Specifies the port on which the LDAP server
accepts connections. The default value is 389.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 543

NetScaler ingress controller

Attribute Description

base Specifies the base node on which to start LDAP
searches. If the LDAP server is running locally,
the default value of base is dc=netscaler,
dc=com.

server_login_credentials Specifies the Kubernetes secret object providing
credentials to log in to the LDAP server. The
secret data should have user name and
password.

login_name Specifies the LDAP login name attribute. The
NetScaler uses the LDAP login name to query
external LDAP servers or Active Directories.

security_type Specifies the type of security used for
communications between the NetScaler and the
LDAP server. The default is TLS.

validate_server_cert Validates LDAP server certificates. The default
value is NO.

hostname Specifies the host name for the LDAP server. If
validate_server_cert is ON, this value
must be the host name on the certificate from
the LDAP. A host namemismatch causes a
connection failure.

sub_attribute_name Specifies the LDAP group subattribute name.
This attribute is used for group extraction from
the LDAP server.

group_attribute_name Specifies the LDAP group attribute name. This
attribute is used for group extraction on the
LDAP server.

search_filter Specifies the string to be combined with the
default LDAP user search string to form the
search value. For example, if the search filter
“vpnallowed=true”is combined with the LDAP
login name “samaccount”and the user‑supplied
user name is “bob”, the result is the LDAP search
string “”
(&(vpnallowed=true)(samaccount=bob)””.
Enclose the search string in two sets of double
quotation marks.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 544

NetScaler ingress controller

Attribute Description

auth_timeout Specifies the number of seconds the NetScaler
waits for a response from the server. The default
value is 3.

password_change Allows password change requests. The default
value is DISABLED.

attributes_to_save List of attribute names separated by comma
which needs to be fetched from the LDAP server
and stored as key‑value pairs for the session on
NetScaler.

Authentication policies

The authentication_policies allow you to define the traffic selection criteria to apply the authentica‑
tion mechanism and also to specify the provider that you want to use for the selected traffic.

Authentication policy supports two formats through which you can specify authentication rules:

• resource format
• expression format

The following are the attributes for policies with resource format:

Attribute Description

path An array of URL path prefixes that refer to a
specific API endpoint. For example,
/api/v1/products/.

method An array of HTTPmethods. Allowed values are
GET, PUT, POST, or DELETE. The traffic is selected
if the incoming request URI matches with any of
the paths and any of the listed methods. If the
method is not specified then the path alone is
used for the traffic selection criteria.

provider Specifies the authentication mechanism that
needs to be used. If the authentication
mechanism is not provided, then authentication
is not performed.

The following attributes are for authentication policies with expression format:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 545

NetScaler ingress controller

Attribute Description

expression Specifies NetScaler expression to be evaluated
based on authentication

provider Specifies the authentication mechanism that
needs to be used. If the authentication
mechanism is not provided, then authentication
is not performed.

Note:

If you want to skip authentication for a specific end point, create a policy with the provider
attribute set as empty list. Otherwise, the request is denied.

Authorization policies

Authorization policies allow you to define the traffic selection criteria to apply the authorization re‑
quirements for the selected traffic.

Authorization policy supports two formats through which the you can specify the authorization
rules:

• resource format
• expression format

The following are the attributes for authorization policies with resource format:

Attribute Description

path An array of URL path prefixes that refer to a
specific API endpoint. For example,
/api/v1/products/.

method An array of HTTPmethods. Allowed values are
GET, PUT, POST, or DELETE.

claims Specifies the claims required to access a specific
API endpoint. name indicates the claim name
and values indicate the required permissions.
You can have more than one claim. If an empty
list is specified, it implies that authorization is
not required.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 546

NetScaler ingress controller

Attribute Description

Note: Any claim that needs to be used for
authorization, should be saved as part of
authentication.

The following are the attributes for authorization policies with expression format:

Attribute Description

expression Specifies an expression to be evaluated for
authorization.

Note:

NetScaler requires both authentication and authorization policies for the API traffic. Therefore,
youmust configureanauthorizationpolicywithanauthenticationpolicy. Even if youdonothave
anyauthorization checks, youmust createanauthorizationpolicywith empty claims. Otherwise,
the request is denied with a 403 error.

Note:

Authorization would be successful if the incoming request matches a policy (path, method, and
claims). All policies are tried until there is a match. If it is required to selectively bypass autho‑
rization for a specific end point, an explicit policy needs to be created.

Deploy the Auth CRD

Perform the following to deploy the Auth CRD:

1. Download the CRD (auth‑crd.yaml).

2. Deploy the Auth CRD using the following command:

1 kubectl create -f auth-crd.yaml

For example:

1 root@master:~# kubectl create -f auth-crd.yaml
2
3 customresourcedefinition.apiextensions.k8s.io/authpolicies.citrix.

com created

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 547

https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/crd/auth/auth-crd.yaml

NetScaler ingress controller

How towrite authentication and authorization policies

After you have deployed the CRD provided by NetScaler in the Kubernetes cluster, you can define the
authentication policy configuration in a.yaml file. In the.yaml file, useauthpolicy in thekind
field and in the spec section add the Auth CRD attributes based on your requirement for the policy
configuration.

After you deploy the .yaml file, the NetScaler Ingress Controller applies the authentication policy
configuration on the Ingress NetScaler device.

Local auth provider

The following is a sample authentication and authorization policy definition for the local‑auth‑
provider type (local_auth.yaml).

1 apiVersion: citrix.com/v1beta1
2 kind: authpolicy
3 metadata:
4 name: authexample
5 spec:
6 servicenames:
7 - frontend
8
9 authentication_providers:

10 - name: "local-auth-provider"
11 basic_local_db:
12 use_local_auth: 'YES'
13
14 authentication_policies:
15 - resource:
16 path:
17 - '/orders/'
18 - '/shipping/'
19 method: [GET, POST]
20 provider: ["local-auth-provider"]
21
22 # skip authentication for this
23 - resource:
24 path:
25 - '/products/'
26 method: [GET]
27 provider: []
28
29 authorization_policies:
30 # skip authorization
31 - resource:
32 path: []
33 method: []
34 claims: []

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 548

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/auth/auth-crd.yaml

NetScaler ingress controller

The sample policy definition performs the following:

• NetScaler performs the local authentication on the requests to the following:

– GET or POST operation on orders and shipping end points.

• NetScaler does not perform the authentication for GET operation on the products endpoint.
• NetScaler does not apply any authorization permissions.

oAuth JWT verification

The following is a sample authentication and authorization policy definition for oAuth JWT verifica‑
tion (oauth_jwt_auth.yaml).

1 apiVersion: citrix.com/v1beta1
2 kind: authpolicy
3 metadata:
4 name: authexample
5 spec:
6 servicenames:
7 - frontend
8
9 authentication_providers:

10 - name: "jwt-auth-provider"
11 oauth:
12 issuer: "https://sts.windows.net/tenant1/"
13 jwks_uri: "https://login.microsoftonline.com/tenant1/

discovery/v2.0/keys"
14 audience : ["https://api.service.net"]
15 claims_to_save : ["scope"]
16
17 authentication_policies:
18 - resource:
19 path:
20 - '/orders/'
21 - '/shipping/'
22 method: [GET, POST]
23 provider: ["jwt-auth-provider"]
24
25 # skip authentication for this
26 - resource:
27 path:
28 - '/products/'
29 method: [GET]
30 provider: []
31
32 authorization_policies:
33 - resource:
34 path:
35 - '/orders/'
36 - '/shipping/'

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 549

NetScaler ingress controller

37 method: [POST]
38 claims:
39 - name: "scope"
40 values: ["read", "write"]
41 - resource:
42 path:
43 - '/orders/'
44 method: [GET]
45 claims:
46 - name: "scope"
47 values: ["read"]
48 # skip authorization, no claims required
49 - resource:
50 path:
51 - '/shipping/'
52 method: [GET]
53 claims: []

The sample policy definition performs the following:

• NetScaler performs JWT verification on the requests to the following:

– The GET or POST operation on orders and shipping
endpoints.

• NetScaler skips authentication for the GET operation on the products endpoint.

• NetScaler requires the scope claim with read and write permissions for POST operation on
orders and shipping endpoints.

• NetScaler requires the scope claim with the read permission for GET operation on the orders
endpoint.

• NetScaler does not need any permissions for GET operation on the shipping end point.

For OAuth, if the token is present in a custom header, it can be specified using the token_in_hdr
attribute as follows:

1 oauth:
2 issuer: "https://sts.windows.net/tenant1/"
3 jwks_uri: "https://login.microsoftonline.com/tenant1/discovery/

v2.0/keys"
4 audience : ["https://vault.azure.net"]
5 token_in_hdr : [“ custom-hdr1 ”]

Similarly, if the token ispresent inaqueryparameter, it canbe specifiedusing thetoken_in_param
attribute as follows:

1 oauth:
2 issuer: "https://sts.windows.net/tenant1/"
3 jwks_uri: "https://login.microsoftonline.com/tenant1/discovery/

v2.0keys"

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 550

NetScaler ingress controller

4 audience : ["https://vault.azure.net"]
5 token_in_param : [“ query-param1 ”]

oAuth Introspection

The following is a sample authentication and authorization policy definition for oAuth JWT verifica‑
tion. (oauth_intro_auth.yaml)

1 apiVersion: citrix.com/v1beta1
2 kind: authpolicy
3 metadata:
4 name: authexample
5 spec:
6 servicenames:
7 - frontend
8
9 authentication_providers:

10 - name: "introspect-provider"
11 oauth:
12 issuer: "ns-idp"
13 jwks_uri: "https://idp.aaa/oauth/idp/certs"
14 audience : ["https://api.service.net"]
15 client_credentials: "oauthsecret"
16 introspect_url: https://idp.aaa/oauth/idp/introspect
17 claims_to_save : ["scope"]
18
19 authentication_policies:
20 - resource:
21 path: []
22 method: []
23 provider: ["introspect-provider"]
24
25 authorization_policies:
26 - resource:
27 path: []
28 method: [POST]
29 claims:
30 - name: "scope"
31 values: ["read", "write"]
32 - resource:
33 path: []
34 method: [GET]
35 claims:
36 - name: "scope"
37 values: ["read"]

The sample policy definition performs the following:

• NetScaler performs the oAuth introspection as specified in the provider introspect-
provider for all requests.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 551

NetScaler ingress controller

• NetScaler requires the scope claim with read and write permissions for all POST requests.

• NetScaler requires the scope claim with the read permission for all GET requests.

Creating a secrets object with client credentials for introspection

A Kubernetes secrets object is needed for configuring the OAuth introspection.
You can create a secret object in a similar way as shown in the following example:

1 apiVersion: v1
2 kind: Secret
3 metadata:
4 name: oauthsecret
5 type: Opaque
6 stringData:
7 client_id: "nsintro"
8 client_secret: "nssintro"

Note:

Keys of the opaque secret object must be client_id and client_secret. A user can set
the values for them as desired.

SAML authentication using forms

The following is an example for SAML authentication using forms. In the example, authhost-tls-
cert-secret and saml-tls-cert-secret are Kubernetes TLS secrets referring to certificate
and key.

Note:

Whencertkey.cert andcertkey.key are certificate and key respectively for the authenti‑
cation host, then the authhost-tls-cert-secret can be formed using the following com‑
mand:

1 kubectl create secret tls authhost-tls-cert-secret --key="certkey.
key" --cert="certkey.cert

Similarly, you can use this command to form saml-tls-cert-secret with the required certifi‑
cate and key.

1 apiVersion: citrix.com/v1beta1
2 kind: authpolicy
3 metadata:
4 name: samlexample
5 spec:
6 servicenames:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 552

NetScaler ingress controller

7 - frontend
8
9 authentication_mechanism:

10 using_forms:
11 authentication_host: "fqdn_authenticaton_host"
12 authentication_host_cert:
13 tls_secret: authhost-tls-cert-secret
14 listener_name: “ example-listener ”
15
16 authentication_providers:
17 - name: "saml-auth-provider"
18 saml:
19 metadata_url: "https://idp.aaa/metadata/samlidp/aaa"
20 signing_cert:
21 tls_secret: saml-tls-cert-secret
22
23 authentication_policies:
24
25 - resource:
26 path: []
27 method: []
28 provider: ["saml-auth-provider"]
29
30 authorization_policies:
31
32 - resource:
33 path: []
34 method: []
35 claims: []
36
37 <!--NeedCopy-->

The sample policy definition performs the following:

• NetScaler performs SAML authentication as specified in the providersaml-auth-provider
for all requests.
Note: Granular authentication is not supported for the formsmechanism.

• NetScaler requires the group claim with admin permission for all POST requests.

• NetScaler does not require any specific permission for GET requests.

OpenID Connect authentication using forms

The following is an example for creating OpenID Connect authentication to configure NetScaler
in a Relaying Party (RP) role to authenticate users for an external identity provider. The
authentication_mechanism must be set to using_forms to trigger the OpenID Connect
procedures.

1 apiVersion: citrix.com/v1beta1

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 553

NetScaler ingress controller

2 kind: authpolicy
3 metadata:
4 name: authoidc
5 spec:
6 servicenames:
7 - frontend
8 authentication_mechanism:
9 using_forms:

10 authentication_host: "10.221.35.213"
11 authentication_host_cert:
12 tls_secret: "oidc-tls-secret"
13 ingress_name: “ example-ingress ”
14
15 authentication_providers:
16
17 - name: "oidc-provider"
18 oauth:
19 audience : ["https://app1.citrix.com"]
20 client_credentials: "oidcsecret"
21 metadata_url: "https://10.221.35.214/oauth/idp/.well-known/

openid-configuration"
22 default_group: "groupA"
23 user_field: "sub"
24 pkce: "ENABLED"
25 token_ep_auth_method: "client_secret_post"
26
27 authentication_policies:
28
29 - resource:
30 path: []
31 method: []
32 provider: ["oidc-provider"]
33
34 authorization_policies:
35
36 #default - no authorization requirements
37 - resource:
38 path: []
39 method: []
40 claims: []
41 <!--NeedCopy-->

The sample policy definition performs the following:

• NetScaler performs OIDC authentication (relying party) as specified in the provider oidc-
provider for all requests.

Note: Granular authentication is not supported for the formsmechanism.

• NetScaler does not require any authorization permissions.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 554

NetScaler ingress controller

LDAP authentication using the request header

The following is an example for LDAP authentication using the request header.

In this example,ldapcredential is the Kubernetes secret referring to the LDAP server credentials.
See the ldap_secret.yaml file for information on how to create LDAP server credentials.

1 apiVersion: citrix.com/v1beta1
2 kind: authpolicy
3 metadata:
4 name: ldapexample
5 spec:
6 servicenames:
7 - frontend
8
9 authentication_providers:

10 - name: "ldap-auth-provider"
11 ldap:
12 server_ip: "192.2.156.160"
13 base: 'dc=aaa,dc=local'
14 login_name: accountname
15 sub_attribute_name: CN
16 server_login_credentials: ldapcredential
17
18 - name: "local-auth-provider"
19 basic_local_db:
20 use_local_auth: 'YES'
21
22 authentication_policies:
23
24 - resource:
25 path: []
26 method: []
27 provider: ["ldap-auth-provider"]
28
29
30 authorization_policies:
31
32 - resource:
33 path: []
34 method: []
35 claims: []
36 <!--NeedCopy-->

Note: With the request header based authentication mechanism, granular authentication based on
traffic is supported.

LDAP authentication using forms

In the exampleauthhost-tls-cert-secret is the Kubernetes TLS secret referring to certificate
and key.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 555

NetScaler ingress controller

Whencertkey.certandcertkey.keyare certificateandkey respectively for theauthentication
host, then the authhost-tls-cert-secret can be formed using the following
command:

1 kubectl create secret tls authhost-tls-cert-secret --key="certkey.
key" --cert="certkey.cert

In this example,ldapcredential is the Kubernetes secret referring to the LDAP server credentials.
See the ldap_secret.yaml file for information on how to create LDAP server credentials.

1 apiVersion: citrix.com/v1beta1
2 kind: authpolicy
3 metadata:
4 name: ldapexample
5 spec:
6 servicenames:
7 - frontend
8
9 authentication_mechanism:

10 using_forms:
11 authentication_host: "fqdn_authenticaton_host"
12 authentication_host_cert:
13 tls_secret: authhost-tls-cert-secret
14 vip: "192.2.156.156"
15
16 authentication_providers:
17 - name: "ldap-auth-provider"
18 ldap:
19 server_ip: "192.2.156.160"
20 base: 'dc=aaa,dc=local'
21 login_name: accountname
22 sub_attribute_name: CN
23 server_login_credentials: ldapcredential
24
25 authentication_policies:
26
27 - resource:
28 path: []
29 method: []
30 provider: ["ldap-auth-provider"]
31
32 authorization_policies:
33
34 - resource:
35 path: []
36 method: []
37 claims: []
38
39 <!--NeedCopy-->

The sample policy definition performs the following:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 556

NetScaler ingress controller

• NetScaler performs the LDAP authentication for entire traffic (all requests).
• NetScaler does not apply any authorization permission.

The following is an example for LDAP_secret.yaml.

1 apiVersion: v1
2 kind: Secret
3 metadata:
4 name: ldapcredential
5 type: Opaque
6 stringData:
7 username: 'ldap_server_username'
8 password: 'ldap_server_password'
9

10 <!--NeedCopy-->

Example for NetScaler expression support with Auth CRD

This example shows how you can specify NetScaler expressions alongwith authentication and autho‑
rization policies:

1 apiVersion: citrix.com/v1beta1
2 kind: authpolicy
3 metadata:
4 name: authexample
5 spec:
6 servicenames:
7 - frontend
8
9 authentication_mechanism:

10 using_request_header: 'ON'
11
12 authentication_providers:
13 - name: "ldap-auth-provider"
14 ldap:
15 server_ip: "192.2.156.160"
16 base: 'dc=aaa,dc=local'
17 login_name: accountname
18 sub_attribute_name: CN
19 server_login_credentials: ldapcredential
20 # "memberof" attribute details are extracted from LDAP

server.
21 attributes_to_save: memberof
22
23 authentication_policies:
24 # Perform LDAP authentication for the host hotdrink.beverages

.com
25 - expression: 'HTTP.REQ.HOSTNAME.SET_TEXT_MODE(IGNORECASE).EQ

("hotdrink.beverages.com")'
26 provider: ["ldap-auth-provider"]
27

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 557

NetScaler ingress controller

28
29 authorization_policies:
30 # ALLOW the session only if the authenticated user is

associated with attribute "memberof" having value "grp4"
31 - expression: 'aaa.user.attribute("memberof").contains("grp4

")'

Rate limiting in Kubernetes using NetScaler

December 31, 2023

In a Kubernetes deployment, you can rate limit the requests to the resources on the back end server
or services using rate limiting feature provided by the ingress NetScaler.

NetScaler provides a Kubernetes CustomResourceDefinitions (CRDs) called the Rate limit CRD that
you can use with the NetScaler Ingress Controller to configure the rate limiting configurations on the
NetScalers used as Ingress devices.

Apart from rate limiting the requests to the services in a Kubernetes environment, you can use the
Rate limit CRD for API security as well. The Rate limit CRD allows you to limit the REST API request to
API servers or specific API endpoints on the API servers. It monitors and keeps track of the requests to
the API server or endpoints against the allowed limit per time slice and hence protects from attacks
such as the DDoS attack.

You can enable logging for observability with the rate limit CRD. Logs are stored on NetScaler which
can be viewed by checking the logs using the shell command. The file location is based on the syslog
configuration. For example, /var/logs/ns.log.

Rate limit CRD definition

The Rate limit CRD spec is available in the NetScaler Ingress Controller GitHub repo at: ratelimit‑
crd.yaml. The Rate limit CRD provides attributes for the various options that are required to define
the rate limit policies on the Ingress NetScaler that acts as an API gateway.

Rate limit CRD attributes

The following table lists the various attributes provided in the Rate limit CRD:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 558

https://docs.citrix.com/en-us/citrix-adc/13/appexpert/rate-limiting.html
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/crd/ratelimit/ratelimit-crd.yaml
https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/crd/ratelimit/ratelimit-crd.yaml

NetScaler ingress controller

CRD attribute Description

servicename The list of Kubernetes services to which you
want to apply the rate limit policies.

selector_keys The traffic selector keys that filter the traffic to
identify the API requests against which the
throttling is applied andmonitored.
Note: The selector_keys is an optional
attribute. You can choose to configure zero, one
or more of the selector keys. If more than one
selector keys are configured then it is considered
as a logical AND expression.

path: An array of URL path prefixes that refer to
a specific API endpoint. For example,
/api/v1/products/.

method: An array of HTTPmethods. Allowed
values are GET, PUT, POST, or DELETE.

header_name: HTTP header that has the
unique API client or user identifier. For example,
X-apikeywhich comes with a unique API‑key
that identifies the API client sending the request.

per_client_ip: Allows you to monitor and apply
the configured threshold to each API request
received per unique client IP address.

req_threshold Themaximum number of requests that are
allowed in the given time slice (request rate).

timeslice The time interval specified in microseconds
(multiple of 10 s), during which the requests are
monitored against the configured limits. If not
specified it defaults to 1000 milliseconds.

limittype It allows you to configure the type of throttling
algorithms that you want to use to apply the
limit. Supported algorithms are burst and
smooth. The default is the burstmode.

throttle_action It allows you to define the throttle action that
needs to be taken on the traffic that is throttled
for crossing the configured threshold.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 559

NetScaler ingress controller

CRD attribute Description

DROP: Drops the requests above the configured
traffic limits.

RESET: Resets the connection for the requests
crossing the configured limit.

RESPOND: Responds with the standard “429
Toomany requests”response.

redirect_url This attribute is an optional attribute that is
required only if throttle_action is
configured with the value REDIRECT.

logpackets Enables audit logs.

logexpression Specifies the default‑syntax expression that
defines the format and content of the log
message.

loglevel Specifies the severity level of the log message
that is generated.

Deploy the Rate limit CRD

Perform the following to deploy the Rate limit CRD:

1. Download the CRD (ratelimit‑crd.yaml).

2. Deploy the Rate limit CRD using the following command:

1 kubectl create -f ratelimit-crd.yaml

For example,

1 root@master:~# kubectl create -f ratelimit-crd.yaml
2
3 customresourcedefinition.apiextensions.k8s.io/ratelimits.citrix.

com created
4
5 root@master:~# kubectl get crd
6
7 NAME CREATED AT
8 ratelimits.citrix.com 2019-08-27T01:06:30Z

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 560

https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/crd/ratelimit/ratelimit-crd.yaml

NetScaler ingress controller

How towrite a rate‑based policy configuration

After you have deployed the CRD provided by NetScaler in the Kubernetes cluster, you can define the
rate‑based policy configuration in a .yaml file. In the .yaml file, use ratelimit in the kind field
and in the spec section add the Rate limit CRD attributes based on your requirement for the policy
configuration.

After you deploy the .yaml file, the NetScaler Ingress Controller applies the rate‑based policy config‑
uration on the Ingress NetScaler device.

Following are some examples for rate limit policy configurations.

Limit API requests to configured API endpoint prefixes

Consider a scenario wherein you want to define a rate‑based policy in NetScaler to limit the API re‑
quests to 15 requests per minute from each unique client IP address to the configured API endpoint
prefixes. Create a .yaml file called ratelimit-example1.yaml and use the appropriate CRD
attributes to define the rate‑based policy as follows:

1 apiVersion: citrix.com/v1beta1
2 kind: ratelimit
3 metadata:
4 name: throttle-req-per-clientip
5 spec:
6 servicenames:
7 - frontend
8 selector_keys:
9 basic:

10 path:
11 - "/api/v1/products"
12 - "/api/v1/orders/"
13 per_client_ip: true
14 req_threshold: 15
15 timeslice: 60000
16 throttle_action: "RESPOND"
17 logpackets:
18 logexpression: "http.req.url"
19 loglevel: "INFORMATIONAL"
20 <!--NeedCopy-->

Note:

You can initiate multiple Kubernetes objects for different paths that require different rate limit
configurations.

After you have defined the policy configuration, deploy the .yaml file using the following com‑
mand:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 561

NetScaler ingress controller

1 root@master:~#kubectl create -f ratelimit-example1.yaml
2 ratelimit.citrix.com/throttle-req-per-clientip created

The NetScaler Ingress Controller applies the policy configuration on the Ingress NetScaler device.

Limit API requests to calender APIs

Consider a scenario wherein you want to define a rate‑based policy in a NetScaler to limit the API
requests (GET or POST) to five requests from each API client identified using the HTTP header X-API
-Key to the calender APIs. Create a .yaml file called ratelimit-example2.yaml and use the
appropriate CRD attributes to define the rate‑based policy as follows:

1 apiVersion: citrix.com/v1beta1
2 kind: ratelimit
3 metadata:
4 name: throttle-calendarapi-perapikey
5 spec:
6 servicenames:
7 - frontend
8 selector_keys:
9 basic:

10 path:
11 - "/api/v1/calender"
12 method:
13 - "GET"
14 - "POST"
15 header_name: "X-API-Key"
16 req_threshold: 5
17 throttle_action: "RESPOND"
18 logpackets:
19 logexpression: "rate exceeded, you may want to configure higher

limit"
20 loglevel: "INFORMATIONAL"
21 <!--NeedCopy-->

After you have defined the policy configuration, deploy the .yaml file using the following com‑
mand:

1 root@master:~#kubectl create -f ratelimit-example2.yaml
2 ratelimit.citrix.com/throttle-req-per-clientip created

The NetScaler Ingress Controller applies the policy configuration on the Ingress NetScaler device.

Use Rewrite and Responder policies in Kubernetes

February 29, 2024

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 562

NetScaler ingress controller

In a Kubernetes environment, to deploy specific layer 7 policies to handle scenarios such as:

• Redirecting HTTP traffic to a specific URL
• Blocking a set of IP addresses to mitigate DDoS attacks
• Imposing HTTP to HTTPS

Requires you to add appropriate libraries within the microservices and manually configure the poli‑
cies. Instead, you can use the Rewrite and Responder features provided by the Ingress NetScaler de‑
vice to deploy these policies.

NetScaler provides Kubernetes CustomResourceDefinitions (CRDs) that you can use with the
NetScaler Ingress Controller to automate the configurations and deployment of these policies on the
NetScalers used as Ingress devices.

The Rewrite and Responder CRD provided by NetScaler is designed to expose a set of tools used in
front‑line NetScalers. Using these functionalities you can rewrite the header and payload of ingress
and egress HTTP traffic as well as respond to HTTP traffic on behalf of a microservice.

Once you deploy the Rewrite and Responder CRD in the Kubernetes cluster. You can define extensive
rewrite and responder policies using datasets, pat sets, and string maps and also enable audit logs
for statistics on the ingress device. For more information on the rewrite and responder policy feature
provided by NetScaler ADC, see Rewrite policy and Responder policy.

Note:

The Rewrite and Responder CRD is not supported for OpenShift routes. You can use OpenShift
ingress to use Rewrite and Responder CRD.

Deploy the NetScaler Rewrite and Responder CRD

The NetScaler Rewrite and Responder CRD deployment YAML file: rewrite‑responder‑policies‑
deployment.yaml.

Note:

Ensure that you do not modify the deployment YAML file.

Deploy the CRD, using the following command:

1 kubectl create -f rewrite-responder-policies-deployment.yaml

For example,

1 root@master:~# kubectl create -f rewrite-responder-policies-deployment.
yaml

2 customresourcedefinition.apiextensions.k8s.io/rewritepolicies.citrix.
com created

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 563

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://docs.citrix.com/en-us/citrix-adc/12-1/appexpert/rewrite.html
https://docs.citrix.com/en-us/citrix-adc/12-1/appexpert/responder.html
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/rewrite-policy/rewrite-responder-policies-deployment.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/rewrite-policy/rewrite-responder-policies-deployment.yaml

NetScaler ingress controller

Rewrite and Responder CRD attributes

The CRD provides attributes for the various options required to define the rewrite and responder poli‑
cies. Also, it providesattributes fordataset, pat set, stringmap, andaudit logs tousewithin the rewrite
and responder policies. These CRD attributes correspond to NetScaler command and attribute re‑
spectively.

Rewrite policy

The following table lists the CRD attributes that you can use to define a rewrite policy. Also, the table
lists the corresponding NetScaler command and attributes.

CRD attribute NetScaler command NetScaler attribute

rewrite‑criteria Add rewrite policy rule

default‑action Add rewrite policy undefAction

operation Add rewrite action type

target Add rewrite action target

modify‑expression Add rewrite action stringBuilderExpr

multiple‑occurence‑modify Add rewrite action Search

additional‑multiple‑occurence‑
modify

Add rewrite action RefineSearch

Direction Bind lb vserver Type

Responder policy

The following table lists the CRD attributes that you can use to define a responder policy. Also, the
table lists the corresponding NetScaler command and attributes.

CRD attribute NetScaler command NetScaler attribute

Redirect Add responder action Type (the value of type)

url Add responder action Target

redirect‑status‑code Add responder action responseStatusCode

redirect‑reason Add responder action reasonPhrase

Respond‑with Add responder action Type (the value of type)

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 564

NetScaler ingress controller

CRD attribute NetScaler command NetScaler attribute

http‑payload‑string Add responder action Target

Noop Add responder policy Action (the value of action)

Reset Add responder policy Action (the value of action)

Drop Add responder policy Action (the value of action)

Respond‑criteria Add responder policy Rule

Default‑action Add responder policy undefAction

Audit log

The following table lists theCRD attributes provide to enable audit logwithin the rewrite or responder
policies. Also, the table lists the corresponding NetScaler command and attributes.

CRD attribute NetScaler command NetScaler attribute

Logexpression Add audit message action stringBuilderExpr

Loglevel Add audit message action Loglevel

Dataset

The following table lists theCRDattributes fordataset that youcanusewithin the rewriteor responder
policies. Also, the table lists the corresponding NetScaler command and attributes.

CRD attribute NetScaler command NetScaler attribute

Name Add policy dataset Name

Type Add policy dataset Type

Values Bind policy dataset Value

Patset

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 565

NetScaler ingress controller

CRD attribute NetScaler command NetScaler attribute

Name Add policy patset Name

Values Bind policy patset string

Stringmap

CRD attribute NetScaler command NetScaler attribute

Name Add policy stringmap Name

Key Bind policy stringmap Key

Value Bind policy stringmap Value

Goto‑priority‑expression

The following table provides information about the goto-priority-expression attribute,
which is a CRD attribute for binding a group of multiple consecutive policies to services.

CRD attribute
NetScaler
command

NetScaler
attribute

Supported
values Default value

goto‑priroty‑
expression

Bind lb vserver gotoPriorityExpressionNEXT and END End

Formore informationonhow touse thegoto-priority-expressionattribute, see theexample
Modify strings and host name in the requested URL

How towrite a policy configuration

After you have deployed the CRD provided by NetScaler in the Kubernetes cluster, you can define the
policy configuration in a.yaml file. In the .yaml file, use rewritepolicy in the kind field and
based on your requirement add any of the following individual sections in spec for policy configura‑
tion.

• rewrite-policy ‑ To define rewrite policy configuration.
• responder-policy ‑ To define responder policy configuration.
• logpackets ‑ To enable audit logs.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 566

NetScaler ingress controller

• dataset ‑ To use a data set for extensive policy configuration.
• patset ‑ To use a pat set for extensive policy configuration.
• stringmaps ‑ To use string maps for extensive policy configuration.

In these sections, you need to use the CRD attributes provided for the respective policy configuration
(rewrite or responder) to define the policy.

Also, in the spec section, you need to include a rewrite-policies section to specify the service
or services to which the policy must be applied. For more information, see Sample policy configura‑
tions.

After you deploy the .yaml file, the NetScaler Ingress Controller applies the policy configuration on
the Ingress NetScaler device.

Guidelines for the policy configuration

• If the CRD is associated with a namespace then, by default, the policy is applied to the services
associated with the namespace. For example, if you have the same service name associated
with multiple namespaces, then the policy is applied to the service that belongs to the name‑
space associated with the CRD.

• If you have defined multiple policies in a single .yaml file then the first policy configuration
defined in the file takes priority and the subsequent policy configurations is applied as per the
sequence. If you have multiple policies defined in different files then the first policy configura‑
tion defined in the file that you deployed first takes priority.

Guidelines for the usage of Goto‑priority‑expression

• The rewrite and responder policies can be combined as multiple groups using the NEXT key‑
word within the goto-priority-expression field.

• When the goto-priority-expression field is NEXT within the current policy and if the
current policy evaluates toTrue, the next policy in the group is executed and the flowmoves to
the next consecutive policies unless the goto-priority-expression field points to END.

• When the current policy evaluates to FALSE, the goto-priority-expression has no im‑
pact, as the policy execution stops at the current policy.

• The rewrite or responder policy group within the rewrite or responder policies begins with the
policy assigned with goto-priority-expression as NEXT and includes all the consecu‑
tive policies until the goto-priority-expression field is assigned to END.

• When you group rewrite or responder policies usinggoto-priority-expression, the ser‑
vice names bound to the policies within the group should be the same.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 567

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

NetScaler ingress controller

• The last policy within the rewrite‑policies or responder‑policies should always have the goto-
priority-expression as END.

• If the goto-priority-expression field is not specified for a policy, the default value of
END is assigned to goto-priority-expression.

Note:

For more information on how to use the goto-priority-expression field, see the exam‑
ple Modify strings and host name in the requested URL.

Create and verify a rewrite and responder policy

Consider a scenariowhere youwant to define a policy in NetScaler to rewrite all the incomingURLs to
new-url-for-the-application and send it to the microservices. Create a .yaml file called
target-url-rewrite.yaml and use the appropriate CRD attributes to define the rewrite policy
as follows:

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: targeturlrewrite
5 spec:
6 rewrite-policies:
7 - servicenames:
8 - citrix-svc
9 logpackets:

10 logexpression: "http.req.url"
11 loglevel: INFORMATIONAL
12 rewrite-policy:
13 operation: replace
14 target: 'http.req.url'
15 modify-expression: '"new-url-for-the-application"'
16 comment: 'Target URL Rewrite - rewrite the url of the HTTP

request'
17 direction: REQUEST
18 rewrite-criteria: 'http.req.is_valid'
19 <!--NeedCopy-->

After you have defined the policy configuration, deploy the .yaml file using the following com‑
mand:

1 kubectl create -f target-url-rewrite.yaml

After you deploy the .yaml file, the NetScaler Ingress Controller applies the policy configuration on
the Ingress NetScaler device.

On the master node in the Kubernetes cluster, you can verify the status of the applied rewrite policy
CRD using the following command:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 568

NetScaler ingress controller

1 Kubectl get rewritepolicies.citrix.com targeturlrewrite

You can view the status as follows:

1 kubectl get rewritepolicies.citrix.com targeturlrewrite
2 NAME STATUS MESSAGE
3 targeturlrewrite Success CRD Activated

If there are issues while creating or applying the CRD, the same can be debugged using the citrix‑k8s‑
ingress‑controller logs.

1 kubectl logs citrixingresscontroller

Also, you can verify whether the configuration is applied on the NetScaler by using the following
steps.

1. Log on to the NetScaler command‑line.

2. Use the following command to verify if the configuration is applied to the NetScaler:

1 show run | grep `lb vserver`
2 add lb vserver k8s-citrix_default_80_k8s-citrix-svc_default_80_svc

HTTP 0.0.0.0 0 -persistenceType NONE -cltTimeout 180
3 bind lb vserver k8s-citrix_default_80_k8s-citrix-

svc_default_80_svc k8s-citrix_default_80_k8s-citrix-
svc_default_80_svc

4 bind lb vserver k8s-citrix_default_80_k8s-citrix-
svc_default_80_svc -policyName
k8s_crd_rewritepolicy_rwpolicy_targeturlrewrite_0_default -
priority 100300076 -gotoPriorityExpression END -type REQUEST

Youcanverify that thepolicyk8s_crd_rewritepolicy_rwpolicy_targeturlrewrite_0_default
is bound to the load balancing virtual server.

Sample policy configurations

Responder policy configuration

Following is a sample responder policy configuration (block-list-urls.yaml)

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: blocklisturls
5 spec:
6 responder-policies:
7 - servicenames:
8 - citrix-svc
9 responder-policy:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 569

NetScaler ingress controller

10 respondwith:
11 http-payload-string: '"HTTP/1.1 401 Access denied"'
12 respond-criteria: 'http.req.url.equals_any("blocklistUrls")'
13 comment: 'Blocklist certain Urls'
14
15
16 patset:
17 - name: blocklistUrls
18 values:
19 - '/app1'
20 - '/app2'
21 - '/app3'
22 <!--NeedCopy-->

In this example, if NetScaler receives any URL that matches the /app1, /app2, or /app3 strings
defined in the patset, NetScaler blocks the URL.

Policy with audit logs enabled

Following is a sample policy with audit logs enabled (block‑list‑urls‑audit‑log.yaml).

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: blocklisturls
5 spec:
6 responder-policies:
7 - servicenames:
8 - citrix-svc
9 logpackets:

10 logexpression: "http.req.url"
11 loglevel: INFORMATIONAL
12 responder-policy:
13 respondwith:
14 http-payload-string: '"HTTP/1.1 401 Access denied"'
15 respond-criteria: 'http.req.url.equals_any("blocklistUrls")'
16 comment: 'Blocklist certain Urls'
17
18
19 patset:
20 - name: blocklistUrls
21 values:
22 - '/app1'
23 - '/app2'
24 - '/app3'
25 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 570

NetScaler ingress controller

Multiple policy configurations

You can add multiple policy configurations in a single .yaml file and apply the policies to the
NetScaler device. You need add separate sections for each policy configuration (multi‑policy‑
config.yaml).

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: multipolicy
5 spec:
6 responder-policies:
7 - servicenames:
8 - citrix-svc
9 responder-policy:

10 redirect:
11 url: '"www.citrix.com"'
12 respond-criteria: 'client.ip.src.TYPECAST_text_t.equals_any("

redirectIPs")'
13 comment: 'Redirect IPs to citrix.com'
14 - servicenames:
15 - citrix-svc
16 responder-policy:
17 redirect:
18 url: 'HTTP.REQ.HOSTNAME+http.req.url.

MAP_STRING_DEFAULT_TO_KEY("modifyurls")'
19 respond-criteria: 'http.req.is_valid'
20 comment: 'modify specific URLs'
21
22 rewrite-policies:
23 - servicenames:
24 - citrix-svc
25 rewrite-policy:
26 operation: insert_http_header
27 target: 'sessionID'
28 modify-expression: '"48592th42gl24456284536tgt2"'
29 comment: 'insert SessionID in header'
30 direction: RESPONSE
31 rewrite-criteria: 'http.res.is_valid'
32
33
34
35 dataset:
36 - name: redirectIPs
37 type: ipv4
38 values:
39 - 10.1.1.100
40 - 1.1.1.1 - 1.1.1.100
41 - 2.2.2.2/10
42
43 stringmap:
44 - name: modifyurls

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 571

NetScaler ingress controller

45 comment: Urls to be modified string
46 values:
47 - key: '"/app1/"'
48 value: '"/internal-app1/"'
49 - key: '"/app2/"'
50 value: '"/internal-app2/"'
51 <!--NeedCopy-->

The example contains two responder policies and a rewrite policy, based on these policies NetScaler
performs the following:

• Any requests that match the client IP addresses specified in the redirectIPs dataset, that
is, 10.1.1.100, IP addresses in the range1.1.1.1 - 1.1.1.100 and IP addresses in the
subnet 2.2.2.2/10, is redirected to www.citrix.com.

• Any incomingURLwith strings provided in themodifyurls stringmap ismodified to the value
provided in the stringmap. For example, if the incomingURL has the string/app1/ ismodified
to /internal-app1/

• Adds a session ID as a new header in the response to the client.

Example use cases

Add response headers

When the requestedURL fromtheclient contains/citrix-app/, youcanadd the followingheaders
in the HTTP response from themicroservices to the client using a rewrite policy:

• Client source port to the header
• Server destination IP address
• randomHTTP header

The following sample rewrite policy definition adds these headers to the HTTP response from the
microservices to the client:

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: addresponseheaders
5 spec:
6 rewrite-policies:
7 - servicenames:
8 - frontend
9 rewrite-policy:

10 operation: insert_before_all
11 target: http.res.full_header
12 modify-expression: '"\r\nx-port: "+client.tcp.srcport+"\r\nx-ip

:"+client.ip.dst+"\r\nx-new-dummy-header: Sending_a_gift"'

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 572

NetScaler ingress controller

13 multiple-occurence-modify: 'text("\r\n\r\n")'
14 comment: 'Response header rewrite'
15 direction: RESPONSE
16 rewrite-criteria: 'http.req.url.contains("/citrix-app/")'
17 <!--NeedCopy-->

Create a YAML file (add_response_headers.yaml) with the rewrite policy definition and deploy
the YAML file using the following command:

1 kubectl create -f add_response_headers.yaml

You can verify the HTTP header added to the response as follows:

1 $ curl -vvv http://app.cic-citrix.org/citrix-app/
2 * Trying 10.102.33.176...
3 * TCP_NODELAY set
4 * Connected to app.cic-citrix.org (10.102.33.176) port 80 (#0)
5 > GET /citrix-app/ HTTP/1.1
6 > Host: app.cic-citrix.org
7 > User-Agent: curl/7.54.0
8 > Accept: */*
9 >

10 < HTTP/1.1 200 OK
11 < Server: nginx/1.8.1
12 < Date: Fri, 29 Mar 2019 11:14:04 GMT
13 < Content-Type: text/html
14 < Transfer-Encoding: chunked
15 < Connection: keep-alive
16 < X-Powered-By: PHP/5.5.9-1ubuntu4.14
17 < x-port: 22481 ==================> NEW RESPONSE HEADER
18 < x-ip:10.102.33.176 ==================> NEW RESPONSE HEADER
19 < x-new-dummy-header: Sending_a_gift ==================> NEW RESPONSE

HEADER
20 <
21 <html>
22 <head>
23 <title> Front End App - v1 </title>
24
25
26 TRIMMED
27

Add custom header to the HTTP response packet

Using a rewrite policy, you can add custom headers in the HTTP response from the microservices to
the client.

The following sample rewrite policy definition adds a custom header to the HTTP response from the
microservices to the client:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 573

NetScaler ingress controller

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: addcustomheaders
5 spec:
6 rewrite-policies:
7 - servicenames:
8 - frontend
9 rewrite-policy:

10 operation: insert_before_all
11 target: http.res.full_header
12 modify-expression: '"\r\nx-request-time:"+sys.time+"\r\nx-using

-citrix-ingress-controller: true"'
13 multiple-occurence-modify: 'text("\r\n\r\n")'
14 comment: 'Adding custom headers'
15 direction: RESPONSE
16 rewrite-criteria: 'http.req.is_valid'
17
18 <!--NeedCopy-->

Create a YAML file (add_custom_headers.yaml)with the rewrite policy definition anddeploy the
YAML file using the following command:

1 kubectl create -f add_custom_headers.yaml

You can verify the custom HTTP header added to the response as follows:

1 $ curl -vvv http://app.cic-citrix.org/
2 * Trying 10.102.33.176...
3 * TCP_NODELAY set
4 * Connected to app.cic-citrix.org (10.102.33.176) port 80 (#0)
5 > GET / HTTP/1.1
6 > Host: app.cic-citrix.org
7 > User-Agent: curl/7.54.0
8 > Accept: */*
9 >

10 < HTTP/1.1 200 OK
11 < Server: nginx/1.8.1
12 < Date: Fri, 29 Mar 2019 12:15:09 GMT
13 < Content-Type: text/html
14 < Transfer-Encoding: chunked
15 < Connection: keep-alive
16 < X-Powered-By: PHP/5.5.9-1ubuntu4.14
17 < x-request-time:Fri, 29 Mar 2019 13:27:40 GMT =============> NEW

HEADER ADDED
18 < x-using-citrix-ingress-controller: true ===============> NEW HEADER

ADDED
19 <
20 <html>
21 <head>
22 <title> Front End App - v1 </title>
23 <style>
24

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 574

NetScaler ingress controller

25 TRIMMED
26

Replace host name in the request

Youcandefinea rewritepolicyas shown in the followingexampleYAML (http_request_modify_prefixasprefix
.yaml) to replace the host name in an HTTP request as per your requirement:

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: httpheadermodifyretainprefix
5 spec:
6 rewrite-policies:
7 - servicenames:
8 - frontend
9 rewrite-policy:

10 operation: replace_all
11 target: 'http.req.header("host")'
12 modify-expression: '"citrix-service-app"'
13 multiple-occurence-modify: 'text("app.cic-citrix.org")'
14 comment: 'HTTP header rewrite of hostname'
15 direction: REQUEST
16 rewrite-criteria: 'http.req.is_valid'
17 <!--NeedCopy-->

Create a YAML file (http_request_modify_prefixasprefix.yaml) with the rewrite policy
definition and deploy the YAML file using the following command:

1 kubectl create -f http_request_modify_prefixasprefix.yaml

You can verify the policy definition using the curl command. The host name in the request is re‑
placed with the defined host name.

1 curl http://app.cic-citrix.org/prefix/foo/bar

Output:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 575

NetScaler ingress controller

Modify the application root

You can define a rewrite policy to modify the application root if the existing application root is /.

The following sample rewrite policy modifies / to /citrix-approot/ in the request URL:

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: httpapprootrequestmodify
5 spec:
6 rewrite-policies:
7 - servicenames:
8 - frontend
9 rewrite-policy:

10 operation: replace
11 target: http.req.url
12 modify-expression: '"/citrix-approot/"'
13 comment: 'HTTP app root request modify'
14 direction: REQUEST
15 rewrite-criteria: http.req.url.eq("/")
16 <!--NeedCopy-->

Create a YAML file (http_approot_request_modify.yaml) with the rewrite policy definition
and deploy the YAML file using the following command:

kubectl create ‑f http_approot_request_modify.yaml

Using the curl command, you can verify if the application root is modified as per your require‑
ment:

1 curl -vvv http://app.cic-citrix.org/

Output:

Modify the strings in the requested URL

You can define a rewrite policy to modify the strings in the requested URL as per your requirement.

The following sample rewrite policy replaces the strings something to simple in the requested
URL:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 576

NetScaler ingress controller

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: httpurlreplacestring
5 spec:
6 rewrite-policies:
7 - servicenames:
8 - frontend
9 rewrite-policy:

10 operation: replace_all
11 target: http.req.url
12 modify-expression: '"/"'
13 multiple-occurence-modify: 'regex(re~((^(\/something\/))|(^\/

something$))~)'
14 comment: 'HTTP url replace string'
15 direction: REQUEST
16 rewrite-criteria: http.req.is_valid
17 <!--NeedCopy-->

Create a YAML file (http_url_replace_string.yaml) with the rewrite policy definition and de‑
ploy the YAML using the following command:

1 kubectl create -f http_url_replace_string.yaml

You can verify the policy definition using a curl request with the string something. The string
something is replaced with the string simple as shown in the following examples:

Example 1:

1 curl http://app.cic-citrix.org/something/simple/citrix

Output:

Example 2:

1 curl http://app.cic-citrix.org/something

Or,

1 curl http://app.cic-citrix.org/something/

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 577

NetScaler ingress controller

Output:

Add the X-Forwarded-For header within an HTTP request

Youcandefinea rewritepolicyas shown in the followingexampleYAML (http_x_forwarded_for_insert
.yaml) to add the X-Forwarded-For header within an HTTP request:

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: httpxforwardedforaddition
5 spec:
6 rewrite-policies:
7 - servicenames:
8 - frontend
9 rewrite-policy:

10 operation: insert_http_header
11 target: X-Forwarded-For
12 modify-expression: client.ip.src
13 comment: 'HTTP Initial X-Forwarded-For header add'
14 direction: REQUEST
15 rewrite-criteria: 'HTTP.REQ.HEADER("X-Forwarded-For").EXISTS.

NOT'
16
17 - servicenames:
18 - frontend
19 rewrite-policy:
20 operation: replace
21 target: HTTP.REQ.HEADER("X-Forwarded-For")
22 modify-expression: 'HTTP.REQ.HEADER("X-Forwarded-For").APPEND

(",").APPEND(CLIENT.IP.SRC)'
23 comment: 'HTTP Append X-Forwarded-For IPs'
24 direction: REQUEST
25 rewrite-criteria: 'HTTP.REQ.HEADER("X-Forwarded-For").EXISTS'
26 <!--NeedCopy-->

Create a YAML file (http_x_forwarded_for_insert.yaml) with the rewrite policy definition
and deploy the YAML file using the following command:

1 kubectl create -f http_x_forwarded_for_insert.yaml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 578

NetScaler ingress controller

Using thecurl command you can verify theHTTPpacketwith andwithout theX-Forwarded-For
header.

Example: Output of the HTTP request packet without X-Forwarded-For header:

1 curl http://app.cic-citrix.org/

Output:

Example: Output of the HTTP request packet with X-Forwarded-For header:

1 curl curl --header "X-Forwarded-For: 1.1.1.1" http://app.cic-citrix.
org/

Output:

Redirect HTTP request to HTTPS request using responder policy

Youcandefinea responderpolicydefinitionas shown in the followingexampleYAML(http_to_https_redirect
.yaml) to redirect HTTP requests to HTTPS request:

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: httptohttps
5 spec:
6 responder-policies:
7 - servicenames:
8 - frontend
9 responder-policy:

10 redirect:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 579

NetScaler ingress controller

11 url: '"https://" +http.req.HOSTNAME.SERVER+":"+"443"+http.req
.url'

12 respond-criteria: 'http.req.is_valid'
13 comment: 'http to https'
14
15 <!--NeedCopy-->

Create a YAML file (http_to_https_redirect.yaml) with the responder policy definition and
deploy the YAML file using the following command:

1 kubectl create -f http_to_https_redirect.yaml

You can verify if the HTTP request is redirected to HTTPS as follows:

Example 1:

1 $ curl -vvv http://app.cic-citrix.org
2 * Rebuilt URL to: http://app.cic-citrix.org/
3 * Trying 10.102.33.176...
4 * TCP_NODELAY set
5 * Connected to app.cic-citrix.org (10.102.33.176) port 80 (#0)
6 > GET / HTTP/1.1
7 > Host: app.cic-citrix.org
8 > User-Agent: curl/7.54.0
9 > Accept: */*

10 >
11 < HTTP/1.1 302 Found : Moved Temporarily
12 < Location: https://app.cic-citrix.org:443/ =======> Redirected to

HTTPS
13 < Connection: close
14 < Cache-Control: no-cache
15 < Pragma: no-cache
16 <
17 * Closing connection 0

Example 2:

1 $ curl -vvv http://app.cic-citrix.org/simple
2 * Trying 10.102.33.176...
3 * TCP_NODELAY set
4 * Connected to app.cic-citrix.org (10.102.33.176) port 80 (#0)
5 > GET /simple HTTP/1.1
6 > Host: app.cic-citrix.org
7 > User-Agent: curl/7.54.0
8 > Accept: */*
9 >

10 < HTTP/1.1 302 Found : Moved Temporarily
11 < Location: https://app.cic-citrix.org:443/simple ========>

Redirected to HTTPS
12 < Connection: close
13 < Cache-Control: no-cache
14 < Pragma: no-cache
15 <

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 580

NetScaler ingress controller

16 * Closing connection 0

Modify strings and host name in the requested URL

This example shows the usage of the goto-priority-expression attribute. The guidelines
for usage of the goto-priority-expression field can be found at [How to write a policy con‑
figuration. This examplemodifies the URL http://www.citrite.org/something/simple/
citrix to http://app.cic-citrix.org/simple/citrix.

Two rewrite policies are written to modify the URL:

• Rewrite policy 1: This policy is used tomodify thehost namewww.citrite.org toapp.cic
-citrix.org.

• Rewrite Policy 2: This policy is used to modify the url /something/simple/citrix to /
simple/citrix

You can bind the two policies using the goto-priority-expression attribute as shown in the
following YAML:

1 apiVersion: citrix.com/v1
2 kind: rewritepolicy
3 metadata:
4 name: hostnameurlrewrite
5 spec:
6 rewrite-policies:
7 - servicenames:
8 - citrix-svc
9 goto-priority-expression: NEXT

10 rewrite-policy:
11 operation: replace_all
12 target: 'http.req.header("host")'
13 modify-expression: '"app.cic-citrix.org"'
14 multiple-occurence-modify: 'text("www.citrite.org")'
15 comment: 'HTTP header rewrite of hostname'
16 direction: REQUEST
17 rewrite-criteria: 'http.req.is_valid.and(HTTP.REQ.HOSTNAME.EQ

("www.citrite.org"))'
18 - servicenames:
19 - citrix-svc
20 goto-priority-expression: END
21 rewrite-policy:
22 operation: replace_all
23 target: http.req.url
24 modify-expression: '"/"'
25 multiple-occurence-modify: 'regex(re~((^(\/something\/))|(^\/

something$))~)'
26 comment: 'HTTP url replace string'
27 direction: REQUEST

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 581

NetScaler ingress controller

28 rewrite-criteria: 'http.req.is_valid.and(HTTP.REQ.HOSTNAME.EQ
("www.citrite.org"))'`

29 <!--NeedCopy-->

Verification You can verify whether the following curl request http://www.citrite.org
/something/simple/citrix is modified to http://app.cic-citrix.org/simple/
citrix.

Example: Modifying the requested URL

1 curl http://www.citrite.org/something/simple/citrix

Modified host name and URL for the requested URL is present in the image shown as follows:

HTTP callout

An HTTP callout allows the NetScaler to generate and send an HTTP or HTTPS request to an external
server as part of the policy evaluation and take appropriate action based on the response obtained
from the external server. You can use the rewrite and responder CRD to initiate HTTP callout requests
from the NetScaler. For more information, see the HTTP callout documentation.

Related articles

• Feature Documentation

– NetScaler Rewrite Feature Documentation

– NetScaler Responder Feature Documentation

• Developer Documentation

– NetScaler Rewrite Policy

– NetScaler Rewrite Action

– NetScaler Responder Policy

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 582

https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/how-to/http-callout.html
https://docs.citrix.com/en-us/citrix-adc/12-1/appexpert/rewrite.html
https://docs.citrix.com/en-us/citrix-adc/12-1/appexpert/responder.html
https://developer-docs.citrix.com/projects/netscaler-command-reference/en/12.0/rewrite/rewrite-policy/rewrite-policy/
https://developer-docs.citrix.com/projects/netscaler-command-reference/en/12.0/rewrite/rewrite-action/rewrite-action/
https://developer-docs.citrix.com/projects/netscaler-command-reference/en/12.0/responder/responder-policy/responder-policy/

NetScaler ingress controller

– NetScaler Responder Action

– NetScaler Audit Message Action

– NetScaler Policy Dataset

Advanced content routing for Kubernetes with NetScaler

December 31, 2023

Kubernetes native Ingress offers basic host and path based routing. But, other advanced routing tech‑
niques like routing based on header values or query strings is not supported in the Ingress structure.
You can expose these features on the Kubernetes Ingress through Ingress annotations, but annota‑
tions are complex to manage and validate.

You can expose the advanced content routing abilities provided by NetScaler ADC as a custom re‑
source definition (CRD) API for Kubernetes.

Using content routing CRDs, you can route the traffic based on the following parameters:

• Hostname
• URL path
• HTTP headers
• Cookie
• Query parameters
• HTTPmethod
• NetScaler policy expression

Note:

An Ingress resource and content routing CRDs cannot co‑exist for the same endpoint (IP address
and port). The usage of content routing CRDs with Ingress is not supported.

The advanced content routing feature is exposed in Kubernetes with the following CRDs:

• Listener
• HTTPRoute

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 583

https://developer-docs.citrix.com/projects/netscaler-command-reference/en/12.0/responder/responder-action/responder-action/
https://developer-docs.citrix.com/projects/citrix-adc-command-reference/en/latest/audit/audit-messageaction/
https://docs.citrix.com/en-us/netscaler/12/appexpert/pattern-sets-data-seta/configuring-data-sets.html

NetScaler ingress controller

Listener CRD

A Listener CRD object represents the end‑point information like virtual IP address, port, certificates,
and other front‑end configurations. It also defines the default actions like sending the default traffic
to a back end or redirecting the traffic. A Listener CRD object can refer to HTTPRoute CRD objects
which represents HTTP routing logic for the incoming HTTP request.

For the full CRD definition, see the Listener CRD.
For complete information on all attributes of the Listener CRD, see Listener CRD documentation.

ListenerCRDsupportsHTTP,SSL, andTCPprofiles. Using theseprofiles, youcancustomize thedefault
protocol behavior. Listener CRD also supports the analytics profile which enables NetScaler to export
the type of transactions or data to different endpoints.
For more information about profile support for Listener CRD, see the Profile support for the Listener
CRD.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 584

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/contentrouting/Listener.yaml
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/listener.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/profiles-for-listener-crd.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/profiles-for-listener-crd.html

NetScaler ingress controller

Deploy the Listener CRD

1. Download the Listener CRD.

2. Deploy the listener CRD with following command.

1 Kubectl create -f Listener.yaml

Example:

1 root@k8smaster:# kubectl create -f Listener.yaml
2 customresourcedefinition.apiextensions.k8s.io/listeners.citrix.com

created

How towrite Listener CRD objects

After you have deployed the CRD provided by NetScaler in the Kubernetes cluster, you can define the
listener configuration in a YAML file. In the YAML file, use Listener in the kind field and in the spec
section add the listener CRD attributes based on your requirement for the listener configuration.
After you deploy the YAML file, the NetScaler Ingress Controller applies the listener configuration on
the Ingress NetScaler device.

Following is a sample Listener CRD object definition named as Listener-crd.yaml.

1 apiVersion: citrix.com/v1
2 kind: Listener
3 metadata:
4 name: my-listener
5 namespace: default
6 spec:
7 certificates:
8 - secret:
9 name: my-secret

10 # Secret named 'my-secret' in current namespace bound as default
certificate

11 default: true
12 - secret:
13 # Secret 'other-secret' in demo namespace bound as SNI

certificate
14 name: other-secret
15 namespace: demo
16 - preconfigured: second-secret
17 # preconfigured certkey name in ADC
18 vip: '192.168.0.1' # Virtual IP address to be used, not required when

CPX is used as ingress device
19 port: 443
20 protocol: https
21 redirectPort: 80
22 secondaryVips:
23 - "10.0.0.1"

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 585

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/contentrouting/Listener.yaml

NetScaler ingress controller

24 - "1.1.1.1"
25 policies:
26 httpprofile:
27 config:
28 websocket: "ENABLED"
29 tcpprofile:
30 config:
31 sack: "ENABLED"
32 sslprofile:
33 config:
34 ssl3: "ENABLED"
35 sslciphers:
36 - SECURE
37 - MEDIUM
38 analyticsprofile:
39 config:
40 - type: webinsight
41 parameters:
42 allhttpheaders: "ENABLED"
43 csvserverConfig:
44 rhistate: 'ACTIVE'
45 routes:
46 # Attach the policies from the below Routes
47 - name: domain1-route
48 namespace: default
49 - name: domain2-route
50 namespace: default
51 - labelSelector:
52 # Attach all HTTPRoutes with label route=my-route
53 route: my-route
54 # Default action when traffic matches none of the policies in the

HTTPRoute
55 defaultAction:
56 backend:
57 kube:
58 namespace: default
59 port: 80
60 service: default-service
61 backendConfig:
62 lbConfig:
63 # Use round robin LB method for default service
64 lbmethod: ROUNDROBIN
65 servicegroupConfig:
66 # Client timeout of 20 seconds
67 clttimeout: "20"
68 <!--NeedCopy-->

In this example, a listener is exposing an HTTPS endpoint. Under certificates section, SSL certificates
for the endpoint are configured using Kubernetes secrets named my-secret and other-secret
and a default ADC preconfigured certificate with certkey named second-secret. The default ac‑
tion for the listener is configured as a Kubernetes service. Routes are attached with the listener using
both label selectors and individual route references using name and namespace.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 586

NetScaler ingress controller

After youhavedefined theListenerCRDobject in theYAML file, deploy theYAML file using the following
command. In this example, Listener-crd.yaml is the YAML definition.

1 Kubectl create -f Listener-crd.yaml

HTTPRoute CRD

AnHTTPRoute CRDobject represents theHTTP routing logic for the incomingHTTP requests. You can
use a combination of various HTTP parameters like host name, path, headers, query parameters, and
cookies to route the incoming traffic to a back‑end service. An HTTPRoute object can be attached to
one or more Listener objects which represent the end point information. You can have one or more
rules in an HTTPRoute object, with each rule specifying an action associated with it. Order of eval‑
uation of the rules within an HTTPRoute object is same as the order mentioned in the object. For
example, if there are two rules with the order rule1 and rule2, with rule1 is written before rule2, rule1
is evaluated first before rule2.

HTTPRoute CRD definition is available at HTTPRoute.yaml. For complete information on the attrib‑
utes for HTTP Route CRD, see HTTPRoute CRD documentation.

Now, NetScaler supports configuring the HTTP route CRD resource as a resource backend in the
Ingress with Kubernetes Ingress version networking.k8s.io/v1.With this feature, you can
extend advanced content routing capabilities to Ingress. For more information, see Advanced
content routing for Kubernetes Ingress using HTTPRoute CRD.

Deploy the HTTPRoute CRD

Perform the following to deploy the HTTPRoute CRD:

1. Download the HTTPRoute.yaml.

2. Apply the HTTPRoute CRD in your cluster using the following command.

Kubectl apply ‑f HTTPRoute.yaml

Example:

1 root@k8smaster:# kubectl create -f HTTPRoute.yaml
2 customresourcedefinition.apiextensions.k8s.io/httproutes.citrix.

com configured

How towrite HTTPRoute CRD objects

Once you have deployed the HTTPRoute CRD, you can define the HTTP route configuration in a YAML
file. In the YAML file, use HTTPRoute in the kind field and in the spec section add the HTTPRoute

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 587

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/contentrouting/HTTPRoute.yaml
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/crds/httproute.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/advanced-content-routing-using-http-crd.html
https://docs.netscaler.com/en-us/netscaler-k8s-ingress-controller/configure/advanced-content-routing-using-http-crd.html
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/contentrouting/HTTPRoute.yaml

NetScaler ingress controller

CRD attributes based on your requirement for the HTTP route configuration.

Following is a sample HTTPRoute CRD object definition named as Route-crd.yaml.

1 apiVersion: citrix.com/v1
2 kind: HTTPRoute
3 metadata:
4 name: test-route
5 spec:
6 hostname:
7 - host1.com
8 rules:
9 - name: header-routing

10 match:
11 - headers:
12 - headerName:
13 exact: my-header
14 action:
15 backend:
16 kube:
17 service: mobile-app
18 port: 80
19 backendConfig:
20 secureBackend: true
21 lbConfig:
22 lbmethod: ROUNDROBIN
23 - name: path-routing
24 match:
25 - path:
26 prefix: /
27 action:
28 backend:
29 kube:
30 service: default-app
31 port: 80
32 <!--NeedCopy-->

In this example, any request with a header namematching my-header is routed to the mobile‑app
service and all other traffic is routed to the default‑app service.
For detailed explanations and API specifications of HTTPRoute, see HTTPRoute CRD.

After youhavedefined theHTTP routes in theYAML file, deploy theYAML file forHTTPRouteCRDobject
using the following command. In this example, Route-crd.yaml is the YAML definition.

1 Kubectl create -f Route-crd.yaml

Once you deploy the YAML file, the NetScaler Ingress Controller applies the HTTP route configuration
on the Ingress NetScaler device.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 588

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/contentrouting/HTTPRoute.yaml

NetScaler ingress controller

Attaching HTTPRoute CRD objects to a Listener CRD object

You can attach HTTPRoute CRD objects to a Listener CRD object in two ways:

• Using name and namespace
• Using labels and selector

Attaching HTTPRoute CRD objects using name and namespace

In this approach, a Listener CRDobject explicitly refer to oneormoreHTTPRoute objects by specifying
the name and namespace in the routes section.
The order of evaluation of HTTPRoute objects is sameas the order specified in the Listener CRDobject
with the first HTTPRoute object is evaluated first and so on.

For example, a snippet of the Listener CRD object is shown as follows.

1 routes:
2 - name: route-1
3 namespace: default
4 - name: route-2
5 namespace: default

In this example, the HTTPRoute CRD object named route1 is evaluated before the HTTPRoute named
route2.

Attaching an HTTPRoute CRD object using labels and selector

You can also attach HTTPRoute objects to a Listener object by using labels and selector. You can spec‑
ify one or more labels in the Listener CRD object. Any HTTPRoute objects which match the labels are
automatically linked to the Listener object and the rules are created in NetScaler. When you use this
approach, there is no particular order of evaluation between multiple HTTPRoute objects. Only ex‑
ception is an HTTPRoute object with a default route (a route with just a host name or a ‘/’path) which
is evaluated as the last object.

For example, snippet of a listener resource is as follows:

1 routes:
2 - labelSelector:
3 team: team1

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 589

NetScaler ingress controller

Configure web application firewall policies with the NetScaler Ingress
Controller

December 31, 2023

NetScaler provides a Custom Resource Definition (CRD) called the WAF CRD for Kubernetes. You can
use the WAF CRD to configure the web application firewall policies with the NetScaler Ingress Con‑
troller on the NetScaler VPX, MPX, SDX, and CPX. The WAF CRD enables communication between the
NetScaler Ingress Controller and NetScaler for enforcing web application firewall policies.

In a Kubernetes deployment, you can enforce a web application firewall policy to protect the server
using the WAF CRD. For more information about web application firewall, see Web application secu‑
rity.

With the WAF CRD, you can configure the firewall security policy to enforce the following types of
security checks for Kubernetes native applications.

Common protections

• Buffer overflow
• Content type
• Allow URL
• Block URL
• Cookie consistency
• Credit card

HTML protections

• CSRF (cross side request forgery) form tagging
• Field formats
• Form field consistency
• File upload types
• HTML cross‑site scripting
• HTML SQL injection

JSON protections

• JSON denial of service
• JSON SQL injection
• JSON cross‑site scripting

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 590

https://docs.citrix.com/en-us/citrix-adc/13/application-firewall/introduction/web-application-security.html
https://docs.citrix.com/en-us/citrix-adc/13/application-firewall/introduction/web-application-security.html

NetScaler ingress controller

XML protections

• XML web services interoperability
• XML attachment
• XML cross‑site scripting
• XML denial of service
• XML format
• XMLmessage validation
• XML SOAP fault filtering
• XML SQL injection

Based on the type of security checks, you can specify the metadata and use the CRD attributes in the
WAF CRD .yaml file to define the WAF policy.

WAF CRD definition

The WAF CRD is available in the NetScaler Ingress Controller GitHub repository at waf‑crd.yaml. The
WAF CRD provides attributes for the various options that are required to define the web application
firewall policies on NetScaler.

WAF CRD attributes

The following table lists the various attributes provided in the WAF CRD:

CRD attribute Description

commonchecks Specifies a list of common security checks, which
are applied irrespective of the content type.

block_urls Protects URLs.

buffer_overflow Protects buffer overflow.

content_type Protects content type.

htmlchecks Specifies a list of security checks to be applied
for HTML content types.

cross_site_scripting Prevents cross site scripting attacks.

sql_injection Prevents SQL injection attacks.

form_field_consistency Prevents form tampering.

csrf Prevents cross side request forgery (CSRF)
attacks.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 591

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/waf/waf-crd.yaml

NetScaler ingress controller

CRD attribute Description

cookie_consistency Prevents cookie tampering or session takeover.

field_format Validates the form submission.

fileupload_type Prevents malicious file uploads.

jsonchecks Specifies security checks for JSON content types.

xmlchecks Specifies security checks for XML content types.

wsi Protects web services interoperability.

redirect_url Redirects URL when block is enabled on
protection.

servicenames Specifies the services to which the WAF policies
are applied.

application_type Protects application types.

signatures Specifies the location of the external signature
file.

html_error_object Specifies the location of the customized error
page to respond when HTML or common
violations are attempted.

xml_error_object Specifies the location of the customized error
page to respond when XML violations are
attempted.

json_error_object Specifies the location of the customized error
page to respond when JSON violations are
attempted.

ip_reputation Enables the IP reputation feature.

target Determines the traffic to be inspected by the
WAF. If you do not specify the traffic targeted, all
traffic is inspected by default.

paths Specifies the list of HTTP URLs to be inspected.

method Specifies the list of HTTPmethods to be
inspected.

header Specifies the list of HTTP headers to be
inspected.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 592

NetScaler ingress controller

DeployWAF CRD

Perform the following steps to deploy the WAF CRD:

1. Download the CRD (waf‑crd.yaml).

2. Deploy the WAF CRD using the following command:

1 kubectl create -f waf-crd.yaml

For example,

1 root@master:~# kubectl create -f waf-crd.yaml
2 customresourcedefinition.apiextensions.k8s.io/wafpolicies.citrix.

com created
3 <!--NeedCopy-->

How towrite a WAF configuration

After you have deployed the WAF CRD provided by NetScaler in the Kubernetes cluster, you can de‑
fine the web application firewall policy configuration in a .yaml file. In the .yaml file, use waf in the
kind field. In the spec section add the WAF CRD attributes based on your requirements for the policy
configuration.

After you deploy the .yaml file, the NetScaler Ingress Controller applies the WAF configuration on the
Ingress NetScaler device.

The following are some examples for writing web appliction firewall policies.

Enable protection for cross‑site scripting and SQL injection attacks**

Consider a scenario in which you want to define and specify a web application firewall policy in the
NetScaler to enable protection for the cross‑site scripting and SQL injection attacks. You can create a
.yaml file called wafhtmlxsssql.yaml and use the appropriate CRD attributes to define the WAF
policy as follows:

1 apiVersion: citrix.com/v1
2 kind: waf
3 metadata:
4 name: wafhtmlxsssql
5 spec:
6 servicenames:
7 - frontend
8 application_type: HTML
9 html_page_url: "http://x.x.x.x/crd/error_page.html"

10 security_checks:
11 html:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 593

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/waf/waf-crd.yaml

NetScaler ingress controller

12 cross_site_scripting: "on"
13 sql_injection: "on"
14 <!--NeedCopy-->

Apply rules to allow only known content types

Consider a scenario inwhich youwant todefineawebapplication firewall policy that specifies rules to
allow only known content types and block unknown content types. Create a .yaml file called waf-
contenttype.yaml and use the appropriate CRD attributes to define theWAF policy as follows:

1 apiVersion: citrix.com/v1
2 kind: waf
3 metadata:
4 name: wafcontenttype
5 spec:
6 servicenames:
7 - frontend
8 application_type: HTML
9 html_error_object: "http://x.x.x.x/crd/error_page.html"

10 security_checks:
11 common:
12 content_type: "on"
13 relaxations:
14 common:
15 content_type:
16 types:
17 - custom_cnt_type
18 - image/crd
19
20 <!--NeedCopy-->

Protect against known attacks

The following is an example of aWAFCRDconfiguration for applying external signatures. You can copy
the latest WAF signatures from Signature Location to the local web server and provide the location of
the copied file as signature_url.

1 apiVersion: citrix.com/v1
2 kind: waf
3 metadata:
4 name: wafhtmlsigxsssql
5 spec:
6 servicenames:
7 - frontend
8 application_type: HTML
9 signatures: "http://x.x.x.x/crd/sig.xml"

10 html_error_object: "http://x.x.x.x/crd/error_page.html"
11 security_checks:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 594

https://s3.amazonaws.com/NSAppFwSignatures/SignaturesMapping.xml

NetScaler ingress controller

12 html:
13 cross_site_scripting: "on"
14 sql_injection: "on"
15
16 <!--NeedCopy-->

Protect from header buffer overflow attacks and blockmultiple headers

The following is an example of a WAF CRD configuration for protecting buffer overflow.

1 apiVersion: citrix.com/v1
2 kind: waf
3 metadata:
4 name: wafhdrbufferoverflow
5 spec:
6 servicenames:
7 - frontend
8 application_type: HTML
9 html_error_object: "http://x.x.x.x/crd/error_page.html"

10 security_checks:
11 common:
12 buffer_overflow: "on"
13 multiple_headers:
14 action: ["block", "log"]
15 settings:
16 common:
17 buffer_overflow:
18 max_cookie_len: 409
19 max_header_len: 4096
20 max_url_len: 1024
21
22 <!--NeedCopy-->

Prevent repeated attempts to access randomURLs on a web site

The following is an example of a WAF CRD configuration for providing URL filter rules. You can add
URLs topermitunderallow_urlandURLs todenyunderblock_url. TheURLcanbea regular expression
also.

1 apiVersion: citrix.com/v1
2 kind: waf
3 metadata:
4 name: wafurlchecks
5 spec:
6 servicenames:
7 - frontend
8 application_type: HTML
9 html_error_object: "http://x.x.x.x/crd/error_page.html"

10 target:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 595

NetScaler ingress controller

11 path:
12 - /
13 security_checks:
14 common:
15 allow_url: "on"
16 block_url: "on"
17 relaxations:
18 common:
19 allow_url:
20 urls:
21 - payment.php
22 - cover.php
23 enforcements:
24 common:
25 block_url:
26 urls:
27 - "^[^?]*(passwd|passwords?)([.][^/?]*)?([?].*)?$"
28 - "^[^?]*(htaccess|access_log)([.][^/?]*)?([~])?([?].*)

?$"
29 <!--NeedCopy-->

Prevent leakage of sensitive data

Data breaches involve leakage of sensitive data such as credit card and social security number (SSN).
You can add custom regexes for the sensitive data in the Enforcements safe objects section.

The following is an example of a WAF CRD configuration for preventing leakage of sensitive data.

1 apiVersion: citrix.com/v1
2 kind: waf
3 metadata:
4 name: wafdataleak
5 spec:
6 servicenames:
7 - frontend
8 application_type: HTML
9 html_error_object: "http://x.x.x.x/crd/error_page.html"

10 security_checks:
11 common:
12 credit_card: "on"
13 settings:
14 common:
15 credit_card:
16 card_type: ["visa","amex"]
17 max_allowed: 1
18 card_xout: "on"
19 secure_logging: "on"
20 enforcements:
21 common:
22 safe_object:
23 - rule:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 596

NetScaler ingress controller

24 name: aadhar
25 expression: "[1-9]{
26 4,4 }
27 \s[1-9]{
28 4,4 }
29 \s[1-9]{
30 4,4 }
31 "
32 max_match_len: 19
33 action: ["log","block"]
34 <!--NeedCopy-->

Protect HTML forms from CSRF and form attacks

The following is an example of a WAF CRD configuration for protecting HTML forms from CSRF and
form attacks.

1 apiVersion: citrix.com/v1
2 kind: waf
3 metadata:
4 name: wafforms
5 spec:
6 servicenames:
7 - frontend
8 application_type: HTML
9 html_error_object: "http://x.x.x.x/crd/error_page.html"

10 security_checks:
11 html:
12 cross_site_scripting: "on"
13 sql_injection: "on"
14 form_field_consistency:
15 action: ["log","block"]
16 csrf: "on"
17
18 <!--NeedCopy-->

Protect forms and headers

The following is an example of a WAF CRD configuration for protecting both forms and headers.

1 apiVersion: citrix.com/v1
2 kind: waf
3 metadata:
4 name: wafhdrforms
5 spec:
6 servicenames:
7 - frontend
8 application_type: HTML
9 html_page_url: "http://x.x.x.x/crd/error_page.html"

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 597

NetScaler ingress controller

10 security_checks:
11 common:
12 buffer_overflow: "on"
13 multiple_headers:
14 action: ["block", "log"]
15 html:
16 cross_site_scripting: "on"
17 sql_injection: "on"
18 form_field_consistency:
19 action: ["log","block"]
20 csrf: "on"
21 settings:
22 common:
23 buffer_overflow:
24 max_cookie_len: 409
25 max_header_len: 4096
26 max_url_len: 1024
27 ip_reputation: on
28
29
30 <!--NeedCopy-->

Enable basic WAF security checks

The basic security checks are required to protect any applicationwithminimal effect on performance.
It does not require any sessionization. The following is an example of a WAF CRD configuration for
enabling basic WAF security checks.

1 apiVersion: citrix.com/v1
2 kind: waf
3 metadata:
4 name: wafbasic
5 spec:
6 servicenames:
7 - frontend
8 security_checks:
9 common:

10 allow_url: "on"
11 block_url: "on
12 buffer_overflow: "on"
13 multiple_headers:
14 action: ["block", "log"]
15 html:
16 cross_site_scripting: "on"
17 field_format: "on"
18 sql_injection: "on"
19 fileupload_type: "on"
20 json:
21 dos: "on"
22 sql_injection: "on"
23 cross_site_scripting: "on"

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 598

NetScaler ingress controller

24 xml:
25 dos: "on"
26 wsi: "on"
27 attachment: "on"
28 format: "on"
29 relaxations:
30 common:
31 allow_url:
32 urls:
33 - "^[^?]+[.](html?|shtml|js|gif|jpg|jpeg|png|swf|pif|

pdf|css|csv)$"
34 - "^[^?]+[.](cgi|aspx?|jsp|php|pl)([?].*)?$"
35
36 <!--NeedCopy-->

Enable advancedWAF security check

Advanced security checks such as cookie consistency, allow URL closure, field consistency, and CSRF
are resource‑intensive (CPU and memory) as they require WAF sessionization. For example, when a
form is protected by the WAF, form field information in the response is retained in the system mem‑
ory. When the client submits the form in the next request, it is checked for inconsistencies before the
information is sent to the web server. This process is known as sessionization. The following is an
example of a WAF CRD configuration for enabling WAF advanced security checks.

1 apiVersion: citrix.com/v1
2 kind: waf
3 metadata:
4 name: wafadvanced
5 spec:
6 servicenames:
7 - frontend
8 security_checks:
9 common:

10 allow_url: "on"
11 block_url: "on"
12 buffer_overflow: "on"
13 content_type: "on"
14 cookie_consistency: "on"
15 multiple_headers:
16 action: ["log"]
17 html:
18 cross_site_scripting: "on"
19 field_format: "on"
20 sql_injection: "on"
21 form_field_consistency: "on"
22 csrf: "on"
23 fileupload_type: "on"
24 json:
25 dos: "on"
26 sql_injection: "on"

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 599

NetScaler ingress controller

27 cross_site_scripting: "on"
28 xml:
29 dos: "on"
30 wsi: "on"
31 validation: "on"
32 attachment: "on"
33 format: "on"
34 settings:
35 common:
36 allow_url:
37 closure: "on"
38 <!--NeedCopy-->

Enable IP reputation

The following is an example of a WAF CRD configuration for enabling IP reputation to reject requests
that come from IP addresses with bad reputation.

1 apiVersion: citrix.com/v1
2 kind: waf
3 metadata:
4 name: wafiprep
5 spec:
6 application_type: html
7 servicenames:
8 - frontend
9 ip_reputation: "on"

10
11 <!--NeedCopy-->

Enable IP reputation to reject requests of a particular category

The following is an example of a WAF CRD configuration for enabling IP reputation to reject requests
from particular threat categories.

1 apiVersion: citrix.com/v1
2 kind: waf
3 metadata:
4 name: wafiprepcategory
5 spec:
6 application_type: html
7 servicenames:
8 - frontend
9 ip_reputation:

10 action: block
11 threat-categories:
12 - SPAM_SOURCES
13 - WINDOWS_EXPLOITS
14 - WEB_ATTACKS

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 600

NetScaler ingress controller

15 - BOTNETS
16 - SCANNERS
17 - DOS
18 - REPUTATION
19 - PHISHING
20 - PROXY
21 - NETWORK
22 - CLOUD_PROVIDERS
23 - MOBILE_THREATS
24
25 <!--NeedCopy-->

Protect JSON applications from denial of service attacks

The following is an example of a WAF CRD configuration for protecting the JSON applications from
denial of service attacks.

1 metadata:
2 name: wafjsondos
3 spec:
4 servicenames:
5 - frontend
6 application_type: JSON
7 json_error_object: "http://x.x.x.x/crd/error_page.json"
8 security_checks:
9 json:

10 dos: "on"
11 settings:
12 json:
13 dos:
14 container:
15 max_depth: 2
16 document:
17 max_len: 20000000
18 array:
19 max_len: 5
20 key:
21 max_count: 10000
22 max_len: 12
23 string:
24 max_len: 1000000
25
26
27 <!--NeedCopy-->

Protect RESTful APIs

The following is anexampleof aWAFCRDconfiguration for protectingRESTful APIs fromSQL injection,
cross‑site scripting, and denial of service attacks.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 601

NetScaler ingress controller

Here, the back‑end application or service is purely based on RESTful APIs.

1 apiVersion: citrix.com/v1
2 kind: waf
3 metadata:
4 name: wafjson
5 spec:
6 servicenames:
7 - frontend
8 application_type: JSON
9 json_error_object: "http://x.x.x.x/crd/error_page.json"

10 security_checks:
11 json:
12 dos: "on"
13 sql_injection:
14 action: ["block"]
15 cross_site_scripting: "on"
16 settings:
17 json:
18 dos:
19 container:
20 max_depth: 5
21 document:
22 max_len: 20000000
23 array:
24 max_len: 10000
25 key:
26 max_count: 10000
27 max_len: 128
28 string:
29 max_len: 1000000
30
31 <!--NeedCopy-->

Protect XML applications from denial of service attacks

The following is an example of a WAF CRD configuration for protecting the XML applications from de‑
nial of service attacks.

1 apiVersion: citrix.com/v1
2 kind: waf
3 metadata:
4 name: wafxmldos
5 spec:
6 servicenames:
7 - frontend
8 application_type: XML
9 xml_error_object: "http://x.x.x.x/crd/error_page.xml"

10 security_checks:
11 xml:
12 dos: "on"

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 602

NetScaler ingress controller

13 settings:
14 xml:
15 dos:
16 attribute:
17 max_attributes: 1024
18 max_name_len: 128
19 max_value_len: 128
20 element:
21 max_elements: 1024
22 max_children: 128
23 max_depth: 128
24 file:
25 max_size: 2123
26 min_size: 9
27 entity:
28 max_expansions: 512
29 max_expansions_depth: 9
30 namespace:
31 max_namespaces: 16
32 max_uri_len: 256
33 soaparray:
34 max_size: 1111
35 cdata:
36 max_size: 65
37
38 <!--NeedCopy-->

Protect XML applications from security attacks

This example provides a WAF CRD configuration for protecting XML applications from the following
security attacks:

• SQL injection
• Cross‑site scripting
• Validation (schema or message)
• Format
• Denial of service
• Web service interoperability (WSI)

1 apiVersion: citrix.com/v1
2 kind: waf
3 metadata:
4 name: wafxml
5 spec:
6 servicenames:
7 - frontend
8 application_type: XML
9 xml_error_object: "http://x.x.x.x/crd/error_page.json"

10 security_checks:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 603

NetScaler ingress controller

11 xml:
12 dos: "on"
13 sql_injection: "on"
14 cross_site_scripting: "off"
15 wsi:
16 action: ["block"]
17 validation: "on"
18 attachment: "on"
19 format:
20 action: ["block"]
21 settings:
22 xml:
23 dos:
24 attribute:
25 max_attributes: 1024
26 max_name_len: 128
27 max_value_len: 128
28 element:
29 max_elements: 1024
30 max_children: 128
31 max_depth: 128
32 file:
33 max_size: 2123
34 min_size: 9
35 entity:
36 max_expansions: 512
37 max_expansions_depth: 9
38 namespace:
39 max_namespaces: 16
40 max_uri_len: 256
41 soaparray:
42 max_size: 1111
43 cdata:
44 max_size: 65
45 wsi:
46 checks: ["R1000","R1003"]
47 validation:
48 soap_envelope: "on"
49 validate_response: "on"
50 attachment:
51 url:
52 max_size: 1111
53 content_type:
54 value: "crd_test"
55
56 <!--NeedCopy-->

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 604

NetScaler ingress controller

Configure botmanagement policies with the NetScaler Ingress
Controller

December 31, 2023

A bot is a software application that automatesmanual tasks. Using Botmanagement policies you can
allow useful bots to access your cloud native environment and block the malicious bots.

CustomResourceDefinitions (CRDs) are theprimarywayof configuringpolicies in cloudnativedeploy‑
ments. Using theBotCRDprovidedbyNetScaler, you canconfigure thebotmanagementpolicieswith
the NetScaler Ingress Controller on the NetScaler VPX. The Bot CRD enables communication between
the NetScaler Ingress Controller and NetScaler for enforcing bot management policies.

In a Kubernetes deployment, you can enforce botmanagement policy on the requests and responses
from and to the server using the Bot CRD. For more information on security vulnerabilities, see Bot
Detection.

With the Bot CRD, you can configure the bot management security policy for the following types of
security vulnerabilities for the Kubernetes‑native applications:

• Allow list
• Block list
• Device Fingerprint (DFP)
• Bot TPS
• Trap insertion
• IP reputation
• Rate limit

Based on the type of protections required, you can specify the metadata and use the CRD attributes
in the Bot CRD .yaml file to define the bot policy.

Bot CRD definition

The Bot CRD is available in the NetScaler Ingress Controller GitHub repo at bot‑crd.yaml. The Bot CRD
provides attributes for the various options that are required to define the bot management policies
on NetScaler.

Bot CRD attributes

The following table lists the various attributes provided in the Bot CRD:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 605

https://docs.citrix.com/en-us/citrix-adc/current-release/bot-management/bot-detection.html
https://docs.citrix.com/en-us/citrix-adc/current-release/bot-management/bot-detection.html
https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/crd/bot/bot-crd.yaml

NetScaler ingress controller

CRD attribute Description

security_checks List of security checks to be applied for incoming
traffic.

allow_list List of allowed IP, subnet, and policy
expressions.

block_list List of disallowed IP, subnet, and policy
expressions.

device_fingerprint Inserts javascript and collects the client browser
and device parameters.

trap Inserts hidden URLs in the response.

tps Prevents bots which cause unusual spike in
requests based on configured percentage
change in transactions.

reputation Prevents access to bad IPs based on configured
reputation categories.

ratelimit Prevents bots based on rate limit.

redirect_url Redirect URL when block is enabled on
protection.

servicenames Name of the services to which the bot policies
are applied.

signatures Location of external bot signature file.

target Determines which traffic to be inspected by the
bot. If you do not specify the traffic targeted,
every traffic is inspected by default.

paths List of HTTP URLs to be inspected.

method List of HTTPmethods to be inspected.

header List of HTTP headers to be inspected.

Deploy the Bot CRD

Perform the following steps to deploy the Bot CRD:

1. Download the bot‑crd.yaml.
2. Deploy the Bot CRD using the following command:

kubectl create -f bot-crd.yaml

For example,

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 606

https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/crd/bot/bot-crd.yaml

NetScaler ingress controller

1 root@master:~# kubectl create -f bot-crd.yaml
2 customresourcedefinition.apiextensions.k8s.io/bots.citrix.com created
3 <!--NeedCopy-->

How towrite a Bot configuration

After you have deployed the Bot CRD provided by NetScaler in the Kubernetes cluster, you can define
the bot management policy configuration in a YAML file. In the YAML file, specify bot in the kind field.
In the spec section, add the Bot CRD attributes based on your requirements for the policy configura‑
tion.

After you deploy the YAML file, the NetScaler Ingress Controller applies the bot configuration on the
Ingress NetScaler device.

Following are some examples for bot policy configurations:

Blockmalicious traffic using known IP, subnet, or ADC policy expressions

When you want to define and employ a web bot management policy in NetScaler to enable bot for
blocking malicious traffic, you can create a YAML file called botblocklist.yaml and use the ap‑
propriate CRD attributes to define the bot policy as follows:

1 apiVersion: citrix.com/v1
2 kind: bot
3 metadata:
4 name: botblocklist
5 spec:
6 servicenames:
7 - frontend
8 security_checks:
9 block_list: "ON"

10 bindings:
11 block_list:
12 - subnet:
13 value:
14 - 172.16.1.0/12
15 - 172.16.2.0/12
16 - 172.16.3.0/12
17 - 172.16.4.0/12
18 action:
19 - "drop"
20 - ip:
21 value: 10.102.30.40
22 - expression:
23 value: http.req.url.contains("/robots.txt")
24 action:
25 - "reset"

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 607

NetScaler ingress controller

26 - "log"
27 <!--NeedCopy-->

Allow known traffic without bot security checks**

When you want to avoid security checks for certain traffic such as staging or trusted traffic, you can
avoid such traffic from security checks. You can create a YAML file calledbotallowlist.yaml and
use the appropriate CRD attributes to define the bot policy as follows:

1 apiVersion: citrix.com/v1
2 kind: bot
3 metadata:
4 name: botallowlist
5 spec:
6 servicenames:
7 - frontend
8 security_checks:
9 allow_list: "ON"

10 bindings:
11 allow_list:
12 - subnet:
13 value:
14 - 172.16.1.0/12
15 - 172.16.2.0/12
16 - 172.16.3.0/12
17 - 172.16.4.0/12
18 action:
19 - "log"
20 - ip:
21 value: 10.102.30.40
22 - expression:
23 value: http.req.url.contains("index.html")
24 action:
25 - "log"
26 <!--NeedCopy-->

Enable bot signatures to detect bots

NetScaler provides thousands of inbuilt signatures to detect bots based on user agents. Citrix threat
intelligence team keeps on updating and releasing new bot signatures in every twoweeks. The latest
bot signature file is available at: Bot signatures. You can create a YAML file called botsignatures
.yaml and use the appropriate CRD attributes to define the bot policy as follows:

1 apiVersion: citrix.com/v1
2 kind: bot
3 metadata:
4 name: botsignatures
5 spec:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 608

https://nsbotsignatures.s3.amazonaws.com/BotSignatureMapping.json

NetScaler ingress controller

6 servicenames:
7 - frontend
8 redirect_url: "/error_page.html"
9 signatures: "http://10.106.102.242/ganeshka/bot_sig.json"

10 <!--NeedCopy-->

Enable the bot device fingerprint and customize the action

Device fingerprinting involves inserting a JavaScript snippet in the HTML response to the client. This
JavaScript snippet, when invoked by the browser on the client, collects the attributes of the browser
and client. And sends a POST request to NetScaler with that information. These attributes are exam‑
ined to determine whether the connection is requested from a bot or a human being. You can create
a YAML file called botdfp.yaml and use the appropriate CRD attributes to define the bot policy as
follows:

1 apiVersion: citrix.com/v1
2 kind: bot
3 metadata:
4 name: botdfp
5 spec:
6 servicenames:
7 - frontend
8 redirect_url: "/error_page.html"
9 security_checks:

10 device_fingerprint:
11 action:
12 - "log"
13 - "drop"
14 <!--NeedCopy-->

Enable the bot TPS and customize the action

If the bot TPS is configured, it detects incoming traffic as bots if the maximum number of requests
or increase in requests exceeds the configured time interval. You can configure the TPS limits as per
geolocation, host, source IP, andURL in thebindings section. You can create a YAML file calledbottps
.yaml and use the appropriate CRD attributes to define the bot policy as follows:

1 apiVersion: citrix.com/v1
2 kind: bot
3 metadata:
4 name: bottps
5 spec:
6 servicenames:
7 - frontend
8 redirect_url: "/error_page.html"
9 security_checks:

10 tps: "ON"

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 609

NetScaler ingress controller

11 bindings:
12 tps:
13 geolocation:
14 threshold: 101
15 percentage: 100
16 host:
17 threshold: 10
18 percentage: 100
19 action:
20 - "log"
21 - "mitigation"
22 <!--NeedCopy-->

Enable the trap insertion protection and customize the action

Detects and blocks automated bots by advertising a trap URL in the client response. The URL is in‑
visible and not accessible to the client, if it is human. The detection method is effective in blocking
attacks from automated bots. Insertion of the trap URL in the URL responses is random. You can en‑
force the trap URL insertion to a particular URL response by configuring the trap bindings. You can
create a YAML file called trapinsertion.yaml and use the appropriate CRD attributes to define
the bot policy as follows:

1 apiVersion: citrix.com/v1
2 kind: bot
3 metadata:
4 name: trapinsertion
5 spec:
6 servicenames:
7 - frontend
8 redirect_url: "/error_page.html"
9 security_checks:

10 trap:
11 action:
12 - "log"
13 - "drop"
14 bindings:
15 trapinsertion:
16 urls:
17 - "/index.html"
18 - "/submit.php"
19 - "/login.html"
20 <!--NeedCopy-->

Enable IP reputation to reject requests of a particular category

The following is an example of a Bot CRD configuration for enabling only specific threat categories
of IP reputation that are suitable for the user environment. You can create a YAML file called

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 610

NetScaler ingress controller

botiprepcategory.yaml and use the appropriate CRD attributes to define the bot policy as
follows:

1 apiVersion: citrix.com/v1
2 kind: bot
3 metadata:
4 name: botiprepcategory
5 spec:
6 servicenames:
7 - frontend
8 redirect_url: "/error_page.html"
9 security_checks:

10 reputation: "ON"
11 bindings:
12 reputation:
13 categories:
14 - SPAM_SOURCES:
15 action:
16 - "log"
17 - "redirect"
18 - MOBILE_THREATS
19 - SPAM_SOURCES
20 <!--NeedCopy-->

Enable rate limit to control request rate

The following is an example of a Bot CRD configuration for enforcing the request rate limit using the
parameters: URL, cookies, and IP. You can create a YAML file called botratelimit.yaml and use
the appropriate CRD attributes to define the bot policy as follows:

1 apiVersion: citrix.com/v1
2 kind: bot
3 metadata:
4 name: botratelimit
5 spec:
6 servicenames:
7 - frontend
8 redirect_url: "/error_page.html"
9 security_checks:

10 ratelimit: "ON"
11 bindings:
12 ratelimit:
13 - url:
14 value: index.html
15 rate: 2000
16 timeslice: 1000
17 - cookie:
18 value: citrix_bot_id
19 rate: 2000
20 timeslice: 1000
21 - ip:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 611

NetScaler ingress controller

22 rate: 2000
23 timeslice: 1000
24 action:
25 - "log"
26 - "reset"
27 <!--NeedCopy-->

Configure cross‑origin resource sharing policies with NetScaler Ingress
Controller

December 31, 2023

NetScaler provides a Custom Resource Definition (CRD) called the CORS CRD for Kubernetes. You
can use the CORS CRD to configure the cross‑origin resource sharing (CORS) policies with NetScaler
Ingress Controller on the NetScaler.

What is CORS

Cross‑Origin resource sharing is amechanism that allows thebrowser todeterminewhether a specific
web application can share resources with another web application from a different origin. It allows
users request resources (For example, images, fonts, and videos) from domains outside the original
domain.

CORS pre‑flight

Before a web browser allowing Javascript to issue a POST to a URL, it performs a pre-flight re‑
quest. A pre‑flight request is a simple request to the server with the same URL using the method
OPTIONS rather than POST. The web browser checks the HTTP headers for CORS related headers to
determine if POST operation on behalf of the user is allowed.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 612

NetScaler ingress controller

CORS CRD definition

The CORS CRD is available in the NetScaler Ingress Controller GitHub repo at: cors‑crd.yaml. The
CORS CRD provides attributes for the various options that are required to define the CORS policy on
the Ingress NetScaler that acts as an API gateway. The required attributes include: servicenames,
allow_origin, allow_methods, and allow_headers.

The following are the attributes provided in the CORS CRD:

Attribute Description

servicenames Specifies the list of Kubernetes services to which
you want to apply the CORS policies.

allow_origin Specifies the list of allowed origins. Incoming
origin is screened against this list.

allow_methods Specifies the list of allowedmethods as part of
the CORS protocol.

allow_headers Specifies the list of allowed headers as part of
the CORS protocol.

max_age Specifies the number of seconds the information
provided by the
Access-Control-Allow-Methods and
Access-Control-Allow-Headers
headers can be cached. The default value is
86400.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 613

https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/crd/cors/cors-crd.yaml

NetScaler ingress controller

Attribute Description

allow_credentials Specifies whether the response can be shared
when the credentials mode of the request is
“include”. The default value is ‘true’.

Deploy the CORS CRD

Perform the following to deploy the CORS CRD:

1. Download the CORS CRD.

2. Deploy the CORS CRD using the following command:

1 kubectl create -f cors-crd.yaml

For example:

1 $ kubectl create -f cors-crd.yaml
2 customresourcedefinition.apiextensions.k8s.io/corspolicies.citrix.

com created
3 $ kubectl get crd
4 NAME CREATED AT
5 corspolicies.citrix.com 2021-05-21T20:01:13Z

How towrite a CORS policy configuration

After you have deployed the CORS CRD provided by NetScaler in the Kubernetes cluster, you can de‑
fine the CORS policy configuration in a .yaml file. In the .yaml file, use corspolicy in the kind
field and in the spec section add the CORS CRD attributes based on your requirement for the policy
configuration.

The following YAML file applies the configured policy to the services listed in the servicenames field.
NetScaler responds with a 200 OK response code for the pre‑flight request if the origin is one of the
allow_origins [“random1234.com”, “hotdrink.beverages.com”]. The response includes config‑
ured allow_methods, allow_headers, and max_age.

1 apiVersion: citrix.com/v1beta1
2 kind: corspolicy
3 metadata:
4 name: corspolicy-example
5 spec:
6 servicenames:
7 - "cors-service"
8 allow_origin:
9 - "random1234.com"

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 614

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/cors/cors-crd.yaml

NetScaler ingress controller

10 - "hotdrink.beverages.com"
11 allow_methods:
12 - "POST"
13 - "GET"
14 - "OPTIONS"
15 allow_headers:
16 - "Origin"
17 - "X-Requested-With"
18 - "Content-Type"
19 - "Accept"
20 - "X-PINGOTHER"
21 max_age: 86400
22 allow_credentials: true
23 <!--NeedCopy-->

After you have defined the policy configuration, deploy the .yaml file using the following com‑
mands:

1 user@master:~/cors$ kubectl create -f corspolicy-example.yaml
2 corspolicy.citrix.com/corspolicy-example created

The NetScaler Ingress Controller applies the policy configuration on the Ingress NetScaler device.

Enable request retry feature using AppQoE for NetScaler Ingress
Controller

December 31, 2023

WhenaNetScaler appliance receivesanHTTP request and forwards it to aback‑end server, sometimes
theremaybeconnection failureswith theback‑endserver. Youcanconfigure the request‑retry feature
on NetScaler to forward the request to the next available server, instead of sending the reset to the
client. Hence, the client saves round trip time when NetScaler initiates the same request to the next
available service. For more information request retry feature, see the NetScaler documentation

Now, you can configure request retry on NetScaler with NetScaler Ingress Controller.
Custom Resource Definitions (CRDs) are the primary way of configuring policies in cloud native de‑
ployments. Using the AppQoECRDprovided byNetScaler, you can configure request‑retry policies on
NetScaler with the NetScaler Ingress Controller. The AppQoE CRD enables communication between
the NetScaler Ingress Controller and NetScaler for enforcing AppQoE policies.

AppQoE CRD definition

The AppQoE CRD is available in the NetScaler Ingress Controller GitHub repo at: appqoe‑crd.yaml.
The AppQoE CRD provides attributes for the various options that are required to define the AppQoE

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 615

https://docs.citrix.com/en-us/citrix-adc/current-release/system/request-retry/request_retry_if_back-end_server_resets_tcp_connection.html
https://raw.githubusercontent.com/citrix/citrix-k8s-ingress-controller/master/crd/appqoe/appqoe-crd.yaml

NetScaler ingress controller

policy on NetScaler.

The following are the attributes provided in the AppQoE CRD:

Attribute Description

servicenames Specifies the list of Kubernetes services to which
you want to apply the AppQoE policies.

on-reset Specifies whether to set retry on connection
Reset or Not

on-timeout Specifies the time in milliseconds for retry

number-of-retries Specifies the number of retries

appqoe-criteria Specifies the expression for evaluating traffic.

direction Specifies the bind point for binding the AppQoE
policy.

Deploy the AppQoE CRD

Perform the following to deploy the AppQoE CRD:

1. Download the AppQoE CRD.

2. Deploy the AppQoE CRD using the following command:

1 kubectl create -f appqoe-crd.yaml

How towrite a AppQoE policy configuration

After you have deployed the AppQoE CRD provided by NetScaler in the Kubernetes cluster, you can
define the AppQoE policy configuration in a .yaml file. In the .yaml file, use appqoepolicy in
the kind field and in the spec section add the AppQoE CRD attributes based on your requirement for
the policy configuration.

The following YAML file applies the AppQoE policy to the services listed in the servicenames field. You
must configure the AppQoE action to retry on timeout and define the number of retry attempts.

1 apiVersion: citrix.com/v1
2 kind: appqoepolicy
3 metadata:
4 name: targeturlappqoe
5 spec:
6 appqoe-policies:
7 - servicenames:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 616

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/appqoe/appqoe-crd.yaml

NetScaler ingress controller

8 - apache
9 appqoe-policy:

10 operation-retry:
11 onReset: 'YES'
12 onTimeout: 33
13 number-of-retries: 2
14 appqoe-criteria: 'HTTP.REQ.HEADER("User-Agent").CONTAINS("

Android")'
15 direction: REQUEST

After you have defined the policy configuration, deploy the .yaml file using the following com‑
mands:

$ kubectl create ‑f appqoe‑example.yaml

Configuring wildcard DNS domains through NetScaler Ingress
Controller

December 31, 2023

Wildcard DNS domains are used to handle requests for non‑existent domains and subdomains. In
a DNS zone, you can use wildcard domains to redirect queries for all non‑existent domains or subdo‑
mains to a particular server, instead of creating a separate Resource Record (RR) for each domain. The
most commonuse of awildcard DNS domain is to create a zone that can be used to forwardmail from
the internet to some other mail system.

For more information on wildcard DNS domains, see the NetScaler documentation.

Now, you can configure wildcard DNS domains on a NetScaler with NetScaler Ingress Controller. Cus‑
tom Resource Definitions (CRDs) are the primary way of configuring policies in cloud native deploy‑
ments. Using theWildcard DNS CRD provided by NetScaler, you can configure wildcard DNS domains
on a NetScaler with the NetScaler Ingress Controller. The Wildcard DNS CRD enables communication
between NetScaler Ingress Controller and NetScaler for supporting wild card domains.

Usage guidelines and restrictions

• For fully qualified domain names (FQDNs), there are multiple ways to add DNS records. You
can either enable the NS_CONFIG_DNS_REC variable for NetScaler Ingress Controller for the
Ingress resource or use the wildcard DNS CRD. However, you should make sure that they are
configured through either CRD or ingress in order to avoid multiple IP mappings to the same
domain.

• It is recommended to use the Wildcard DNS CRD for the wildcard DNS configurations.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 617

https://docs.citrix.com/en-us/citrix-adc/current-release/dns/supporting-wildcard-dns-domains.html

NetScaler ingress controller

• You cannot configure wildcard DNS entries in the DNS address record through ingress if the
NS_CONFIG_DNS_REC is enabled for NetScaler Ingress Controller.

Wildcard DNS CRD definition

The Wildcard DNS CRD is available in the NetScaler Ingress Controller GitHub repo at wildcarddnsen‑
try.yaml. The Wildcard DNS CRD provides attributes for the various options that are required to
configure wildcard DNS entries on NetScaler.

The following are the attributes provided in the Wildcard DNS CRD:

Attribute Description

domain Specifies the wild card domain name configured
for the zone.

dnsaddrec Specifies the DNS Address record with the IPv4
address of the wildcard domain.

dnsaaaarec Specifies the DNS AAAA record with the IPV6
address of the wildcard domain.

soarec Specifies the SOA record configuration details.

nsrec Specifies the name server configuration details.

Deploy the Wildcard DNS CRD

Perform the following to deploy the Wildcard DNS CRD:

1. Download the Wildcard DNS CRD.

2. Deploy the Wildcard DNS CD using the following command:

1 kubectl create -f wildcarddnsentry.yaml

How towrite a Wildcard DNS configuration policy

After you have deployed the Wildcard DNS CRD provided by NetScaler in the Kubernetes cluster,
you can define the wildcard DNS related configuration in a yaml file. In the .yaml file, use
wildcarddnsentry in the kind field and in thespec section add theWildcard DNS CRD attributes
based on your requirement for the policy configuration.

The following is a sample YAML file definition that configures a SOA record, NS record, DNS zone, and
address and AAAA Records on NetScaler.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 618

https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/wildcard-dns/wildcarddnsentry.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/master/crd/wildcard-dns/wildcarddnsentry.yaml

NetScaler ingress controller

1 apiVersion:
2 citrix.com/v1
3 kind: wildcarddnsentry
4 metadata:
5 name: sample-config
6 spec:
7 zone:
8 domain: configexample
9 dnsaddrec:

10 domain-ip: 1.1.1.1
11 ttl: 3600
12 dnsaaaarec:
13 domain-ip: '2001::.1'
14 ttl: 3600
15 soarec:
16 origin-server: n2.configexample.com
17 contact: admin.configexample.com
18 serial: 100
19 refresh: 3600
20 retry: 3
21 expire: 3600
22 nsrec:
23 nameserver: n1.configexample.com
24 ttl: 3600
25 <!--NeedCopy-->

After youhavedefined theDNSconfiguration, deploy thewildcarddns-example.yaml file using
the following command.

1 kubectl create -f wildcarddns-example.yaml

Entity name change

December 31, 2023

While adding the NetScaler entities, the NetScaler Ingress Controller maintains unique names per
Ingress, service or namespace. Sometimes, it results in NetScaler entities with large names even ex‑
ceeding the name limits in NetScaler.

Now, the naming format in the NetScaler Ingress Controller is updated to shorten the entity names.
In the updated naming format, a part of the entity name is hashed and all the necessary information
is provided as part of the entity comments.

After this update, the comments available on lbvserver and servicegroup entity names pro‑
vides all the necessary details like the ingress name, ingress port, service name, service port, and the
namespace of the application.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 619

NetScaler ingress controller

Format for comments

Ingress: ing:<ingress-name>,ingport:<ingress-port>,ns:<k8s-namespace>,
svc:<k8s-servicename>,svcport:<k8s-serviceport>

Serviceoftype LoadBalancer: lbsvc:<k8s-servicename>,svcport:<k8s-serviceport
>,ns:<k8s-namespace>

The following tableexplains theentitynamechanges introducedwith theNetScaler IngressController
version 1.12.

Entity Old naming format New naming format Description/Comments

csvserver (ingress) k8s
-192.2.170.67
_80_http

k8s
-192.2.170.67
_80_http

no changes

csvserver (type
LoadBalancer)

k8s-
apache_default_80_svc

k8s-
apache_80_default_svc

Now, the port is
followed by a
namespace

lbvserver (type
LoadBalancer)

k8s-
apache_default_80_svc_k8s
-
apache_default_80_svc

k8s-
apache_80_lbv_wlikeqxno5vunbthsoj4lxegk7cddh6p
Comment:
lbsvc:apache,
svcport:80,ns:
default

The comment for
type
LoadBalancer is
now different

servicegroup
(type
LoadBalancer)

k8s-
apache_default_80_svc_k8s
-
apache_default_80_svc

k8s-
apache_80_sgp_wlikeqxno5vunbthsoj4lxegk7cddh6p

The suffix sgp is
added

cspolicy or
csaction or
responder
policy

k8s-web-
ingress_default_443_k8s
-
frontend_default_80_svc

k8s-
frontend_80_csp_267pneiak5rw6hoygvrqrzpm4k6thz2p

Moved service‑name,
service‑port to the
beginning, added
suffix of cs, hashed
ingress‑name,
ingress‑port, and
namespace

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 620

NetScaler ingress controller

Entity Old naming format New naming format Description/Comments

lbvserver (ingress) k8s-web-
ingress_default_443_k8s
-
frontend_default_80_svc

k8s-
frontend_80_lbv_267pneiak5rw6hoygvrqrzpm4k6thz2p
Comment:
ing:web-ingress
,ingport:5080,
ns:default,svc:
frontend,
svcport:80

Suffix lbv and
comment added to the
entity

servicegroup
(ingress)

k8s-web-
ingress_default_443_k8s
-
frontend_default_80_svc

k8s-
frontend_80_sgp_267pneiak5rw6hoygvrqrzpm4k6thz2p

Suffix sgp is added.

lbvserver (UDP) k8s-web-
ingress_default_9053
-udp_k8s-
bind_default_53
-udp_svc

k8s-bind_53-
udp_lbv_uyomblblagixrtw3cxrf23tak6wkpfmw

-udp is still appended
to the port as earlier.

When you upgrade from an older version of the NetScaler Ingress Controller to the latest version,
the NetScaler Ingress Controller renames all the entities with the new naming format. However, the
NetScaler Ingress Controller does not handle the downgrade from the latest version to an older ver‑
sion.

Licensing

December 31, 2023

For licensing the NetScaler CPX, you need to provide the following information in the YAML for the
NetScaler Application Delivery Management (ADM) to automatically pick the licensing information:

• LS_IP (License server IP) –Specify the NetScaler ADM IP address.

• LS_PORT (License server Port) –This is not a mandatory field. You must specify the ADM port
only if you have changed it. The default port is 27000.

• PLATFORM –Specify the Platform License. Platform is CP1000.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 621

NetScaler ingress controller

The following is a sample yaml file:

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 labels:
5 name: cpx-ingress
6 name: cpx-ingress
7 spec:
8 replicas: 1
9 selector:

10 matchLabels:
11 name: cpx-ingress
12 template:
13 metadata:
14 annotations:
15 NETSCALER_AS_APP: "True"
16 labels:
17 name: cpx-ingress
18 spec:
19 serviceAccountName: cpx
20 containers:
21 - args:
22 - --ingress-classes citrix-ingress
23 env:
24 - name: EULA
25 value: "YES"
26 - name: NS_PROTOCOL
27 value: HTTP
28 - name: NS_PORT
29 value: "9080"
30 - name: LS_IP
31 value: <ADM IP>
32 - name: LS_PORT
33 value: "27000"
34 - name: PLATFORM
35 value: CP1000
36 image: cpx-ingress:latest
37 imagePullPolicy: Always
38 name: cpx-ingress
39 ports:
40 - containerPort: 80
41 name: http
42 protocol: TCP
43 - containerPort: 443
44 name: https
45 protocol: TCP
46 - containerPort: 9080
47 name: nitro-http
48 protocol: TCP
49 - containerPort: 9443
50 name: nitro-https
51 protocol: TCP
52 securityContext:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 622

53 privileged: true
54 <!--NeedCopy-->

Deployment using Helm charts and NetScaler deployment builder

December 31, 2023

For deploying NetScaler cloud native topologies, there are various options available using YAML and
Helm charts. Helm charts are one of the easiest ways for deployment in a Kubernetes environment.
When you deploy using the Helm charts, you can use avalues.yaml file to specify the values of the
configurable parameters instead of providing each parameter as an argument.

You can generate the values.yaml file for NetScaler cloud native deployments using NetScaler de‑
ployment builder, which is a GUI.

The following topologies are supported by the NetScaler deployment builder:

• Single‑Tier

– Ingress
– Service type LoadBalancer

• Dual‑Tier

– NetScaler CPX as NodePort
– NetScaler CPX as service of type LoadBalancer

• Multi‑cluster Ingress

• Service mesh

For detailed information on how to use the NetScaler deployment builder, see the NetScaler deploy‑
ment builder blog.

https://netscaler.github.io/netscaler-k8s-ingress-controller/
https://netscaler.github.io/netscaler-k8s-ingress-controller/
https://www.citrix.com/blogs/2021/03/02/citrix-deployment-builder-simplifying-citrix-cloud-native-deployments/
https://www.citrix.com/blogs/2021/03/02/citrix-deployment-builder-simplifying-citrix-cloud-native-deployments/

NetScaler ingress controller

© 2024 Cloud Software Group, Inc. All rights reserved. Cloud Software Group, the Cloud Software Group logo, and other

marks appearing herein are property of Cloud Software Group, Inc. and/or one or more of its subsidiaries, andmay be

registered with the U.S. Patent and Trademark Office and in other countries. All other marks are the property of their

respective owner(s).

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 624

	Overview
	Getting started
	Deployment topologies
	Deploy NetScaler Ingress Controller using YAML
	Deploy the NetScaler Ingress Controller using Helm charts
	Deploy NetScaler Ingress Controller using kops
	Deploy the NetScaler Ingress Controller on a Rancher managed Kubernetes cluster
	Deploy the NetScaler Ingress Controller on a PKS managed Kubernetes cluster
	Deploy NetScaler-Integrated Canary Deployment Solution
	Deploy NetScaler IPAM controller
	Deploying NetScaler API Gateway using Rancher
	Deploy API Gateway with GitOps
	GSLB overview and deployment topologies
	Deploy NetScaler GSLB controller
	NetScaler GSLB controller for single site
	Service Mesh lite
	Deploy the NetScaler Ingress Controller as an OpenShift router plug-in
	Deploy the NetScaler Ingress Controller with OpenShift router sharding support
	Deploy NetScaler Ingress Controller in OpenShift using NetScaler Operator
	Deploy NetScaler Observability Exporter using NetScaler Operator
	Deploy NetScaler CPX as an Ingress device in an Azure Kubernetes Service cluster
	Deploy NetScaler Ingress Controller in an Azure Kubernetes Service cluster with NetScaler VPX
	Deploy NetScaler CPX as an Ingress device in Google Cloud Platform
	Deploy the NetScaler Ingress Controller in Anthos
	Deploy NetScaler VPX in active-active high availability in EKS environment using Amazon ELB and NetScaler Ingress Controller
	Deploy the NetScaler Ingress Controller for NetScaler with admin partitions
	Deploy Citrix solution for service of type LoadBalancer in AWS
	Multi-cloud and GSLB solution with Amazon EKS and Microsoft AKS clusters
	Annotations
	ConfigMap support for the NetScaler Ingress Controller
	Ingress configurations
	Ingress class support
	Service class for services of type LoadBalancer
	Configure HTTP, TCP, or SSL profiles on NetScaler
	Log levels
	TCP profile support for services of type LoadBalancer
	SSL certificate for services of type LoadBalancer through the Kubernetes secret resource
	BGP advertisement of external IP addresses for type LoadBalancer services and Ingresses using NetScaler CPX
	NetScaler CPX integration with MetalLB in layer 2 mode for on-premises Kubernetes clusters
	Advanced content routing for Kubernetes Ingress using the HTTPRoute CRD
	Profile support for the Listener CRD
	IP address management using the for Ingress resources
	Apply CRDs through annotations
	Listener CRD support for Ingress through annotation
	Configuring consistent hashing algorithm using NetScaler Ingress Controller
	Add DNS records using NetScaler Ingress Controller
	Open policy agent support for Kubernetes with NetScaler
	Exporting metrics directly to Prometheus
	Configure static route on Ingress NetScaler VPX or MPX
	Establish network between Kubernetes nodes and Ingress NetScaler using node controller
	Expose Service of type NodePort using Ingress
	Configure pod to pod communication using Calico
	Enhancements for Kubernetes service of type LoadBalancer support in the NetScaler Ingress Controller
	TLS certificates handling in NetScaler Ingress Controller
	TLS client authentication support in NetScaler
	TLS server authentication support in NetScaler using the NetScaler Ingress Controller
	Install, link, and update certificates on a NetScaler using the NetScaler Ingress Controller
	Configure SSL passthrough using Kubernetes Ingress
	Automated certificate management with cert-manager
	Deploy HTTPS web application on Kubernetes with the NetScaler Ingress Controller and Let`s Encrypt using cert-manager
	Deploy an HTTPS web application on Kubernetes with NetScaler Ingress Controller and HashiCorp Vault using cert-manager
	Enable NetScaler certificate validation in the NetScaler Ingress Controller
	Disable API server certificate verification
	Create a self-signed certificate and linking into Kubernetes secret
	View metrics of NetScalers using Prometheus and Grafana
	Analytics and observability
	Analytics configuration support using ConfigMap
	Troubleshooting
	Troubleshooting the NetScaler Ingress Controller during runtime
	Call Home enablement for the NetScaler Ingress Controller in NetScaler
	Upgrade NetScaler Ingress Controller
	IP address management using the IPAM controller
	Securing Ingress
	TCP use cases
	HTTP use cases
	HTTP callout with the rewrite and responder policy
	Configure session affinity or persistence on the Ingress NetScaler
	Allowlisting or blocklisting IP addresses
	Interoperability with ExternalDNS
	Using NetScaler credentials stored in a Vault server for the NetScaler Ingress Controller
	How to use Kubernetes secrets for storing NetScaler credentials
	How to load balance ingress traffic to TCP or UDP based application
	How to set up dual-tier deployment
	Horizontal pod autoscaler for NetScaler CPX with custom metrics
	Deploy Direct Server Return
	Support for admission controller webhooks
	Enable gRPC support using the NetScaler Ingress Controller
	Policy based routing support for multiple Kubernetes clusters
	Single tier NetScaler Ingress solution for MongoDB
	Canary and blue-green deployment using NetScaler VPX and Azure pipelines for Kubernetes based applications
	Traffic management for external services
	Support for external name service across namespaces
	Supported platforms and deployments
	Authentication and authorization policies for Kubernetes with NetScaler
	Rate limiting in Kubernetes using NetScaler
	Use Rewrite and Responder policies in Kubernetes
	Advanced content routing for Kubernetes with NetScaler
	Configure web application firewall policies with the NetScaler Ingress Controller
	Configure bot management policies with the NetScaler Ingress Controller
	Configure cross-origin resource sharing policies with NetScaler Ingress Controller
	Enable request retry feature using AppQoE for NetScaler Ingress Controller
	Configuring wildcard DNS domains through NetScaler Ingress Controller
	Entity name change
	Licensing
	Deployment using Helm charts and NetScaler deployment builder

