
NetScaler Observability Exporter

Product Documentation | https://docs.netscaler.com May 2, 2024

https://docs.netscaler.com

NetScaler Observability Exporter

Contents

Release notes 2

NetScaler Observability Exporter 2

Deploy NetScaler Observability Exporter 5

NetScaler Observability Exporter with Zipkin as endpoint 7

NetScaler Observability Exporter with Prometheus and Grafana 12

NetScaler Observability Exporter with Elasticsearch as endpoint 18

NetScaler Observability Exporter with Kafka as endpoint 27

NetScaler Observability Exporter with Splunk Enterprise as endpoint 36

NetScaler Observability Exporter troubleshooting 42

Description of configuration parameters 44

Support for container logging 48

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 1

NetScaler Observability Exporter

Release notes

February 8, 2024

Release notes describe the new features and enhancements introduced in a particular build, and the
issues fixed in the build.

Release 1.9.001

What’s new

Support for DEBUG severity level A new severity level, DEBUG, is now supported. The DEBUG
severity level provides comprehensive container logging that contains fatal, error, informational, and
debugmessages.

Numerous logs are now supported. For the complete list of logs, see Log descriptions.

Support to export Auditlogs and Events to Kafka NetScaler Observability Exporter can now ex‑
port NetScaler Events and Auditlogs to Kafka in JSON format.

Fixed issues

• Fixed a data loss issue with Splunk export over SSL. As part of the fix, a new field
ConnectionPoolSize is introduced. ConnectionPoolSize and MaxConnections
can be used to control the rate at which data is exported. For specifics of these fields, see
Description of configuration parameters.

NetScaler Observability Exporter

January 31, 2024

NetScaler Observability Exporter is a container which collects metrics and transactions from
NetScalers and transforms them to suitable formats (such as JSON, AVRO) for supported endpoints.
You can export the data collected by NetScaler Observability Exporter to the desired endpoint. By
analyzing the data exported to the endpoint, you can get valuable insights at a microservices level
for applications proxied by NetScalers.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 2

https://docs.netscaler.com/en-us/netscaler-observability-exporter/log-support.html#log-descriptions
https://docs.netscaler.com/en-us/netscaler-observability-exporter/field-descriptions.html

NetScaler Observability Exporter

Supported Endpoints

NetScaler Observability Exporter currently supports the following endpoints:

• Zipkin
• Kafka
• Elasticsearch
• Prometheus
• Splunk Enterprise

Overview

Distributed tracing support with Zipkin

In amicroservice architecture, a single end‑user requestmay span acrossmultiplemicroservices and
tracking a transaction and fixing sources of errors is challenging. In such cases, traditional ways for
performance monitoring cannot accurately pinpoint where failures occur and what is the reason be‑
hind poor performance. You need a way to capture data points specific to eachmicroservice which is
handling a request and analyze them to get meaningful insights.

Distributed tracing addresses this challenge by providing away to track a transaction end‑to‑end and
understand how it is being handled acrossmultiplemicroservices. OpenTracing is a specification and
standard set of APIs for designing and implementing distributed tracing. Distributed tracers allow
you to visualize the data flow between your microservices and helps to identify the bottlenecks in
your microservices architecture.

NetScalerObservability Exporter implements distributed tracing forNetScaler and currently supports
Zipkin as the distributed tracer.

Currently, you can monitor performance at the application level using NetScaler. Using NetScaler
Observability Exporter with NetScaler, you can get tracing data for microservices of each application
proxied by your NetScaler CPX, MPX, or VPX.

Transaction collection and streaming support

NetScaler Observability Exporter supports collecting transactions and streaming them to end‑
points. Currently, NetScaler Observability Exporter supports Elasticsearch and Kafka as transaction
endpoints.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 3

https://zipkin.io/
https://kafka.apache.org/
https://www.elastic.co/products/elasticsearch
https://prometheus.io/docs/introduction/overview/
https://www.splunk.com/en_us/software/splunk-enterprise.html
https://opentracing.io/
https://zipkin.io/

NetScaler Observability Exporter

Time series data support

NetScaler Observability Exporter supports collecting time series data (metrics) from NetScaler
instances and exports them to Prometheus. Prometheus is a monitoring solution for storing time
series data like metrics. You can then add Prometheus as a data source to Grafana and graphically
view the NetScaler metrics and analyze the metrics.

How does NetScaler Observability Exporter work

Distributed tracing with Zipkin using NetScaler Observability Exporter

Logstream is a Citrix‑owned protocol that is used as one of the transport modes to efficiently trans‑
fer transactions from NetScaler instances. NetScaler Observability Exporter collects tracing data as
Logstream records frommultiple NetScalers and aggregates them. NetScaler Observability Exporter
converts the data into a format understood by the tracer and then uploads to the tracer (Zipkin in this
case). For Zipkin, the data is converted into JSON, with Zipkin‑specific key values.

You can view the traces using the Zipkin user interface. However, you can also enhance the trace
analysis by using Elasticsearch and Kibanawith Zipkin. Elasticsearch provides long‑term retention of
the trace data and Kibana allows you to get much deeper insight into the data.

NetScaler Observability Exporter with Elasticsearch as the transaction endpoint

When Elasticsearch is specified as the transaction endpoint, NetScaler Observability Exporter con‑
verts the data to JSON format. On the Elasticsearch server, NetScaler Observability Exporter creates
Elasticsearch indexes for each ADCon an hourly basis. These indexes are based on data, hour, UUID of
theADC, and the typeofHTTPdata (http_event or http_error). Then, NetScalerObservability Exporter
uploads the data in JSON format under Elastic search indexes for each ADC. All regular transactions
are placed into the http_event index and any anomalies are placed into the http_error index.

NetScaler Observability Exporter with Kafka as the endpoint

NetScaler Observability Exporter exports transactions to Kafka as Avro or JSON. Auditlogs and events
are exported as JSON.

NetScaler Observability Exporter with Prometheus as the endpoint for time series data

When Prometheus is specified as the format for time series data, NetScaler Observability Exporter
collects various metrics from NetScalers and converts them to appropriate Prometheus format and

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 4

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana
http://avro.apache.org/docs/current/Avro

NetScaler Observability Exporter

exports them to thePrometheus server. Thesemetrics include counters of the virtual servers, services
to which the analytics profile is bound and global counters of HTTP, TCP and so on.

NetScaler Observability Exporter with Splunk Enterprise as the endpoint

When Splunk Enterprise is specified as the transaction endpoint, NetScaler Observability Exporter
collects indexes, audit logs, and events and exports to Splunk Enterprise. Splunk Enterprise captures
indexes and correlates real‑time data in a repository fromwhich it can generate reports, graphs, dash‑
boards, and visualizations. Splunk Enterprise provides a graphical representation of these data.

Deployment

You can deployNetScaler Observability Exporter using Kubernetes YAML. To deployNetScaler Observ‑
ability Exporter using Kubernetes YAML, see Deployment. To deploy NetScaler Observability Exporter
using Helm charts, see Deploy using Helm charts.

Features

Custom header logging

Custom header logging enables logging of all HTTP headers of a transaction and currently supported
on the Kafka endpoint.
For more information, see Custom header logging.

Elasticsearch support enhancements

Effective with the NetScaler Observability Exporter release 1.2.001, when the NetScaler Observability
Exporter sends the data to the Elasticsearch server someof the fields are available in the string format.
Also, index configuration options are also added for Elasticsearch. For more information on fields
which are in the string format and how to configure the Elasticsearch index, see Elasticsearch support
enhancements.

Deploy NetScaler Observability Exporter

December 31, 2023

This topic provides information on how to deploy NetScaler Observability Exporter using Kubernetes
YAML files.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 5

https://docs.netscaler.com/en-us/netscaler-observability-exporter/deploy-coe.html
https://github.com/citrix/citrix-helm-charts/tree/master/citrix-observability-exporter
https://github.com/citrix/citrix-observability-exporter/tree/master/custom-header
https://github.com/citrix/citrix-observability-exporter/blob/master/es-enhancements/README.md
https://github.com/citrix/citrix-observability-exporter/blob/master/es-enhancements/README.md

NetScaler Observability Exporter

Note:

You can deploy NetScaler Observability Exporter using Kubernetes YAML files or using Helm
charts.

Based on your NetScaler deployment, you can use NetScaler Observability Exporter to exportmetrics
and transactions from NetScaler CPX, MPX, or VPX.

The followingdiagramshowsadeploymentofNetScalerObservability Exporterwithall the supported
endpoints.

NetScalerObservabilityExporter supports the followingendpoints: Kafka, Elasticsearch, Prometheus,
and Zipkin. Depending on the endpoint that you require, you can deploy NetScaler Observability
Exporter with that endpoint.

You can use one of the following deployment procedures based on the endpoint that you require:

• Deploy NetScaler Observability Exporter with Zipkin

• Deploy NetScaler Observability Exporter with Prometheus

• Deploy NetScaler Observability Exporter with Elasticsearch

• Deploy NetScaler Observability Exporter with Kafka

• Deploy NetScaler Observability Exporter with Splunk

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 6

https://docs.netscaler.com/en-us/netscaler-observability-exporter/deploy-coe-with-zipkin.html
https://docs.netscaler.com/en-us/netscaler-observability-exporter/deploy-coe-with-prometheus.html
https://docs.netscaler.com/en-us/netscaler-observability-exporter/deploy-coe-with-es.html
https://docs.netscaler.com/en-us/netscaler-observability-exporter/deploy-coe-with-Kafka.html
https://docs.netscaler.com/en-us/netscaler-observability-exporter/deploy-coe-with-splunk.html

NetScaler Observability Exporter

NetScaler Observability Exporter with Zipkin as endpoint

December 31, 2023

NetScalerObservability Exporter supportsOpenTracing (OpenTracing is apartofOpenTelemetrynow)
using Zipkin as the endpoint. NetScaler Observability Exporter transforms the tracing data collected
from NetScalers into supported formats suitable for OpenTracing and exports them to Zipkin. Zipkin
is a distributed tracing system that helps to gather the timing data required to troubleshoot latency
problems in microservice architectures. Elasticsearch is used for long‑term retention of trace data
and the traces can be visualized using the Zipkin UI or Kibana.

The following diagram illustrates how the Zipkin architecture works:

1. When the tracing is enabled, initially, it adds additional open‑tracing headers: x-trace-id,
x-span-id, and x-parent-span-id to HTTP packet, before it forwards the packet to the
next microservice pod.

2. The information about this communication or transaction is pushed to NetScaler Observability
Exporter. The information includes the details about the headers, the timestamp (time when
this request is initiated and the entire duration of the process), and annotations (annotations
include HTTP, SSL, and TCP associated with that request).

3. Then, NetScalerObservability Exporter receivesmultiple tracemessages fromall theNetScalers
and aggregates them into Zipkin understandable JSON format, and push that to Zipkin through
the API.

4. Similarly, if microservices are enabledwith tracing, then that trace is sent to Zipkin through the
API.

5. Zipkin API stores the trace data in the Elasticsearch database, and finally stitch the complete
trace to the given HTTP request and visualize it in the visualization tool such as Kibana. You can
view the time that the request spent on eachmicroservices.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 7

https://zipkin.io/

NetScaler Observability Exporter

Deploy NetScaler Observability Exporter

Based on your NetScaler deployment, you can deploy NetScaler Observability Exporter either out‑
side or inside Kubernetes clusters. You can deploy NetScaler Observability Exporter as a pod inside
the Kubernetes cluster or enable the configuration on NetScaler MPX or VPX form factor outside the
cluster. You can deploy NetScaler Observability Exporter using the Kubernetes YAML file provided by
NetScaler.

The following diagram illustrates NetScaler as an ingress gateway with the NetScaler Ingress Con‑
troller as a sidecar. NetScaler Observability Exporter sends the tracing data collected fromNetScalers
to Zipkin API. The tracing data is, then, uploaded to the Elasticsearch server. From Elasticsearch, the
data is sent to Zipkin UI or Kibana UI for visualization.

Prerequisites

• Ensure that you have a Kubernetes cluster with kube-dns or CoreDNS addon enabled.

To deploy NetScaler Observability Exporter with Zipkin, youmust perform the following tasks:

1. Deploy the required application with the tracing support enabled.

2. Deploy NetScaler CPX enabled with the NetScaler Observability Exporter support.

3. Deploy Zipkin, Elasticsearch, and Kibana using the YAML files.

4. Deploy NetScaler Observability Exporter using the YAML file.

Deploy application with tracing enabled

The following is a sample application deployment with tracing enabled.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 8

https://github.com/citrix/citrix-observability-exporter/blob/master/examples/tracing/zipkin.yaml
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/elasticsearch/elasticsearch.yaml
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/elasticsearch/kibana.yaml

NetScaler Observability Exporter

Note:

If you have a pre‑deployed web application, skip the steps 1 and 2.

1. Create a secret ingress.crt and key ingress.key using your own certificate and key.

In this example, a secret, called ing in the default namespace, is created.

1 kubectl create secret tls ing --cert=ingress.crt --key=ingress.
key

2. Access the YAML file fromwatches‑app‑tracing.yaml to deploy the application.

1 kubectl create -f watches-app-tracing.yaml

3. Define the specific parameters that youmust import by specifying it in the ingress annotations
of the application’s YAML file, using the smart annotations in the ingress.

1 ingress.citrix.com/analyticsprofile: '{
2 "webinsight": {
3 "httpurl":"ENABLED", "httpuseragent":"ENABLED", "httpHost":"

ENABLED","httpMethod":"ENABLED","httpContentType":"ENABLED" }
4 }
5 '

Note: The parameters are predefined in the watches-app-tracing.yaml file.

For more information about annotations, see Ingress annotations documentation.

Deploy NetScaler CPXwith the NetScaler Observability Exporter support

You can deploy NetScaler CPX enabled with the NetScaler Observability Exporter support.

While deployingNetScaler CPX, you canmodify the deployment YAML filecpx-ingress-tracing
.yaml to include the configuration information that is required for the NetScaler Observability Ex‑
porter support.

Perform the following steps to deploy a NetScaler CPX instance with the NetScaler Observability Ex‑
porter support:

1. Download the cpx‑ingress‑tracing.yaml and cic-configmap.yaml file.

2. Create a ConfigMap with the required key‑value pairs and deploy the ConfigMap. You can use
the cic-configmap.yaml file that is available, for the specific endpoint, in the directory.

3. Modify NetScaler CPX related parameters, as required. For example, add lines under args in
the cpx-ingress-tracing.yaml file as following:

1 args:
2 - --configmap

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 9

https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.crt
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.key
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/tracing/watches-app-tracing.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/666d6267e5b09683740528c5e8dd46f16d7d16e0/docs/configure/annotations.md
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/tracing/cpx-ingress-tracing.yaml
https://github.com/citrix/citrix-observability-exporter/tree/master/examples

NetScaler Observability Exporter

3 default/cic-configmap

4. Edit the cic-configmap.yaml file to specify the following variables for NetScaler Observ‑
ability Exporter in the NS_ANALYTICS_CONFIG endpoint configuration.

1 server: 'coe-zipkin.default.svc.cluster.local' # COE service
FQDN

5. Deploy NetScaler CPX with the NetScaler Observability Exporter support using the following
commands:

1 kubectl create -f cpx-ingress-tracing.yaml
2 kubectl create -f cic-configmap.yaml

Note:

If you have used a namespace other than default, change coe-zipkin.default.svc.
cluster.local to coe-zipkin.<desired-namespace>.svc.cluster.local. If
ADC is outside the Kubernetes cluster, then youmust specify IP address and Nodport address of
NetScaler Observability Exporter.

Deploy Zipkin, Elasticsearch, and Kibana using YAML files

To deploy Zipkin, Elasticsearch, and Kibana using YAML, perform the following steps:

1. Download the following YAML files:

• zipkin.yaml

• Elasticsearch.yaml

• kibana.yaml

2. Edit the namespace definition, if you want to use a custom namespace other than the default.

3. Run the following commands to deploy Zipkin, Elasticsearch, and Kibana:

1 kubectl create -f zipkin.yaml
2 kubectl create -f elasticsearch.yaml
3 kubectl create -f kibana.yaml

Note:

Zipkin, Elasticsearch, andKibanaaredeployed in thedefault namespaceof the sameKubernetes
cluster.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 10

https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/tracing/zipkin.yaml
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/elasticsearch.yaml
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/kibana.yaml

NetScaler Observability Exporter

Deploy NetScaler Observability Exporter using the YAML file

You can deploy NetScaler Observability Exporter using the YAML file. Download the coe‑zipkin.yaml
file.

To deploy NetScaler Observability Exporter using the Kubernetes YAML, run the following command
in the Elasticsearch endpoint:

1 kubectl create -f coe-zipkin.yaml

Note:

Modify the YAML file for NetScaler Observability Exporter if you have a custom namespace other
than the default.

Verify the NetScaler Observability Exporter deployment

To verify the NetScaler Observability Exporter deployment, perform the following:

1. Verify the deployment by sending a request to the application using the following command.

1 kubectl run -i --tty busybox --image=busybox --restart=Never --
rm -- wget --no-check-certificate "https://cpx-ingress-zipkin
.default.svc.cluster.local/serial/view/watches"

2. Open the Zipkin user interface using the Kubernetes node IP address and nodeport.

1 http://*k8-node-ip-address*:*node-port*/

In the following image, you can view the traces of the Watches application. The Watches ap‑
plication has multiple microservices for each watches type, communicating with each other to
serve the application data. The trace data shows application FASTTRACK took more time to
serve when compare to other micro services. In this way, you can identify the slow performing
workloads and troubleshoot it.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 11

https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/tracing/coe-zipkin.yaml

NetScaler Observability Exporter

You can view raw data on your Kibana dashboard too. Open Kibana using the http://<node
-ip>:<node-port> and commence with defining a zipkin index pattern.

Use the timestamp_millis field as the timestamp field. After creating the index pattern,
click the Discover tab and you can view the trace information collected by Zipkin.

For information on troubleshooting related to NetScaler Observability Exporter, see NetScaler
CPX troubleshooting.

NetScaler Observability Exporter with Prometheus and Grafana

December 31, 2023

You can configure Prometheus as an endpoint to pull data fromNetScaler Observability Exporter. You
can also configure Grafana to visualize the same data graphically.

NetScaler Observability Exporter has a push‑gateway server that listens to port 5563 to servemetrics
based on pull requests from Prometheus. NetScaler Observability Exporter exports time series data
to Prometheus.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 12

https://docs.citrix.com/en-us/citrix-adc-cpx/current-release/cpx-troubleshooting.html
https://docs.citrix.com/en-us/citrix-adc-cpx/current-release/cpx-troubleshooting.html

NetScaler Observability Exporter

Deploy NetScaler Observability Exporter

You can deploy NetScaler Observability Exporter using the YAML file. Based on your NetScaler deploy‑
ment, deploy NetScaler Observability Exporter either outside or inside Kubernetes clusters. You can
deploy NetScaler Observability Exporter as a pod inside the Kubernetes cluster or on the NetScaler
MPX or VPX appliance outside the cluster.

Prerequisites

• Ensure that you have a Kubernetes cluster with kube‑dns or CoreDNS addon enabled.

Deploying NetScaler Observability Exporter with the Prometheus endpoint includes the following
tasks:

• Deploy a sample application
• Deploy NetScaler CPX with support enabled for NetScaler Observability Exporter
• Deploy Prometheus and Grafana using YAML files
• Deploy NetScaler Observability Exporter using the YAML file
• Configure NetScaler to export metrics (optional)
• Configure Prometheus (optional) to pull telemetry data
• Configure Grafana
• Create Grafana visualization

Deploy a sample application

The following is an example procedure for deploying a sample webserver application.

Note:

If you have a pre‑deployed web application, skip the steps from step 1 to step 3.

1. Create a secret ingress.crt and key ingress.key using your own certificate and key.

In this example, a secret, called ing in the default namespace, is created.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 13

https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.crt
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.key

NetScaler Observability Exporter

1 kubectl create secret tls ing --cert=ingress.crt --key=ingress.
key

2. Access the YAML file fromwebserver‑es.yaml to deploy the application.

1 kubectl create -f webserver-es.yaml

3. Define the specific parameters that youmust import by specifying it in the ingress annotations
of the application’s YAML file, using the smart annotations in the ingress.

1 ingress.citrix.com/analyticsprofile: '{
2 "webinsight": {
3 "httpurl":"ENABLED", "httpuseragent":"ENABLED", "httpHost":"

ENABLED","httpMethod":"ENABLED","httpContentType":"ENABLED" }
4 }
5 '

Note:

The parameters are predefined in the webserver-es.yaml file.

For more information about Annotations, see Ingress annotations documentation.

Deploy NetScaler CPXwith support enabled for NetScaler Observability Exporter

You can deployNetScaler CPX as a side carwith theNetScaler Observability Exporter support enabled
along with NetScaler Ingress Controller. You can modify the NetScaler CPX YAML file cpx-ingress
-es.yaml to include the configuration information that is required for the NetScaler Observability
Exporter support.

The following is a sample application deployment procedure.

1. Download the cpx‑ingress‑prometheus.yaml and cic‑configmap.yaml file.

2. Create a ConfigMap with the required key‑value pairs and deploy the ConfigMap. You can use
the cic-configmap.yaml file that is available, for the specific endpoint, in the directory.

3. Modify NetScaler CPX related parameters, as required.

4. Edit the cic-configmap.yaml file and specify the following variables for NetScaler Observ‑
ability Exporter in the NS_ANALYTICS_CONFIG endpoint configuration.

1 server: 'coe-prometheus.default.svc.cluster.local' # COE service
FQDN

Note:

If you have used a namespace other than default, change coe-prometheus.default

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 14

https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/webserver-es.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/666d6267e5b09683740528c5e8dd46f16d7d16e0/docs/configure/annotations.md
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/prometheus/cpx-ingress-prometheus.yaml
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/cic-configmap.yaml
https://github.com/citrix/citrix-observability-exporter/tree/master/examples

NetScaler Observability Exporter

.svc.cluster.local to to coe-prometheus.<desired-namespace>.svc

.cluster.local.

5. Deploy NetScaler CPX with the NetScaler Observability Exporter support using the following
commands:

1 kubectl create -f cpx-ingress-prometheus.yaml
2 kubectl create -f cic-configmap.yaml

Deploy Prometheus and Grafana using YAML files

To deploy Prometheus and Grafana using YAML files, perform the following steps:

1. Download the Prometheus-Grafana YAML file from prometheus‑grafana.yaml.

2. Edit the namespace definition if you want to use a different namespace other than default.

3. Run the following commands to deploy Prometheus and Grafana:

1 kubectl create -f prometheus-grafana.yaml

Note:

Prometheus and Grafana are deployed in the default namespace of the same Kubernetes cluster.

Deploy NetScaler Observability Exporter using the YAML file

You can deploy NetScaler Observability Exporter using the YAML file. Download the YAML file from
coe‑prometheus.yaml.

• For NetScaler Observability Exporter version 1.3.001 and previous versions, you can use the
ConfigMap configuration provided in the coe-prometheus.yaml YAML file.

• For NetScaler Observability Exporter version 1.4.001, you need to modify the ConfigMap in the
coe-prometheus.yaml file as follows before deployment.

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: coe-config-prometheus
5 data:
6 lstreamd_default.conf: |
7 {
8
9

10 "Endpoints": {
11

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 15

https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/prometheus/prometheus-grafana.yaml
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/prometheus/coe-prometheus.yaml

NetScaler Observability Exporter

12 "ZIPKIN": {
13
14 "ServerUrl":"http://0.0.0.0:0",
15 "RecordType":{
16 }
17 ,
18 "PrometheusMode":"yes"
19 }
20
21 }
22
23 }
24
25 <!--NeedCopy-->

To deploy NetScaler Observability Exporter using the Kubernetes YAML, run the following com‑
mand:

1 kubectl create -f coe-prometheus.yaml

Note:

Modify the YAML file for NetScaler Observability Exporter if you have a custom namespace.

Configure NetScaler to export metrics (optional)

Note:

If you do not use NetScaler Ingress Controller to configure NetScaler, then you can do the follow‑
ing manual configuration on your NetScaler.

You can manually configure NetScalers to export metrics to the NetScaler Observability Exporter.
Specify the NetScaler Observability Exporter IP/FQDN address as an HTTP service and combine it
to the default ns_analytics_time_series_profile analytics profile. Enable the metrics
export and set the output mode to Prometheus.

The following is a sample configuration:

1 add server COE_instance 192.168.1.102
2 add service coe_metric_collector_svc_192.168.1.102 COE_instance HTTP

5563
3 set analytics profile ns_analytics_time_series_profile -collector

coe_metric_collector_svc_192.168.1.102 -Metrics ENABLED -OutputMode
Prometheus

Configure Prometheus (optional) to pull telemetry data

Prometheus services are available as Docker images on Quay container registry and Docker Hub.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 16

https://quay.io/

NetScaler Observability Exporter

To launch Prometheus and expose it on port 9090, run the following command:

1 docker run -p 9090:9090 prom/prometheus

Tomanually addNetScaler Observability Exporter as scrape target, edit theprometheus.yaml file.
Specify the NetScaler Observability Exporter IP/FQDN address and the port 5563 as the scrape target
in the YAML file.

1 scrape_configs:
2 - job_name: coe
3 static_configs:
4 - targets: ['192.168.1.102:5563']

Configure Grafana

In the current deployment, a Prometheus server has already been added as a data source. If you use
an existing Prometheus server for the deployment, ensure to add the same as a data source on your
Grafana. For more information, see Grafana support for Prometheus.

Create Grafana visualization

You can create a Grafana dashboard and select the key metrics and the visualization type that is suit‑
able for the data.

The following procedure shows adding of the ADC CPUmetric to a Grafana panel:

1. Specify the Panel Title as ADC CPU.

2. In the Query tab, for the query A, specify the metric as cpu_use.

3. In the Settings tab, select the Visualization type.

You can modify the data and its representation in Grafana. For more information, see Grafana
Documentation.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 17

https://prometheus.io/docs/visualization/grafana/
https://grafana.com/docs/grafana/latest/panels/panels-overview/
https://grafana.com/docs/grafana/latest/panels/panels-overview/

NetScaler Observability Exporter

Import pre‑built dashboards for Grafana

You can also import pre‑built dashboards to Grafana. See the available Dashboards.

For information on troubleshooting related to NetScaler Observability Exporter, see NetScaler CPX
troubleshooting.

NetScaler Observability Exporter with Elasticsearch as endpoint

December 31, 2023

NetScaler Observability Exporter is a container that collects metrics and transactions from NetScaler.
It transforms the data into the supported format (such as JSON) and exports data to Elasticsearch as
an endpoint. Elasticsearch is a search engine based on the Lucene library. It provides a distributed,
multitenant‑capable, and full‑text search engine with an HTTP web interface and schema‑free JSON
documents.

Deploy NetScaler Observability Exporter

You can deploy NetScaler Observability Exporter using the YAML file. Based on your NetScaler de‑
ployment, you can deploy NetScaler Observability Exporter either outside or inside Kubernetes clus‑
ters. You can deploy NetScaler Observability Exporter as a pod inside the Kubernetes cluster or on
NetScaler MPX or VPX appliance outside the cluster.

The following diagram illustrates a NetScaler as an Ingress Gateway with the NetScaler Ingress
Controller and NetScaler Observability Exporter as sidecars. NetScaler Observability Exporter sends
NetScaler application metrics and transaction data to Elasticsearch and the same data exports to
Kibana. Kibana provides a graphical representation of the data.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 18

https://github.com/citrix/citrix-observability-exporter/tree/master/dashboards
https://docs.citrix.com/en-us/citrix-adc-cpx/current-release/cpx-troubleshooting.html
https://docs.citrix.com/en-us/citrix-adc-cpx/current-release/cpx-troubleshooting.html

NetScaler Observability Exporter

Prerequisites

• Ensure that you have a Kubernetes cluster with kube-dns or CoreDNS addon enabled.

In the following procedure, the YAML file is used to deploy NetScaler Observability Exporter in the
Kubernetes defauIt namespace. If you want to deploy in a private namespace other than the default,
edit the YAML file to specify the namespace.

The following is a sample application deployment procedure.

Note:

If you have a pre‑deployed web application, skip the steps 1 and 2.

1. Create a secret ingress.crt and key ingress.key using your own certificate and key.

In this example, a secret, called ing in the default namespace, is created.

1 kubectl create secret tls ing --cert=ingress.crt --key=ingress.
key

2. Access the YAML file fromwebserver‑es.yaml to deploy the application.

1 kubectl create -f webserver-es.yaml

3. Define the specific parameters that youmust import by specifying it in the ingress annotations
of the application’s YAML file, using the smart annotations in the ingress.

1 ingress.citrix.com/analyticsprofile: '{
2 "webinsight": {
3 "httpurl":"ENABLED", "httpuseragent":"ENABLED", "httpHost":"

ENABLED","httpMethod":"ENABLED","httpContentType":"ENABLED" }

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 19

https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.crt
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.key
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/webserver-es.yaml

NetScaler Observability Exporter

4 }
5 '

Note:

The parameters are predefined in the webserver-es.yaml file.

For more information about Annotations, see Ingress annotations documentation.

Deploy NetScaler CPXwith the NetScaler Observability Exporter support

You can deployNetScaler CPX as a side carwith theNetScaler Observability Exporter support enabled
along with NetScaler Ingress Controller. You can modify the NetScaler CPX YAML file cpx-ingress
-es.yaml to include the configuration information that is required for the NetScaler Observability
Exporter support.

Perform the following steps to deploy a NetScaler CPX instance with the NetScaler Observability Ex‑
porter support:

1. Download the cpx‑ingress‑es.yaml and cic‑configmap.yaml file.

2. Create a ConfigMap with the required key‑value pairs and deploy the ConfigMap. You can use
the cic-configmap.yaml file that is available, for the specific endpoint, in the directory.

3. Modify NetScaler CPX related parameters, as required.

4. Edit the cic-configmap.yaml file and specify the following variables for NetScaler Observ‑
ability Exporter in the NS_ANALYTICS_CONFIG endpoint configuration.

1 server: 'coe-es.default.svc.cluster.local' # COE service FQDN

Note:

If you have used a namespace other than default, change coe-es.default.svc
.cluster.local to to coe-es.<desired-namespace>.svc.cluster.
local. If ADC is outside the Kubernetes cluster, then you must specify IP address and
nodport address of NetScaler Observability Exporter.

5. Deploy NetScaler CPX with the NetScaler Observability Exporter support using the following
commands:

1 kubectl create -f cpx-ingress-es.yaml
2 kubectl create -f cic-configmap.yaml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 20

https://github.com/citrix/citrix-k8s-ingress-controller/blob/666d6267e5b09683740528c5e8dd46f16d7d16e0/docs/configure/annotations.md
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/cpx-ingress-es.yaml
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/cic-configmap.yaml
https://github.com/citrix/citrix-observability-exporter/tree/master/examples

NetScaler Observability Exporter

Deploy Elasticsearch and Kibana using YAML files

1. Download the Elasticsearch YAML file from elasticsearch.yaml and the Kibana YAML file from
kibana.yaml.

2. Edit the namespace definition, if you want to use a different namespace other than default.

3. Run the following commands to deploy Elasticsearch and Kibana:

1 kubectl create -f elasticsearch.yaml
2 kubectl create -f kibana.yaml

Note: Elasticsearch and Kibana are deployed in the default namespace of the same Kubernetes clus‑
ter.

Deploy NetScaler Observability Exporter using the YAML file

You can deploy NetScaler Observability Exporter using the YAML file. Download the YAML file from
coe‑es.yaml.

To deploy NetScaler Observability Exporter using the Kubernetes YAML, run the following command
in the Elasticsearch endpoint:

1 kubectl create -f coe-es.yaml

Note:

Modify the YAML file for NetScaler Observability Exporter if you have a custom namespace.

Verify the NetScaler Observability Exporter deployment

To verify the NetScaler Observability Exporter deployment, perform the following:

1. Verify the deployment using the following command:

1 kubectl get deployment,pods,svc -o wide

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 21

https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/elasticsearch.yaml
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/kibana.yaml
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/coe-es.yaml

NetScaler Observability Exporter

2. Access the application with a browser using the URL: https://kubernetes-node-IP:
cpx-ingress-es nodeport/.

For example, from Step 1, access http://10.102.40.41:30176/ in which, 10.102.40.41 is one
of the Kubernetes node IPs.

3. Access Kibana with a browser using the URL: https://<kubernetes-node-IP>:<
kibana nodeport>/.

For example, from step 1, access http://10.102.40.41:32529/ in which, 10.102.40.41 is one
of the Kubernetes node IPs.

a) Click Explore onmy own.

b) Click Connect to your Elasticsearch index.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 22

http://10.102.40.41:30176/
http://10.102.40.41:32529/

NetScaler Observability Exporter

c) Click Saved Objects.

d) Download and import the Kibana Dashboard from KibanaAppTrans.ndjson.

e) Click App Transaction dashboard.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 23

https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/dashboards/KibanaAppTrans.ndjson

NetScaler Observability Exporter

The dashboard appears.

Integrate NetScaler withmultiple NetScaler Observability Exporter instances
manually

You can also configure NetScaler Observability Exporter manually. We recommend deploying
NetScaler Observability Exporter in an automated way with the YAML file as described in the pre‑
ceding sections. You can also perform manual configuration for NetScaler in the MPX and VPX form
factors.

1 enable feature appflow
2 enable ns mode ULFD
3 add dns nameserver <KUBE-CoreDNS>
4 add server COEsvr <FQDN/IP>
5 add servicegroup COEsvcgrp LOGSTREAM -autoScale DNS
6 bind servicegroup COEsvcgrp COEsvr <PORT>
7 add lb vserver COE LOGSTREAM 0.0.0.0 0
8 bind lb vserver COE COEsvcgrp
9 add analytics profile web_profile -collectors COE -type

webinsight -httpURL ENABLED -httpHost ENABLED -
httpMethod ENABLED -httpUserAgent ENABLED -
httpContentType ENABLED

10 add analytics profile tcp_profile -collectors COE -type
tcpinsight

11 bind lb vserver <WEB-VSERVER> -analyticsProfile web_profile

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 24

NetScaler Observability Exporter

12 bind lb vserver <WEB-VSERVER> -analyticsProfile tcp_profile
13
14 # To enable metrics push to prometheus
15 add service metrichost_SVC <IP> HTTP <PORT>
16 set analyticsprofile ns_analytics_time_series_profile -

collectors metrichost_SVC -metrics ENABLED -outputMode
prometheus

Add NetScaler Observability Exporter using FQDN

1 enable feature appflow
2 enable ns mode ULFD
3 add dns nameserver <KUBE-CoreDNS>
4 add server COEsvr <FQDN>
5 add servicegroup COEsvcgrp LOGSTREAM -autoScale DNS
6 bind servicegroup COEsvcgrp COEsvr <PORT>
7 add lb vserver COE LOGSTREAM 0.0.0.0 0
8 bind lb vserver COE COEsvcgrp
9 add analytics profile web_profile -collectors COE -type

webinsight -httpURL ENABLED -httpHost ENABLED -
httpMethod ENABLED -httpUserAgent ENABLED -
httpContentType ENABLED

10 add analytics profile tcp_profile -collectors COE -type
tcpinsight

11 bind lb vserver <WEB-VSERVER> -analyticsProfile web_profile
12 bind lb vserver <WEB-VSERVER> -analyticsProfile tcp_profile
13
14 # To enable metrics push to prometheus
15 add service metrichost_SVC <IP> HTTP <PORT>
16 set analyticsprofile ns_analytics_time_series_profile -

collectors metrichost_SVC -metrics ENABLED -outputMode
prometheus

To verify if NetScaler sends application data logs to NetScaler Observability Exporter:

1 nsconmsg -g lstream_tot_trans_written -d current

The counter value indicates that the number of application transactions (for example, HTTP transac‑
tions) which have been sent to NetScaler Observability Exporter.

If the application traffic rate (for example, HTTP req/sec) that is sent to NetScaler Observability Ex‑
porter is not equal tolstream_tot_trans_written, you canverify the sameusing the following
command:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 25

NetScaler Observability Exporter

1 nsconmsg -g nslstream_err_ulf_data_not_sendable -d current

The counter value indicates that NetScaler cannot send the data to NetScaler Observability Exporter
due to network congestion, unavailability of network bandwidth, and so on. The data is stored in the
available buffers.

Information about various transaction data and individual fields, and their datatype are available in
the following location on the NetScaler:

1 shell/netscaler/appflow/ns_ipfix.yaml

Toverify that if application transaction recordsareexported fromNetScaler toNetScalerObservability
Exporter, use the following command:

1 nsconmsg -g appflow_tmpl -d current

Location of metrics data export logs to NetScaler for time series data:

1 /var/nslog/metrics_prom.log

To verify Elasticsearch related counters, run the following command:

1 kubectl exec -it <cpx-pod-name> [-c <cpx-container-name>] [-n <
namespace-name>] -- bash

2
3 tail -f /var/ulflog/counters/lstrmd_counters_codes.log | grep -

iE \"\(http_reqs_done|elk)\"

Find the logs in the following location to verify that theNetScalerObservability Exporter configuration
is applied correctly:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 26

NetScaler Observability Exporter

1 vi /var/logproxy/lstreamd/conf/lstreamd.conf

If NetScaler Observability Exporter fails, you can collect logs and files available at the following loca‑
tion and contact NetScaler support.

1 /var/crash/ (Loation of the coredump files, if any.)
2 /var/ulflog/ (Location of the `libulfd` logs and counter details

.)
3 /var/log (Location of the console logs, lstreamd logs and so on

.)

For information on troubleshooting related to NetScaler Observability Exporter, see NetScaler CPX
troubleshooting.

NetScaler Observability Exporter with Kafka as endpoint

January 17, 2024

NetScaler Observability Exporter is a container that collects metrics and transactions from NetScaler.
It also transforms the data into the formats (such as AVRO) that are supported in Kafka and exports
the data to the endpoint. Kafka is an open‑source and distributed event streaming platform for high‑
performance data pipelines and streaming analytics.

Deploy NetScaler Observability Exporter

You can deploy NetScaler Observability Exporter using the YAML file. Based on the NetScaler de‑
ployment, you can use NetScaler Observability Exporter to export metrics and transaction data from
NetScaler. You can deployNetScaler CPX either as a pod inside the Kubernetes cluster or onNetScaler
MPX or VPX form factor outside the cluster.

The following diagram illustrates a NetScaler as an Ingress Gateway with NetScaler Observability Ex‑
porter as a sidecar. It sends NetScaler application transaction data to Kafka.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 27

https://docs.citrix.com/en-us/citrix-adc-cpx/current-release/cpx-troubleshooting.html
https://docs.citrix.com/en-us/citrix-adc-cpx/current-release/cpx-troubleshooting.html

NetScaler Observability Exporter

Prerequisites

• Ensure that you have a Kubernetes cluster with kube-dns or CoreDNS addon enabled.
• Ensure that the Kafka server is installed and configured.
• Youmust have a Kafka broker IP or FQDN address.
• Youmust have defined a Kafka topic HTTP.
• Ensure that you have Kafka Consumer to verify the data.

Note:

In this example scenario, the YAML file is used to deploy NetScaler Observability Exporter in the
Kubernetes defauIt namespace. If you want to deploy in a private Kubernetes namespace other
than default, edit the YAML file to specify the namespace.

The following is a sample application deployment procdure.

Note:

If you have a pre‑deployed web application, skip the step 1 and 2.

1. Create a secret ingress.crt and key ingress.key using your own certificate and key.

In this example, a secret, called ing in the default namespace, is created.

1 kubectl create secret tls ing --cert=ingress.crt --key=ingress.
key

2. Access the YAML file fromwebserver‑kafka.yaml to deploy a sample application.

1 kubectl create -f webserver-kafka.yaml

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 28

https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.crt
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.key
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/kafka/webserver-kafka.yaml

NetScaler Observability Exporter

3. Define the specific parameters that youmust import by specifying it in the ingress annotations
of the application’s YAML file using the smart annotations in ingress.

1 ingress.citrix.com/analyticsprofile: '{
2 "webinsight": {
3 "httpurl":"ENABLED", "httpuseragent":"ENABLED", "httpHost":"

ENABLED","httpMethod":"ENABLED","httpContentType":"ENABLED" }
4 }
5 '

Note:

The parameters are predefined in the webserver-kafka.yaml file.

For more information about Annotations, see Ingress annotations documentation.

Deploy NetScaler CPXwith the NetScaler Observability Exporter support

You can deploy NetScaler CPX as a side car with the NetScaler Observability Exporter support. You
can edit the NetScaler CPX YAML file, cpx-ingress-kafka.yaml, to include the configuration
information that is required for NetScaler Observability Exporter support.

Perform the following steps to deploy a NetScaler CPX instance with the NetScaler Observability Ex‑
porter support:

1. Download the cpx‑ingress‑kafka.yaml and the cic‑configmap.yaml files.

2. Create a ConfigMap with the required key‑value pairs and deploy the ConfigMap. You can use
the cic-configmap.yaml file that is available, for the specific endpoint, in the directory.

3. Modify NetScaler CPX related parameters, as required.

4. Edit the cic-configmap.yaml file and specify the following variables for NetScaler Observ‑
ability Exporter in the NS_ANALYTICS_CONFIG endpoint configuration.

1 server: 'coe-kafka.default.svc.cluster.local' # COE service FQDN

5. Deploy NetScaler CPX with the NetScaler Observability Exporter support using the following
commands:

1 kubectl create -f cpx-ingress-kafka.yaml
2 kubectl create -f cic-configmap.yaml

Note:

If you have used a different namespace, other than default, then you must change from

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 29

https://github.com/citrix/citrix-k8s-ingress-controller/blob/666d6267e5b09683740528c5e8dd46f16d7d16e0/docs/configure/annotations.md
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/kafka/cpx-ingress-kafka.yaml
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/kafka/cic-configmap.yaml
https://github.com/citrix/citrix-observability-exporter/tree/master/examples

NetScaler Observability Exporter

coe-kafka.default.svc.cluster.local to coe-kafka.<desired-namespace
>.svc.cluster.local.

Deploy NetScaler Observability Exporter using YAML

You can deploy NetScaler Observability Exporter using the YAML file. Download the coe‑kafka.yaml
file that you can use for the NetScaler Observability Exporter deployment.

To deploy NetScaler Observability Exporter using the Kubernetes YAML, run the following command
in the Kafka endpoint:

1 kubectl create -f coe-kafka.yaml

To edit the YAML file for the required changes, perform the following steps:

1. Edit the ConfigMap using the following YAML definition:

Note:

Ensure that you specify the Kafka broker IP and the Kafka desired topic.

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: coe-config-kafka
5 data:
6 lstreamd_default.conf: |
7 {
8
9 "Endpoints": {

10
11 "KAFKA": {
12
13 "ServerUrl": "X.X.X.X:9092", #Specify the Kafka

broker IP
14 "KafkaTopic": "HTTP", #Specify the desired kafka

topic
15 "RecordType": {
16
17 "HTTP": "all",
18 "TCP": "all",
19 "SWG": "all",
20 "VPN": "all",
21 "NGS": "all",
22 "ICA": "all",
23 "APPFW": "none",
24 "BOT": "none",
25 "VIDEOOPT": "none",
26 "BURST_CQA": "none",
27 "SLA": "none",

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 30

https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/kafka/coe-kafka.yaml

NetScaler Observability Exporter

28 "MONGO": "none"
29 }
30 ,
31 "ProcessAlways": "yes",
32 "FileSizeMax": "40",
33 "ProcessYieldTimeOut": "500",
34 "FileStorageLimit": "1000",
35 "SkipAvro": "no",
36 "AvroCompress": "yes"
37 }
38
39 }
40
41 }
42 **Note:** To export transactions in the JSON format, see [

exporting transaction in JSON format to Kafka](#support-for-
exporting-transactions-in-the-json-format-from-pageadc-
observability-exporter-short-to-kafka).

2. Specify the host name and IP or FQDN address of the Kafka nodes. Use the following YAML
definition for a three node Kafka cluster:

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: coe-kafka
5 labels:
6 app: coe-kafka
7 spec:
8 replicas: 1
9 selector:

10 matchLabels:
11 app: coe-kafka
12 template:
13 metadata:
14 name: coe-kafka
15 labels:
16 app: coe-kafka
17 spec:
18 hostAliases:
19 - ip: "X.X.X.X" # Here we specify kafka node1 Ipaddress
20 hostnames:
21 - "kafka-node1"
22 - ip: "Y.Y.Y.Y" # Here we specify kafka node2 Ipaddress
23 hostnames:
24 - "kafka-node2"
25 - ip: "Z.Z.Z.Z" # Here we specify kafka node3 Ipaddress
26 hostnames:
27 - "kafka-node3"
28 containers:
29 - name: coe-kafka
30 image: "quay.io/citrix/citrix-observability-exporter

:1.3.001"

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 31

NetScaler Observability Exporter

31 imagePullPolicy: Always
32 ports:
33 - containerPort: 5557
34 name: lstream
35 volumeMounts:
36 - name: lstreamd-config-kafka
37 mountPath: /var/logproxy/lstreamd/conf/

lstreamd_default.conf
38 subPath: lstreamd_default.conf
39 - name: core-data
40 mountPath: /var/crash/
41 volumes:
42 - name: lstreamd-config-kafka
43 configMap:
44 name: coe-config-kafka
45 - name: core-data
46 emptyDir: {
47 }

3. If necessary, edit the service configuration for exposing the NetScaler Observability Exporter
port to NetScaler using the following YAML definition:

Citrix‑observability‑exporter headless service:

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: coe-kafka
5 labels:
6 app: coe-kafka
7 spec:
8 clusterIP: None
9 ports:

10 - port: 5557
11 protocol: TCP
12 selector:
13 app: coe-kafka
14 <!--NeedCopy-->

Citrix‑observability‑exporter NodePort service

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: coe-kafka-nodeport
5 labels:
6 app: coe-kafka
7 spec:
8 type: NodePort
9 ports:

10 - port: 5557
11 protocol: TCP
12 selector:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 32

NetScaler Observability Exporter

13 app: coe-kafka
14 <!--NeedCopy-->

Verify the NetScaler Observability Exporter deployment

To verify the NetScaler Observability Exporter deployment, perform the following:

1. Verify the deployment using the following command:

1 kubectl get deployment,pods,svc -o wide

2. Access the application with a browser using the URL: https://<kubernetes-node-IP
>:<cpx-ingress-kafka nodeport>.

1 For example, from step 1, access <http://10.102.61.56:31202/> in
which, `10.102.61.56` is one of the Kubernetes node IPs.

3. Use Kafka Consumer to view the transaction data. Access kafka Consumer from PythonKafka‑
Consumer.

The following image shows sample data from Kafka Consumer.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 33

https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html
https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html

NetScaler Observability Exporter

Integrate NetScaler withmultiple NetScaler Observability Exporter instances
manually

You can configure NetScaler Observability Exporter manually in NetScaler. Manual configuration is
suitable for NetScaler in MPX and VPX form factors. Citrix recommends deploying NetScaler Observ‑
ability Exporter in the automated way using the YAML file as described in the preceding sections.

For information about deploying NetScaler Observability Exporter (coe‑kafka.yaml) and web applica‑
tion (webserver‑kafka.yaml), see the preceding sections.

1 enable feature appflow
2 enable ns mode ULFD
3 add service COE_svc1 <COE IP1> LOGSTREAM <COE PORT1>
4 add service COE_svc2 <COE IP2> LOGSTREAM <COE PORT2>
5 add service COE_svc3 <COE IP3> LOGSTREAM <COE PORT3>
6 add lb vserver COE LOGSTREAM 0.0.0.0 0
7 bind lb vserver COE COE_svc1
8 bind lb vserver COE COE_svc2
9 bind lb vserver COE COE_svc3

10 add analytics profile web_profile -collectors COE -type webinsight -
httpURL ENABLED -httpHost ENABLED -httpMethod ENABLED -httpUserAgent
ENABLED -httpContentType ENABLED

11 add analytics profile tcp_profile -collectors COE -type tcpinsight
12 bind lb/cs vserver <WEB-PROXY> -analyticsProfile web_profile
13 bind lb/cs vserver <WEB-PROXY> -analyticsProfile tcp_profile
14 # To enable metrics push to prometheus
15 add service metrichost_SVC <IP> HTTP <PORT>
16 set analyticsprofile ns_analytics_time_series_profile -collectors

metrichost_SVC -metrics ENABLED -outputMode prometheus
17
18 <!--NeedCopy-->

Add NetScaler Observability Exporter using FQDN

1 enable feature appflow
2 enable ns mode ULFD
3 add dns nameserver <KUBE-CoreDNS>

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 34

NetScaler Observability Exporter

4 add server COEsvr <FQDN>
5 add servicegroup COEsvcgrp LOGSTREAM -autoScale DNS
6 bind servicegroup COEsvcgrp COEsvr <PORT>
7 add lb vserver COE LOGSTREAM 0.0.0.0 0
8 bind lb vserver COE COEsvcgrp
9 add analytics profile web_profile -collectors COE -type webinsight -

httpURL ENABLED -httpHost ENABLED -httpMethod ENABLED -httpUserAgent
ENABLED -httpContentType ENABLED

10 add analytics profile tcp_profile -collectors COE -type tcpinsight
11 bind lb vserver <WEB-VSERVER> -analyticsProfile web_profile
12 bind lb vserver <WEB-VSERVER> -analyticsProfile tcp_profile
13 # To enable metrics push to prometheus
14 add service metrichost_SVC <IP> HTTP <PORT>
15 set analyticsprofile ns_analytics_time_series_profile -collectors

metrichost_SVC -metrics ENABLED -outputMode prometheus
16
17 <!--NeedCopy-->

For information on troubleshooting related to NetScaler Observability Exporter, see NetScaler CPX
troubleshooting.

Support for exporting transactions in the JSON format fromNetScaler Observability
Exporter to Kafka

You can now export transactions from NetScaler Observability Exporter to Kafka in the JSON format
apart from the AVRO format.
A new parameter DataFormat is introduced in the Kafka deployment ConfigMap to support trans‑
actions in the JSON format.
This parameter can accept AVRO and JSON values. For allowing JSON based transactions, set the
value of
DataFormat as JSON in the
coe‑kafka.yaml file. The default value is AVRO.

The following example shows the YAML file with the data format configured as JSON.

1 apiVersion: v1
2 kind: ConfigMap
3 metadata:
4 name: coe-config-kafka
5 data:
6 lstreamd_default.conf: |
7 {
8
9 "Endpoints": {

10
11 "KAFKA": {
12
13 "DataFormat": "JSON",

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 35

https://docs.citrix.com/en-us/citrix-adc-cpx/current-release/cpx-troubleshooting.html
https://docs.citrix.com/en-us/citrix-adc-cpx/current-release/cpx-troubleshooting.html
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/kafka/coe-kafka.yaml

NetScaler Observability Exporter

14 "ServerUrl": "X.X.X.X:9092", #Specify the Kafka broker
IP

15 "KafkaTopic": "HTTP", #Specify the desired kafka topic
16 "RecordType": {
17
18 "HTTP": "all",
19 "TCP": "all",
20 "SWG": "all",
21 "VPN": "all",
22 "NGS": "all",
23 "ICA": "all",
24 "APPFW": "none",
25 "BOT": "none",
26 "VIDEOOPT": "none",
27 "BURST_CQA": "none",
28 "SLA": "none",
29 "MONGO": "none"
30 }
31 ,
32 "TimeSeries": {
33
34 "EVENTS": "yes",
35 "AUDITLOGS": "yes"
36 }
37
38 }
39
40 }
41
42 }
43
44 <!--NeedCopy-->

NetScaler Observability Exporter with Splunk Enterprise as endpoint

December 31, 2023

NetScaler Observability Exporter is a container that collects metrics and transactions from NetScaler
andsends thedata tovariousendpoints. NetScalerObservabilityExporter supportsSplunkEnterprise
as an endpoint.

Splunk Enterprise is a data platform for searching, monitoring, and analyzingmachine‑generated big
data. Splunk Enterprise captures indexes and correlates real‑time data in a repository from which it
can generate reports, graphs, dashboards, and visualizations.

You can add Splunk Enterprise as an endpoint to receive audit logs, events, and transactions from
NetScaler for analysis. Splunk Enterprise provides a graphical representation of these data. You can

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 36

NetScaler Observability Exporter

enable or disable the type of transactions, events, and audit logs which are to be sent to Splunk En‑
terprise.

Deploy NetScaler Observability Exporter

You can deploy NetScaler Observability Exporter using the YAML file. Based on your NetScaler de‑
ployment, you can deploy NetScaler Observability Exporter either outside or inside Kubernetes clus‑
ters. You can deployNetScaler Observability Exporter as a pod inside the Kubernetes cluster or on the
NetScaler MPX or VPX appliance outside the cluster.

The following diagram illustrates a NetScaler as an Ingress Gateway with the NetScaler Ingress
Controller and NetScaler Observability Exporter as sidecars. NetScaler Observability Exporter sends
NetScaler applicationmetrics and transaction data to Splunk Enterprise. Splunk Enterprise provides
a graphical representation of the data.

Prerequisites

• Ensure that you have a Kubernetes cluster with kube-dns or CoreDNS addon enabled.

Note:

In the following procedure, the YAML file is used to deploy NetScaler Observability Exporter in
the Kubernetes defauIt namespace. If you want to deploy in a private namespace other than the
default, edit the YAML file to specify the namespace.

Perform the following steps to deploy NetScaler Observability Exporter:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 37

NetScaler Observability Exporter

Note:

If you have a pre‑deployed web application, skip the steps 1 and 2.

1. Create a secret ingress.crt and key ingress.key using your own certificate and key.

In this example, a secret, called ing in the default namespace, is created.

1 kubectl create secret tls ing --cert=ingress.crt --key=ingress.
key

2. Access the YAML file fromwebserver‑splunk.yaml to deploy the application.

1 kubectl create -f webserver-splunk.yaml

3. Define the specific parameters that youmust import by specifying it in the ingress annotations
of the application’s YAML file, using the smart annotations in the ingress.

1 ingress.citrix.com/analyticsprofile: '{
2 "webinsight": {
3 "httpurl":"ENABLED", "httpuseragent":"ENABLED", "httpHost":"

ENABLED","httpMethod":"ENABLED","httpContentType":"ENABLED" }
4 }
5 '

Note:

The parameters are predefined in the webserver-splunk.yaml file.

For more information about Annotations, see Ingress annotations documentation.

Deploy NetScaler CPXwith the NetScaler Observability Exporter support

You can deployNetScaler CPX as a side carwith theNetScaler Observability Exporter support enabled
along with NetScaler Ingress Controller. You can modify the NetScaler CPX YAML file cpx-ingress
-splunk.yaml to include the configuration information that is required for the NetScaler Observ‑
ability Exporter support.

The following is a sample application deployment procedure.

1. Download the cpx‑ingress‑splunk.yaml and cic‑configmap.yaml file.

2. Create a ConfigMap with the required key‑value pairs and deploy the ConfigMap. You can use
the cic-configmap.yaml file that is available, for the specific endpoint, in the directory.

3. Modify NetScaler CPX related parameters, as required.

4. Edit the cic-configmap.yaml file and specify the following variables for NetScaler Observ‑
ability Exporter in the NS_ANALYTICS_CONFIG endpoint configuration.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 38

https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.crt
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.key
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/splunk/webserver-splunk.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/666d6267e5b09683740528c5e8dd46f16d7d16e0/docs/configure/annotations.md
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/splunk/cpx-ingress-splunk.yaml
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/splunk/cic-configmap.yaml
https://github.com/citrix/citrix-observability-exporter/tree/master/examples

NetScaler Observability Exporter

1 server: 'coe-splunk.default.svc.cluster.local' # COE service
FQDN

Note:

If you have used a namespace other than default, change coe-splunk.default.svc
.cluster.local to to coe-splunk.<desired-namespace>.svc.cluster
.local. If NetScaler is outside the Kubernetes cluster, then you must specify IP address
and nodport address of NetScaler Observability Exporter.

5. Deploy NetScaler CPX with the NetScaler Observability Exporter support using the following
commands:

1 kubectl create -f cpx-ingress-splunk.yaml
2 kubectl create -f cic-configmap.yaml

Deploy NetScaler Observability Exporter using the YAML file

You can deploy NetScaler Observability Exporter using the YAML file. Download the YAML file from
coe‑splunk.yaml. Ensure to specify the Splunk server address for the right namespace by editing the
coe-splunk.yaml file.

Following is an example of how to specify the ServerUrl in the lstreamd_default.conf sec‑
tion in the coe-splunk.yaml file . Here, ServerUrlmeans the address of the Splunk server.

1 lstreamd_default.conf: |
2 {
3
4 "Endpoints": {
5
6 "SPLUNK": {
7
8 "ServerUrl": "http://10.102.34.155:8088",
9 "AuthToken": "",

10 "Index": "",
11 "RecordType": {
12
13 "HTTP": "all",
14 "TCP": "all",
15 "SWG": "all",
16 "VPN": "all",
17 "NGS": "all",
18 "ICA": "all",
19 "APPFW": "none",
20 "BOT": "all",
21 "VIDEOOPT": "none",
22 "BURST_CQA": "none",
23 "SLA": "none",

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 39

https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/splunk/coe-splunk.yaml

NetScaler Observability Exporter

24 "MONGO": "none"
25 }
26 ,
27 "TimeSeries": {
28
29 "EVENTS": "yes",
30 "AUDITLOGS": "yes"
31 }
32 ,
33 "ProcessAlways": "no",
34 "ProcessYieldTimeOut": "500",
35 "MaxConnections": "512",
36 "JsonFileDump": "no"
37 }
38
39 }
40
41 }

Note:

While deploying NetScaler Observability Exporter using the YAML file, along with the Splunk
server address, you can provide the Index name to which the data to be sent in Splunk En‑
terprise. By default, thisIndexPrefix option is empty and the data is uploaded to the default
index, that is main, in Splunk Enterprise.

To deploy NetScaler Observability Exporter using the Kubernetes YAML, run the following command
in the Splunk Enterprise endpoint:

1 kubectl create -f coe-splunk.yaml

Note:

Modify the YAML file for NetScaler Observability Exporter if you have a custom namespace.

Verify the NetScaler Observability Exporter deployment

You can verify the deployment after deploying NetScaler Observability Exporter, web application,
NetScaler CPX, and NetScaler Ingress Controller.

To verify the deployment, perform the following steps:

1. Verify the deployment using the following command:

1 kubectl get deployment,pods,svc -o wide

2. Access the application using a browser with the URL.
For example:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 40

NetScaler Observability Exporter

1 https://kubernetes-node-IP:cpx-ingress-splunk nodeport/

3. Access the Splunk server using a browser with the URL.
For example:

1 https://splunk-node-IP:splunk nodeport/

Import pre‑built dashboards for Splunk

You can import pre‑built Splunk dashboards provided by NetScaler. The JSON files for importing the
dashboards are available at the GitHub repository. These dashboards provide you the option to filter
the transactions based on parameters such as an instance IP address, application name, or client and
server IP address and so on.

Following is a sample HTTP dashboard. This dashboard shows data such as HTTP header‑based
charts, transactional latency, response type distribution, and so on.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 41

https://github.com/citrix/citrix-observability-exporter/tree/master/dashboards

NetScaler Observability Exporter

Following is a sample TCP dashboard for Splunk. This dashboard shows data such as bandwidth dis‑
tribution for each application, TCP Jitter, client and server RTT, and so on.

NetScaler Observability Exporter troubleshooting

December 31, 2023

This document explains how to troubleshoot issues that you may encounter while using NetScaler
Observability Exporter.

• How do I verify that NetScaler sends application data logs to NetScaler Observability Exporter?

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 42

NetScaler Observability Exporter

Run the following command to verify that NetScaler sends application data logs to NetScaler
Observability Exporter:

1 nsconmsg -g lstream_tot_trans_written -d current

The counter value indicates that the number of application transactions (for example, HTTP
transactions) which have been sent to NetScaler Observability Exporter.

If the application traffic rate (for example, HTTP req/sec) that is sent to NetScaler Observability
Exporter is not equal to lstream_tot_trans_written, you can verify the same using the
following command:

1 nsconmsg -g nslstream_err_ulf_data_not_sendable -d current

The counter value indicates that NetScaler cannot send the data to NetScaler Observability Ex‑
porter due to network congestion, unavailability of network bandwidth, and so on and the data
is stored in the available buffers.

Information about various transaction data and individual fields, and their datatype are avail‑
able in the following location on the NetScaler:

1 shell
2 /netscaler/appflow/ns_ipfix.yaml

To verify the current record type exported from NetScaler to NetScaler Observability Exporter,
use the following command:

1 nsconmsg -g appflow_tmpl -d current

Location of metrics data export logs to NetScaler for time series data:

1 /var/nslog/metrics_prom.log

To verify kafka related counters, run the following command:

1 kubectl exec -it <cpx-pod-name> [-c <cpx-container-name>] [-n <
namespace-name>] -- bash

2
3 tail -f /var/ulflog/counters/lstrmd_counters_codes.log | grep -

iE \"\(http_reqs_done|kafka)\"

Find the logs in the following location to verify that the NetScaler Observability Exporter config‑
uration is applied correctly:

1 vi /var/logproxy/lstreamd/conf/lstreamd.conf

If NetScaler Observability Exporter fails, you can collect logs available at the following location
and contact NetScaler support.

1 /var/crash/ (Loation of the coredump files, if any.)

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 43

NetScaler Observability Exporter

2 /var/ulflog/ (Location of `libulfd` logs and counter details.)
3 /var/log (Location of console logs, lstreamd logs and so on.)

For information on NetScaler CPX related troubleshooting, see NetScaler CPX Troubleshooting.

Description of configuration parameters

January 31, 2024

This topic contains descriptions of the lstreamd_default.conf file parameters. The
lstreamd_default.conf parameters are used for endpoint specific configurations.

• ServerUrl: Specifies the address of the server.

The protocol can be Kafka for Apache Kafka, HTTP or HTTPs for Splunk and ElasticSearch, and
HTTP for Zipkin.

The following are examples of how to specify the server URL for different endpoints:

Kafka:

1 kafka-server:9992
2 1.2.3.4:10000 Splunk:
3
4 http://splunk-server:80
5 https://splunk-server:443
6 http://1.2.3.4:1000
7 https://5.6.7.8:2000

ElasticSearch:

1 http://elastic-server:80
2 https://elastic-server:443
3 http://9.8.7.1:80
4 https://1.2.3.5:3000 Zipkin:
5
6 http://zipkin-server:80
7 http://1.2.3.4:80

• KafkaTopic:

Specifies the topic on a Kafka cluster for sending the transaction records. The default value is
HTTP.

• DataFormat:

Specifies the format of the data sent over to Kafka. The values can be either JSON or AVRO.
The default data format is AVRO.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 44

https://docs.citrix.com/en-us/citrix-adc-cpx/current-release/cpx-troubleshooting.html

NetScaler Observability Exporter

• MaxConnections:

Specifies the maximum parallel TCP connections to an endpoint.
The default value is 64.

• FileSizeMax:

For the Kafka endpoint, AVRO files are created and stored on the disk before they get pushed to
the endpoint.
This parameter specifies the size of each such file in Kibibyte (KiB). A file can contain multiple
transaction records. The default value is 48 KiB.

• RecordType:

Specifies the types of records that you want to export:

– HTTP
– TCP
– SWG
– VPN
– ICA
– APPFW
– BOT
– VIDEOPT
– BURST_CQA
– SLA
– MONGO
– MQTT

NetScaler Observability Exporter allows filtering of transaction records of various insights.
By default, none of the records are exported.
Youmust set these fields appropriately to export the required records.
Examples :

1 "TCP": "all",
2 "SWG": "none",
3 "APPFW": "all"

• EVENTS:

NetScaler Observability Exporter allows exporting time series (events, and audit logs) to Splunk
and Kafka.
Set this field to yes to allow exporting events.
The default value is no.

• AUDITLOGS:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 45

NetScaler Observability Exporter

You can export audit logs to Splunk and Kafka.
Set this field to yes to allow exporting audit logs.
The default value is no.

• ConnectionPoolSize:

Alters thesizeof connectionpools forSplunk.ConnectionPoolSizeandMaxConnections
might be used to control the rate at which data is exported (to the endpoint).

• ElkMaxSendBuffersPerSec:

The maximum rate at which the data is exported to ElasticSearch.
An ELK JSON Buffer is 32 KiB in size.
This field configures the maximum number of ELK buffers exported every second.
The default value is 64.

• transRateLimitEnabled:

Sometimes, the incoming traffic may increase and Citrix Observability Exporter may not be
able to scale up to it.
In such cases, export to JSON endpoints like Splunk, ElasticSearch, and Zipkin over
HTTP/HTTPSmight become a bottleneck.
Thememory would keep growing uncontrollably until Citrix Observability Exporter terminates.
To avoid such scenarios, rate‑limiting can be configured for JSON based endpoints including
Kafka. The impact on Kafka is low as Kafka is an efficient protocol.
Set this field to yes to enable rate‑limiting for JSON based end points.
The default value is no.

• transQueueLimit:

Specifies the number of JSON buffers that can be accumulated before Citrix Observability Ex‑
porter starts discarding them.
For Zipkin, one JSON buffer is about 64 KiB and a limit of 1000 means approximately 64 MB of
JSON data.
For Splunk and ElasticSearch, one JSON buffer is about 32 KiB and a limit of 1000 means ap‑
proximately 32 MB of data.
The default value is 1024.

• transRateLimitWindow:

Specifies the recalculation window in seconds and the value must be greater than zero.
The lower thewindow size, themore effective is the rate‑limiting, but specifying low valuesmay
cause slight CPU overhead.
The default value is five seconds.

• AuthToken:

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 46

NetScaler Observability Exporter

You can use the auth token to perform the token‑based authentication for Splunk.
It can also be used for password‑based authentication for ElasticSearch.

Examples :

1 SPLUNK
2
3 "AuthToken": "xxxxxxxx-xxxx-xxxx-ad58-1ce9bdeee09a"
4
5 ELASTICSEARCH
6
7 "AuthToken": "xxxxxxxxxxxxeXBhc3MxMjM="

• Index:

The Splunk index where the processed data is stored.
The default value is “”. That means the default index.

• IndexPrefix:

Specifies the index prefix used for ElasticSearch. ElasticSearch allows you to create indexes as
necessary through its APIs.
Kibana allows the creation of index patterns and to facilitate that, this field is used.
All index names follow this prefix followed by the time of creation of the index. The time or time
format is based on the IndexInterval.

• IndexInterval:

The interval at which the ElasticSearch indexes are rotated, following the index pattern.
You can configure the interval as one of the following values:

– hourly
– 12 hours
– daily
– weekly
– 2 weeks
– monthly
– 6 months
– yearly

The default value is “”. That means, the index never rotates.

Additional information

Following are the guidelines while configuring the lstreamd_default.conf file parameters.

• Zipkin is supported in parallel to Splunk, ElasticSearch, or Kafka.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 47

NetScaler Observability Exporter

• You do not need to configure Prometheus as it is pull based. NetScaler Observability Exporter
exports NetScaler metrics and its ownmetrics to prometheus.

Port 5563 of the container can be scraped using insecure HTTP at the path ‘/metrics’.

For example:

1 http://coe-fqdn:5563/metrics

Prometheus is alwaysON andmetrics canbe exported to it in parallel to transactions, audit logs,
and events.

• Currently, you can only export time series like audit logs and events to Splunk and Kafka, but in
parallel to transactions andmetrics.

• You must not configure multiple endpoints of the same type in the lstreamd_default.
conf file for one NetScaler Observability Exporter. For example, it is not possible to configure
twoSplunk instances, or twoKafka instances, or twoElasticSearch instances, or oneSplunkand
one ElasticSearch, and so on.
For Zipkin, although you can configure it in parallel to Splunk and ElasticSearch, you may not
configure multiple instances of Zipkin. For example, it is not possible to have two Zipkin in‑
stances in parallel.

• You can ignore the fields that are marked as optional as some of them may have predefined
default values.

• The JSON parser used for lstreamd_default.conf is case‑sensitive and also ensure that
you do not have extra or missing commas, or anything that maymake the JSON format invalid.

• Some of the lstreamd_default.conf file parameters are not listed in this document.
Those parameters that are not listed are internal and are not meant to be altered. They have
predefined default values.

Support for container logging

January 31, 2024

Now, youcanenable loggingonNetScalerObservability Exporter according todifferent severity levels.
These logs help in getting information about endpoint specific configuration.

The following logging severity levels are supported and the default value is INFO.

• NONE : None of the messages are logged.
• FATAL : Only fatal messages are logged.
• ERROR: Only fatal messages and error messages are logged.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 48

NetScaler Observability Exporter

• INFO: Only fatal, error, and informational messages are logged.
• DEBUG: Only fatal, error, informational, and debugmessages are logged.

ForKubernetes YAMLbaseddeployments thedefault value isNONE.But, forHelmandOpenShiftoper‑
ator deployments of NetScaler Observability Exporter logging is enabled by default and set as INFO.

You can configure logging using the environment variable NSOE_LOG_LEVEL while deploying
NetScaler Observability Exporter for each endpoint.

The following example shows how to configure the log level in the NetScaler Observability Exporter
deployment YAML:

1 env:
2 - name: NSOE_LOG_LEVEL
3 value: "INFO"

Log descriptions

The following are the types of logs that you can get:

Error logs

Log Severity Description

Endpoints Missing ‑ Invalid
Config Format

Error Field “Endpoints”is missing in
lstreamd.conf.

Splunk Auth Tokenmissing Error AuthTokenmissing for Splunk
HEC.

Unknown Record Type ‑ Invalid
Configuration

Error Unrecognized record.

Record Type Option ‑ Invalid
Configuration

Error Unrecognized argument. Only
all/none/anomalous accepted.

Unknown Timeseries ‑ Invalid
Configuration

Error Only AUDITLOGS/EVENTS
accepted.

Setting Rate Limit Enabled to
false ‑ Invalid Rate Limit Option
‑ Invalid Configuration

Error Invalid configuration for rate
limiting.

Anamalous Config Missing Error Anomalous config not found.

The configuration file does not
exist

Error OE tried to read
lstreamd.conf but did not
find it.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 49

NetScaler Observability Exporter

Log Severity Description

Either the name of the
endpoint or the address of the
server is invalid (empty)

Error The endpoint kind such as
SPLUNK,KAFKA,ES,ZIPKIN is
empty or its address (ServerUrl)
is empty.

Invalid value‑ <val>
configured Timeseries/<
timeseries-type> export
to No for <endpoint-type>

Error Invalid value for the given type
of timeseries (only “yes”/ “no”
are allowed)‑ defaulting to “no”
.

Failed to allocate Packet Engine
context for a client

Error ULFD consumer thread failed to
allocate the Packet Engine
context (Per NetScaler/ Packet
Engine context).

Failed to allocate memory to
hold the Logstream buffer‑
perhaps we ran of memory

Error ULFD consumer thread ran
OOM and could not allocate ~ 8
KiB memory required to hold
the received Logstream Buffer.

Failed to initialize the Processor
for the client <client-id>

Error Failed to initialize the
Processor for the client.

Info logs

Log Severity Description

lstreamd Process Initiating Info NSOE started.

lstreamd.conf not found ‑
creating new and switching to
agent/ adm on‑premmode

Info lstreamd.conf was not found.

ELK Health Status DOWN Info ElasticSearch is down.

ELK Health Status UP Info ElasticSearch is up.

Splunk Health Status DOWN Info Splunk is down.

Splunk Health Status UP Info Splunk is up.

Deleting NetScaler IP: <nsip>
Core: <core-id> Partition:
<partition-id>

Info Disconnected from a NetScaler.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 50

NetScaler Observability Exporter

Log Severity Description

Adding new NetScaler IP:
<nsip> Core: <core-id>
Partition: <partition-id>

Info Connected to a new NetScaler.

New NetScaler Allocation Info Connected to a new NetScaler.

New NetScaler Initiating Info Connected to a new NetScaler.

JSON data format set for KAFKA Info JSON will be exported to Kafka.

AVRO data format set for Kafka Info AVRO will be exported to Kafka.

Enabling Traces for Zipkin Info Zipkin was configured.

Set the maximum number of
connections to the endpoint
<type> as <maxSockets>

Info MaxConnectionswas either
parsed or defaulted to the
printed value for the printed
endpoint.

Enabling Kafka Exporter Info Kafka was configured in
lstreamd.conf and hence
enabled.

Configured Kafka broker list :
<brokers>

Info Applied the configured Kafka
Broker list (from the serverUrl).

Configured Kafka topic:
<topic>

Info KafkaTopic was either parsed
or defaulted to the printed
value.

Configured
<endpoint-type> to export
<all / anomalous /
none> <rec-type> records

Info Only the printed records of
type <rec-type: ex
HTTP_A/TCP_A/...>were
configured to be exported for
the printed endpoint.

Configured Timeseries/<
timeseries-type> to
<Yes/No> for
<endpoint-type>

Info Auditlogs/Events/Metrics were
enabled/disabled for the given
endpoint.

Configured Processor Yield
Timeout to <val>

Info Yield time of the processor
threads was either configured
or defaulted.

Prometheus Mode Enabled‑
Prometheus can now scrape
metrics at the rest port

Info Prometheus is authorized to
perform ‘GET /metrics’at the
rest port.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 51

NetScaler Observability Exporter

Log Severity Description

Received a new client
connection

Info Received a connection from a
NetScaler (Packet Engine.)

Received a disconnect from a
client

Info Received a disconnect from a
NetScaler (Packet Engine).

Received a reset from a client Info Received a disconnect (reset)
from a NetScaler (Packet
Engine).

JSON transaction rate limiting
enabled

Info Enabled rate‑limiting for
transactions to JSON‑based
endpoints viz. Splunk,
ElasticSearch, Zipkin, and
Kafka (JSON).

Set JSON transaction rate limit
to <num> Logstream buffers
per second

Info Per second rate‑limit for
logstream buffers.

Set JSON transaction Export
Queue limit to <num> JSON
buffers

Info Limit on the JSON export
queue ‑ Beyond this threshold,
the Exporter will start dropping
JSON buffers.

Set JSON transaction rate limit
window to <num> seconds

Info Window of rate‑limiting
transactions to JSON‑based
endpoints. Lower values can
capture spikes.

Warning logs

Log Severity Description

Prometheus Mode Disabled‑
Prometheus will not be
authorized to scrapemetrics at
the rest port

Warning Prometheus is unauthorized to
perform ‘GET /metrics’at the
rest port.

Debug logs

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 52

NetScaler Observability Exporter

Log Severity Description

Spawned Processor #1 with
Thread Index: 0 , Thread ID:
<id>

Debug Created and started the first
processing thread.

Spawned ULFD Receiver with
Thread Index: 1 , Thread ID:
<id>

Debug Created and started the ULFD
consumer thread.

Spawned Exporter with Thread
Index: 2 , Thread ID: <id>

Debug Created and started the export
thread.

Spawned Processor #2 with
Thread Index: 3 , Thread ID:
<id>

Debug Created and started the second
processing thread.

ULFD Receiver received the
signal number‑ <signo>

Debug ULFD consumer thread
received a signal (usually from
NSULFD) ‑ usually SIGUSR2 is
used to induce counter file
rotation.

ULFD Receiver received
timeout event

Debug ULFD consumer thread
received a timeout event
(received from NSULFD every
second) ‑ used for cleaning up
CLMmeta records every
minute.

ULFD Receiver received an
unhandleable event ‑ ignoring
it

Debug ULFD consumer thread
received an unknown event,
thus ignored it.

ULFD Receiver received a
Logstream Buffer

Debug ULFD consumer thread
received a Data Buffer
(Logstream).

The received Logstream Buffer
is corrupted ‑ unable to parse it

Debug ULFD consumer thread
received a corrupted Data
Buffer (Logstream).

Parsed the received Logstream
Buffer: client‑id=<>, core‑id=<>,
partition‑id=<>, namespace=<>

Debug ULFD consumer thread parsed
the received Data Buffer.

The rate‑limiter decided to
drop the Logstream buffer

Debug Buffer drop because of JSON
transaction rate‑limiting.

The rate‑limiter decided to
accept the Logstream buffer

Debug Buffer accepted by JSON
transaction rate‑limiter.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 53

NetScaler Observability Exporter

Log Severity Description

Logstream buffer dropped
because the Processor for this
client is not emptying the
queue fast enough

Debug Buffer drop because the
Processing thread associated
with this NetScaler (Packet
Engine) is not consuming the
buffers fast enough.

Logstream buffer dropped
because the configuration does
not allow accepting
Non‑Anomalous buffers

Debug Buffer drop because
Lstreamd has been
configured to process
anomalous transactions only.

Relinquishing the Logstream
buffer because we are done
with it

Debug ULFD consumer thread is done
with the received Logstream
Buffer‑ thus relinquishing the
sharedmemory.

ULFD Receiver dropped a
Logstream buffer‑ either it was
corrupt or we ran out of
memory

Debug ULFD consumer thread
dropped the Logstream Buffer
because it was corrupt or it ran
OOM.

Initialized the <AVRO/ JSON>
Processor for the client
<client-id>

Debug Initialized the printed
Processor for the client (done
the first time the NetScaler /
Packet Engine connects).

Pushed <num-pushed>
Logstream Buffer(s) toward the
Processor

Debug Pushed the printed number of
Logstream Buffers to the
associated Processing Thread’s
Queue.

Timer fired for the JSON
Processor with
thread-id=<thread-id>,
client-id=<client-id>

Debug JSON Processing Thread’s
Process Timer Timed Out.

JSON Processor with
thread‑id=<thread-id>,
client-id=<client-id>
yielded the CPU

Debug JSON Processing Thread
yielded the CPU.

JSON Processing Started Debug Started converting the
Logstream Buffers piled in the
queue to JSON.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 54

NetScaler Observability Exporter

Log Severity Description

Processing Logstream buffer
started

Debug Started processing a logstream
buffer.

Dropping a transaction
because the JSON Endpoint is
not healthy (set
“ProcessAlways”: “yes”to skip
health checks)

Debug The transaction was dropped
because either the JSON
endpoint‑ Splunk/
ElasticSearch was unhealthy or
because Kafka (JSON) was not
enabled

Transaction dropped: Cannot
create JSON Object Queue for
the Unconfigured Record Type ‑
<rec-type>

Debug The transaction was dropped
because it belonged to a
Record Type that was not
configured (or configured to
none).

Creating JSON Object Queue
for the Record Type ‑
<rec-type>

Debug Created JSON Object Queue for
the configured Record Type
(used to hold JSON Buffers
until they are pushed to the
Exporter).

Transaction dropped: Cannot
create JSON Object Queue for
Unknown Protocol ID ‑
<protocol-id>

Debug The transaction was dropped
because it belonged to an
Unknown Record Type /
Protocol ID.

Created JSON Object Queue
(protocol‑id=<protocol-id
>)

Debug Created the JSON Object
Queue for the printed Record
Type / Protocol ID.

Set Index to
<index-string> for the
JSON Object Queue

Debug Set the Index for JSON Object
Queue (valid for ElasticSearch/
Splunk endpoints that use
indices).

Transaction dropped: Unable
to create JSON Object Queue‑
perhaps ran out of memory

Debug The transaction was dropped
because the JSON Object
Queue could not be created
due to lack of memory.

Transaction processing started Debug Started the conversion of
transaction to JSON.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 55

NetScaler Observability Exporter

Log Severity Description

Anomaly: The field is indexed
but could not be found in the
table‑ code=<id>

Debug The field is indexed but could
not be found in the local meta
table.

Generated record type‑
<rec-type> for the
transaction

Debug Generated a JSON record of the
printed type for the transaction

Transaction processing finished Debug Finished the conversion of
transaction to JSON.

Failed to process the
Logstream buffer because the
AppFlow codename bearing
meta records have not arrived
yet from this client

Debug Dropped the transaction
because the Code Maps have
not arrived from NetScaler
(Packet Engine).

Finished processing the
Logstream buffer

Debug Finished processing the
logstream buffer.

JSON processing finished Debug Finished converting the
logstream buffers piled in the
queue to JSON

Pushed the converted JSON
transactions to the Processed
Queue

Debug Pushed the converted JSON
transactions to the Processed
Queue (common queue where
the processed JSONs of all
Record Types wait before being
handed over to the exporter).

Pushed all the piled up JSONs
in the Processed Queue to the
Exporter

Debug Handed over all the JSON
transactions waiting in the
Processed Queue to the
Exporter.

Started exporting piled up
JSON buffers to Kafka Client

Debug Started the export of the piled
up JSON buffers in the export
queue to Kafka Client.

Finished exporting piled up
JSON buffers to Kafka Client

Debug Finished the export of the piled
up JSON buffers in the export
queue to Kafka Client.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 56

NetScaler Observability Exporter

Log Severity Description

Pushing the JSON buffer back
to the Export Queue because of
failure in exporting it to the
Kafka Client

Debug Failed to export the JSON
buffer to the Kafka client,
hence adding it back to the
Export Queue.

The Exporter dropped
<numDropped> JSON Buffers
because the Export Queue hit
its configured limit

Debug Drop from the Export Queue
because of Rate Limiting.

Failed to export the JSON
Buffer to the Kafka Client
because the Kafka Topic
Manager has not been created
yet

Debug Could not export JSON Buffer
to Kafka Client because the
Kafka Topic Manager is not
created yet.

Created Kafka Topic Manager Debug Constructed the Kafka Topic
Manager (used to maintain
Kafka Client’s state).

Kafka Topic Manager is creating
the topic‑ <topic>

Debug Kafka Topic Manager is
attempting to create the
configured topic.

Kafka Topic Manager failed to
create the topic‑ perhaps ran
out of memory

Debug Kafka Topic Manager ran OOM
thus failed to create the
configured topic.

Kafka Topic Manager created
the the topic

Debug Kafka Topic Manager created
the configured topic

Unable to validate the
configured topic‑ failed to
acquire a meta connection to
the Kafka client, perhaps ran
out of memory

Debug Kafka Topic Manager failed to
validate the topic‑ perhaps ran
OOM.

Meta Request sent to the Kafka
client for topic validation

Debug Kafka Topic Manager
successfully issued Meta
Request to the Kafka Client for
Topic Validation.

Failed to create meta
connection to the Kafka Client‑
perhaps ran out of memory

Debug Failed to create meta
connection to the Kafka Client ‑
perhaps ran OOM.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 57

NetScaler Observability Exporter

Log Severity Description

Createdmeta connection to the
Kafka client‑
connection‑id=<id>

Debug Createdmeta connection to the
Kafka Client for the configured
topic.

Reused existing meta
connection to the Kafka Client‑
connection‑id=<id>

Debug Reused existing meta
connection to the Kafka Client.

Cleaned up the stale meta
connection to the Kafka Client‑
connection‑id=<id>

Debug Removed the erroneous meta
connection to the Kafka Client
from the Meta Connection Pool,
for the configured topic.

Cleaning up the stale Produce
Connection to the Kafka Client‑
connection‑id=<id>

Debug Removed the erroneous
produce connection to the
Kafka Client from the Produce
Connection Pool.

Cleaned up the Produce
Connection to the Kafka client‑
connection‑id=<id>

Debug Removed a valid produce
connection to the Kafka Client
from the Produce Connection
Pool.

Reused existing Produce
Connection to the Kafka Client‑
connection‑id=<id>

Debug Reused existing produce
connection to the Kafka Client

Cleaning up Produce
Connections for
partition=<id>,
topic=<topic>

Debug Started the cleanup of produce
connections to the Kafka
Client.

Forcefully cleaned active
Produce Connections

Debug Forcefully cleaned active
produce connections to the
Kafka Client during partition
cleanup.

Cleaned inactive Produce
Connection

Debug Cleaned inactive produce
connection to the Kafka Client
during partition cleanup.

Failed to push Kafka Produce
Connection to the Stale
Connection Pool‑ unable to
find it in the Produce
Connection Pool!‑
connection‑id=<id>

Debug Could not find the Kafka
Produce Connection in the
Kafka Produce Connection
Pool.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 58

NetScaler Observability Exporter

Log Severity Description

Pushed Kafka Produce
Connection to the Stale
Connection Pool‑
connection‑id=<id>

Debug Pushed the Kafka Produce
Connection to the Kafka
Erroneous Connection Queue.

Failed to push Kafka produce
connection to the Free
Connection Pool‑ unable to
find it in the Produce
Connection Pool!‑
connection‑id=<id>

Debug Could not find the Kafka
Produce Connection in the
Kafka Produce Connection
Pool.

Pushed Kafka Produce
Connection to the Free
Connection Pool‑
connection‑id=<id>

Debug Pushed the Kafka Produce
Connection to the Kafka
Erroneous Connection Queue.

Cleaned up Produce
Connections for the partition

Debug Cleaned up produce
connections for the partition.

Begin cleaning up disabled
partitions for the topic
<topic>

Debug Started cleaning up disabled
partitions.

Cleaned up disabled partition‑
id=<id>

Debug Removed the disabled partition
from the Disabled Partition
Queue.

Finished cleaning up disabled
partitions

Debug Finished cleaning up partitions
for the topic.

Failed to retry failed JSON files
to Kafka‑ the topic state is
invalid

Debug Failed to retry failes JSON files
to Kafka because the topic
state is not valid.

Anomaly: Failed to retry the
Kafka JSON File

Debug Failed to retry failes JSON files
to Kafka because of some
anomaly.

Retried a Kafka JSON File Debug Pushed the Kafka JSON file to
the Kafka Client for retry.

Begin cleaning up the topics Debug Started cleaning up the topics
(done every 7 seconds).

Cleaned up the topic‑
<topic>

Debug Cleaned up the printed topic.

Finished cleaning up the topics Debug Finished cleanup up the topics.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 59

NetScaler Observability Exporter

Log Severity Description

Failed to export the JSON
Buffer to the Kafka Client
because the Kafka Topic has
not been created yet by the
Kafka Topic Manager

Debug Could not export the JSON
Buffer to Kafka Client because
the Kafka Topic Manager has
not yet created the topic.

Pushed the Kafka JSON File to
the partition‑ <pid> because
the topic is in valid state

Debug Exported the Kafka JSON file to
the Kafka Client.

Failed to push the Kafka JSON
File to the Kafka Client because
the topic is in invalid state

Debug Could not export the JSON file
to the Kafka Client because the
topic is in invalid state.

Pushed the Kafka JSON Buffer
to the partition‑ <pid>
because the topic is in valid
state

Debug Exported the Kafka JSON Buffer
to the Kafka Client.

Failed to push the Kafka JSON
Buffer to the Kafka Client
because the topic is in invalid
state

Debug Could not export the JSON
Buffer to the Kafka Client
because the topic is in invalid
state.

Kafka JSON Buffer death
because of failure to send the
Produce Request to the Kafka
Client‑ perhaps ran out of
memory

Debug Permanently lost Kafka JSON
buffer because of lack of
memory.

Kafka JSON Buffer death
because of lack of Produce
Connections‑ perhaps ran out
of memory

Debug Permanently lost Kafka JSON
buffer because of lack of
memory.

Pushed Kafka JSON Buffer to
the Kafka Client

Debug Exported the Kafka JSON buffer
to the Kafka Client.

Kafka JSON File death because
of failure to send the Produce
Request to the Kafka Client‑
perhaps ran out of memory

Debug Permanently lost Kafka JSON
file because of lack of memory.

Kafka JSON File death because
of lack of Produce Connections‑
perhaps ran out of memory

Debug Permanently lost Kafka JSON
file because of lack of memory.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 60

NetScaler Observability Exporter

Log Severity Description

Pushed Kafka JSON File to the
Kafka Client

Debug Exported the Kafka JSON file to
the Kafka Client.

Kafka client rejected the
pushed JSON buffer because it
was empty

Debug Kafka Client rejected the
pushed JSON buffer because it
was empty.

Kafka client failed to create a
produce request for the pushed
JSON buffer‑ perhaps ran out of
memory

Debug Kafka Client ran OOMwhile
creating the produce request.

Kafka client failed to create
Kafka File for the pushed JSON
buffer‑ perhaps ran out of
memory

Debug Kafka Client ran OOMwhile
creating the Kafka File.

Kafka Client dispatched JSON
Buffer to Kafka

Debug Kafka Client dispatched JSON
buffer to Kafka.

Kafka client failed to create a
produce request for the pushed
JSON File‑ perhaps ran out of
memory

Debug Kafka Client ran OOMwhile
creating the produce request.

Kafka Client dispatched JSON
File to Kafka

Debug Kafka Client dispatched JSON
File to Kafka.

Kafka JSON File death‑
code=<errno>

Debug Permanently lost kafka file
because of the printed error
code.

Anomaly: The topic this Kafka
Connection belongs to does
not exist!

Debug Anomaly: This Kafka Produce
connection belonged to an
inexistant topic.

Anomaly: The partition this
Kafka Connection belongs to
does not exist!

Debug Anomaly: This Kafka Produce
connection belonged to an
inexistant topic.

Kafka JSON File death‑
code=<errno>

Debug Permanently lost kafka file
because of the printed error
code.

Anomaly: The file was sent on
an inactive Produce
Connection

Debug Anomaly: The file was sent on
an inactive produce
connection.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 61

NetScaler Observability Exporter

Log Severity Description

Unsuccessful Kafka Produce
Request (JSON) ‑
code=<errno>

Debug Unsuccessful Export of Kafka
(JSON) File.

Anomaly: Kafka Topic Died‑
JSON File death

Debug Anomaly: Kafka Topic Died‑
JSON File death.

Successful Kafka Produce
Request‑ JSON File uploaded

Debug Uploaded JSON File to Kafka.

Death of Kafka JSON File
during retry‑ the configured
retry rate is 0!

Debug Dropped the new JSON File
because KafkaRetryRate is 0.

Death of old Kafka JSON File
during retry‑ Retry Queue limit
reached

Debug Dropped the old JSON File
because the Retry Queue was
full (upto 32K files are stored).

Pushed new Kafka JSON File to
Retry Queue

Debug Pushed new Kafka JSON File to
Retry Queue.

Kafka Client failed to create
Topic Metadata Request‑
perhaps ran out of memory

Debug Kafka client ran OOM.

Kafka Client dispatched Topic
Metadata Request to Kafka

Debug Kafka Client dispatched Topic
Metadata Request to Kafka.

Failed to create Produce
Connection to the Kafka Client‑
perhaps ran out of memory

Debug Kafka client ran OOM.

Created Produce Connection to
the Kafka Client‑
connection‑id=<id>

Debug Kafka client successfuly
created Produce Connection.

Anomaly: The topic this Kafka
Meta Connection belongs to
does not exist!

Debug Anomaly: This Kafka Meta
connection belonged to an
inexistant topic.

Invalid Topic Metadata
response received from Kafka‑
code=<errno>,
empty=<true/false>,
status=<sent/not sent>

Debug Topic state invalidated.

The Topic Metadata response
received from Kafka bore no
topics

Debug Topic state invalidated.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 62

NetScaler Observability Exporter

Log Severity Description

Kafka Client failed to create the
partition‑ <id> for the topic‑
<topic>, perhaps ran out of
memory

Debug Kafka client ran OOM

Kafka Client created partition
with leader=<leader>,
partition‑id=<id>,
topic=<topic> : topic state is
now validated

Debug Kafka client created a partition.

Kafka Client failed to find a
valid partition for the topic‑
<topic> invalidating the
topic state

Debug Kafka client failed to find a
suitable partition for the topic‑
thus invalidated its state.

Rare condition: recreating a
partition with active Produce
Connections to the Kafka client‑
disabling the older partition
and creating a new one‑
partition‑id=<id>,
topic=<topic>

Debug The leader of a partition
changed while a produce
connection was actively
pushing a file to that partition
on Kafka‑ thus disabling the
partition and creating a new
one in its place.

Kafka Client recreated partition
with leader=<leader>,
partition‑id=<id>,
topic=<topic> : topic state is
now validated

Debug Kafka client recreated a
partition.

Kafka Client setting partition‑
<id> as leaderless,
topic=<topic>

Debug Found no leader for the printed
topic partition.

Kafka Client setting partition‑
<id> as having leader,
topic=<topic>

Debug Found leader for the printed
topic partition.

No leader exists for any
partition of the topic‑
<topic>, invalidating its state

Debug Found no leader for the
configured topic‑ invalidating
its state.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 63

NetScaler Observability Exporter

Log Severity Description

Kafka Client received a valid
Topic Metadata Response from
Kafka‑ topic <topic> has
been validated

Debug Topic state validated.

Received a Non‑POST request
for auditlogs–only POST is
supported, dropping it

Debug Received a Non‑POST request
for auditlogs –only POST is
supported for this URL,
dropping it.

x‑appflow‑id header not
present in the auditlog POST
request –dropping it

Debug x‑appflow‑id header not
present in the POST request for
auditlogs –dropping it.

The requestor is not authorized
to POST auditlogs –dropping it

Debug The requestor is not authorized
to POST auditlogs –dropping it.

Received Auditlog request Debug Received Auditlog request.

Received a Non‑Post request
for events –only POST is
supported, dropping it

Debug Received a Non‑Post request
for events –only POST is
supported for this URL,
dropping it.

x‑appflow‑id header not
present in the event POST
request –dropping it

Debug x‑appflow‑id header not
present in the POST request for
events –dropping it.

The requestor is not authorized
to POST events –dropping it

Debug The requestor is not authorized
to POST events –dropping it.

Received Event Request Debug Received Event Request.

Death of empty auditlog/event
buffer

Debug Empty buffers are not exported.

Death of event/ auditlog buffer
because of lack of memory

Debug Ran OOM.

Processed an event/ auditlog Debug Processed an Event/ Auditlog.

Death of an obese event/
auditlog

Debug One single Auditlog/ Event was
too large (exceeded 32 KiB).

Death of event/auditlog buffer
due to JSON parsing error

Debug Death of event/auditlog buffer
due to JSON parsing error.

Death of <num>
events/auditlogs during
processing

Debug Some auditlogs/ events dies
during processing.

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 64

Log Severity Description

Pushed <num> event/auditlog
JSON buffers to the Export
Queue

Debug Pushed some events/ auditlogs
to the Export Queue.

NetScaler Observability Exporter

© 2024 Cloud Software Group, Inc. All rights reserved. Cloud Software Group, the Cloud Software Group logo, and other

marks appearing herein are property of Cloud Software Group, Inc. and/or one or more of its subsidiaries, andmay be

registered with the U.S. Patent and Trademark Office and in other countries. All other marks are the property of their

respective owner(s).

© 1999–2024 Cloud Software Group, Inc. All rights reserved. 66

	Release notes
	NetScaler Observability Exporter
	Deploy NetScaler Observability Exporter
	NetScaler Observability Exporter with Zipkin as endpoint
	NetScaler Observability Exporter with Prometheus and Grafana
	NetScaler Observability Exporter with Elasticsearch as endpoint
	NetScaler Observability Exporter with Kafka as endpoint
	NetScaler Observability Exporter with Splunk Enterprise as endpoint
	NetScaler Observability Exporter troubleshooting
	Description of configuration parameters
	Support for container logging

