het)scaler

NetScaler Observability Exporter

Product Documentation | https://docs.netscaler.com May 2, 2024

https://docs.netscaler.com

NetScaler Observability Exporter

Contents

Release notes 2
NetScaler Observability Exporter 2
Deploy NetScaler Observability Exporter 5
NetScaler Observability Exporter with Zipkin as endpoint 7
NetScaler Observability Exporter with Prometheus and Grafana 12
NetScaler Observability Exporter with Elasticsearch as endpoint 18
NetScaler Observability Exporter with Kafka as endpoint 27
NetScaler Observability Exporter with Splunk Enterprise as endpoint 36
NetScaler Observability Exporter troubleshooting 42
Description of configuration parameters 44
Support for container logging 48
© 1999-2024 Cloud Software Group, Inc. All rights reserved. 1

NetScaler Observability Exporter

Release notes

February 8, 2024

Release notes describe the new features and enhancements introduced in a particular build, and the
issues fixed in the build.

Release 1.9.001
What’s new

Support for DEBUG severity level A new severity level, DEBUG, is now supported. The DEBUG
severity level provides comprehensive container logging that contains fatal, error, informational, and
debug messages.

Numerous logs are now supported. For the complete list of logs, see Log descriptions.

Support to export Auditlogs and Events to Kafka NetScaler Observability Exporter can now ex-
port NetScaler Events and Auditlogs to Kafka in JSON format.

Fixed issues

« Fixed a data loss issue with Splunk export over SSL. As part of the fix, a new field
ConnectionPoolS-ize is introduced. ConnectionPoolSize and MaxConnections
can be used to control the rate at which data is exported. For specifics of these fields, see
Description of configuration parameters.

NetScaler Observability Exporter

January 31,2024

NetScaler Observability Exporter is a container which collects metrics and transactions from
NetScalers and transforms them to suitable formats (such as JSON, AVRO) for supported endpoints.
You can export the data collected by NetScaler Observability Exporter to the desired endpoint. By
analyzing the data exported to the endpoint, you can get valuable insights at a microservices level
for applications proxied by NetScalers.

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 2

https://docs.netscaler.com/en-us/netscaler-observability-exporter/log-support.html#log-descriptions
https://docs.netscaler.com/en-us/netscaler-observability-exporter/field-descriptions.html

NetScaler Observability Exporter

Supported Endpoints

NetScaler Observability Exporter currently supports the following endpoints:

 Zipkin

» Kafka

« Elasticsearch

» Prometheus

« Splunk Enterprise

Overview
Distributed tracing support with Zipkin

In a microservice architecture, a single end-user request may span across multiple microservices and
tracking a transaction and fixing sources of errors is challenging. In such cases, traditional ways for
performance monitoring cannot accurately pinpoint where failures occur and what is the reason be-
hind poor performance. You need a way to capture data points specific to each microservice which is
handling a request and analyze them to get meaningful insights.

Distributed tracing addresses this challenge by providing a way to track a transaction end-to-end and
understand how it is being handled across multiple microservices. OpenTracing is a specification and
standard set of APIs for designing and implementing distributed tracing. Distributed tracers allow
you to visualize the data flow between your microservices and helps to identify the bottlenecks in
your microservices architecture.

NetScaler Observability Exporterimplements distributed tracing for NetScaler and currently supports
Zipkin as the distributed tracer.

Currently, you can monitor performance at the application level using NetScaler. Using NetScaler
Observability Exporter with NetScaler, you can get tracing data for microservices of each application
proxied by your NetScaler CPX, MPX, or VPX.

Transaction collection and streaming support

NetScaler Observability Exporter supports collecting transactions and streaming them to end-
points. Currently, NetScaler Observability Exporter supports Elasticsearch and Kafka as transaction
endpoints.

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 3

https://zipkin.io/
https://kafka.apache.org/
https://www.elastic.co/products/elasticsearch
https://prometheus.io/docs/introduction/overview/
https://www.splunk.com/en_us/software/splunk-enterprise.html
https://opentracing.io/
https://zipkin.io/

NetScaler Observability Exporter

Time series data support

NetScaler Observability Exporter supports collecting time series data (metrics) from NetScaler
instances and exports them to Prometheus. Prometheus is a monitoring solution for storing time
series data like metrics. You can then add Prometheus as a data source to Grafana and graphically
view the NetScaler metrics and analyze the metrics.

How does NetScaler Observability Exporter work
Distributed tracing with Zipkin using NetScaler Observability Exporter

Logstream is a Citrix-owned protocol that is used as one of the transport modes to efficiently trans-
fer transactions from NetScaler instances. NetScaler Observability Exporter collects tracing data as
Logstream records from multiple NetScalers and aggregates them. NetScaler Observability Exporter
converts the data into a format understood by the tracer and then uploads to the tracer (Zipkin in this
case). For Zipkin, the data is converted into JSON, with Zipkin-specific key values.

You can view the traces using the Zipkin user interface. However, you can also enhance the trace
analysis by using Elasticsearch and Kibana with Zipkin. Elasticsearch provides long-term retention of
the trace data and Kibana allows you to get much deeper insight into the data.

NetScaler Observability Exporter with Elasticsearch as the transaction endpoint

When Elasticsearch is specified as the transaction endpoint, NetScaler Observability Exporter con-
verts the data to JSON format. On the Elasticsearch server, NetScaler Observability Exporter creates
Elasticsearch indexes for each ADC on an hourly basis. These indexes are based on data, hour, UUID of
the ADC, and the type of HTTP data (http_event or http_error). Then, NetScaler Observability Exporter
uploads the data in JSON format under Elastic search indexes for each ADC. All regular transactions
are placed into the http_event index and any anomalies are placed into the http_error index.

NetScaler Observability Exporter with Kafka as the endpoint

NetScaler Observability Exporter exports transactions to Kafka as Avro or JSON. Auditlogs and events
are exported as JSON.

NetScaler Observability Exporter with Prometheus as the endpoint for time series data

When Prometheus is specified as the format for time series data, NetScaler Observability Exporter
collects various metrics from NetScalers and converts them to appropriate Prometheus format and

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 4

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana
http://avro.apache.org/docs/current/Avro

NetScaler Observability Exporter

exports them to the Prometheus server. These metricsinclude counters of the virtual servers, services
to which the analytics profile is bound and global counters of HTTP, TCP and so on.

NetScaler Observability Exporter with Splunk Enterprise as the endpoint

When Splunk Enterprise is specified as the transaction endpoint, NetScaler Observability Exporter
collects indexes, audit logs, and events and exports to Splunk Enterprise. Splunk Enterprise captures
indexes and correlates real-time data in a repository from which it can generate reports, graphs, dash-
boards, and visualizations. Splunk Enterprise provides a graphical representation of these data.

Deployment

You can deploy NetScaler Observability Exporter using Kubernetes YAML. To deploy NetScaler Observ-
ability Exporter using Kubernetes YAML, see Deployment. To deploy NetScaler Observability Exporter
using Helm charts, see Deploy using Helm charts.

Features
Custom header logging

Custom header logging enables logging of all HTTP headers of a transaction and currently supported
on the Kafka endpoint.
For more information, see Custom header logging.

Elasticsearch support enhancements

Effective with the NetScaler Observability Exporter release 1.2.001, when the NetScaler Observability
Exporter sends the data to the Elasticsearch server some of the fields are available in the string format.
Also, index configuration options are also added for Elasticsearch. For more information on fields
which are in the string format and how to configure the Elasticsearch index, see Elasticsearch support
enhancements.

Deploy NetScaler Observability Exporter

December 31, 2023

This topic provides information on how to deploy NetScaler Observability Exporter using Kubernetes
YAML files.

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 5

https://docs.netscaler.com/en-us/netscaler-observability-exporter/deploy-coe.html
https://github.com/citrix/citrix-helm-charts/tree/master/citrix-observability-exporter
https://github.com/citrix/citrix-observability-exporter/tree/master/custom-header
https://github.com/citrix/citrix-observability-exporter/blob/master/es-enhancements/README.md
https://github.com/citrix/citrix-observability-exporter/blob/master/es-enhancements/README.md

NetScaler Observability Exporter

Note:

You can deploy NetScaler Observability Exporter using Kubernetes YAML files or using Helm
charts.

Based on your NetScaler deployment, you can use NetScaler Observability Exporter to export metrics
and transactions from NetScaler CPX, MPX, or VPX.

The following diagram shows a deployment of NetScaler Observability Exporter with all the supported

g 13 Grafana
/’ L

Timeseries (TSD)

4 K
6 w Transactions P m|m !
JSON -—wr kl ba na

=4 elasticsearch
Linu Docker

Transactions (TX -
P ™ | NetScaler Observability)
Logstream Exporter Transactions splunk
ADC JSON
NetScaler

Observabiity
Exporters
Transactions

‘ / g

Transactions Kafka Brokers

&

¥

ZIPKIN

endpoints.

NetScaler Observability Exporter supports the following endpoints: Kafka, Elasticsearch, Prometheus,
and Zipkin. Depending on the endpoint that you require, you can deploy NetScaler Observability
Exporter with that endpoint.

You can use one of the following deployment procedures based on the endpoint that you require:

+ Deploy NetScaler Observability Exporter with Zipkin
» Deploy NetScaler Observability Exporter with Prometheus

+ Deploy NetScaler Observability Exporter with Elasticsearch

Deploy NetScaler Observability Exporter with Kafka

» Deploy NetScaler Observability Exporter with Splunk

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 6

https://docs.netscaler.com/en-us/netscaler-observability-exporter/deploy-coe-with-zipkin.html
https://docs.netscaler.com/en-us/netscaler-observability-exporter/deploy-coe-with-prometheus.html
https://docs.netscaler.com/en-us/netscaler-observability-exporter/deploy-coe-with-es.html
https://docs.netscaler.com/en-us/netscaler-observability-exporter/deploy-coe-with-Kafka.html
https://docs.netscaler.com/en-us/netscaler-observability-exporter/deploy-coe-with-splunk.html

NetScaler Observability Exporter

NetScaler Observability Exporter with Zipkin as endpoint

December 31,2023

NetScaler Observability Exporter supports OpenTracing (OpenTracingis a part of OpenTelemetry now)

using Zipkin as the endpoint. NetScaler Observability Exporter transforms the tracing data collected
from NetScalers into supported formats suitable for OpenTracing and exports them to Zipkin. Zipkin
is a distributed tracing system that helps to gather the timing data required to troubleshoot latency

problems in microservice architectures. Elasticsearch is used for long-term retention of trace data

and the traces can be visualized using the Zipkin Ul or Kibana.

The following diagram illustrates how the Zipkin architecture works:

1. When the tracing is enabled, initially, it adds additional open-tracing headers: x-trace-1id,
x—span-id,and x-parent-span-id to HTTP packet, before it forwards the packet to the
next microservice pod.

2. Theinformation about this communication or transaction is pushed to NetScaler Observability
Exporter. The information includes the details about the headers, the timestamp (time when
this request is initiated and the entire duration of the process), and annotations (annotations
include HTTP, SSL, and TCP associated with that request).

3. Then, NetScaler Observability Exporter receives multiple trace messages from all the NetScalers
and aggregates them into Zipkin understandable JSON format, and push that to Zipkin through
the API.

4. Similarly, if microservices are enabled with tracing, then that trace is sent to Zipkin through the
API.

5. Zipkin API stores the trace data in the Elasticsearch database, and finally stitch the complete
trace to the given HTTP request and visualize it in the visualization tool such as Kibana. You can
view the time that the request spent on each microservices.

1. Adds additional tracing
headers to HTTP packet

- X-trace-id i i
CPX Pod -CS/LB Microservice
Vserver App Pod

X-parent-span-id

2. LogstreamTracemessage T A T
Tracelcl TimeStamp the AErES R
Applications
Spanid Duratlon
ParentSpanld Annotatlons l
3. Aggregated Zipkin = >
s |son from multiple se—") ZIPKIN API —
CPX Pods _)

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 7

https://zipkin.io/

NetScaler Observability Exporter

Deploy NetScaler Observability Exporter

Based on your NetScaler deployment, you can deploy NetScaler Observability Exporter either out-
side or inside Kubernetes clusters. You can deploy NetScaler Observability Exporter as a pod inside
the Kubernetes cluster or enable the configuration on NetScaler MPX or VPX form factor outside the
cluster. You can deploy NetScaler Observability Exporter using the Kubernetes YAML file provided by
NetScaler.

The following diagram illustrates NetScaler as an ingress gateway with the NetScaler Ingress Con-
troller as a sidecar. NetScaler Observability Exporter sends the tracing data collected from NetScalers
to Zipkin API. The tracing data is, then, uploaded to the Elasticsearch server. From Elasticsearch, the
datais sent to Zipkin Ul or Kibana Ul for visualization.

Kubernetes 3-Node Cluster

CPX Pod with CIC Sidecar

Client SS| CS vserver Amazon Pod

Fasttrack Pod

HTTP CS vserver Titan Pod —=}

| —
Casio Pod ==
ElasticSearch

Sonata Pod
Kibana Ul Zipkin Ul

Zipkin AP

=

*| LB vserver

A

Prerequisites

« Ensure that you have a Kubernetes cluster with kube-dns or CoreDNS addon enabled.

To deploy NetScaler Observability Exporter with Zipkin, you must perform the following tasks:

[

. Deploy the required application with the tracing support enabled.

N

. Deploy NetScaler CPX enabled with the NetScaler Observability Exporter support.

w

. Deploy Zipkin, Elasticsearch, and Kibana using the YAML files.

4. Deploy NetScaler Observability Exporter using the YAML file.

Deploy application with tracing enabled

The following is a sample application deployment with tracing enabled.

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 8

https://github.com/citrix/citrix-observability-exporter/blob/master/examples/tracing/zipkin.yaml
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/elasticsearch/elasticsearch.yaml
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/elasticsearch/kibana.yaml

NetScaler Observability Exporter

Note:

If you have a pre-deployed web application, skip the steps 1 and 2.

1. Create a secretingress.crt and key ingress.key using your own certificate and key.
In this example, a secret, called ing in the default namespace, is created.

kubectl create secret tls ing --cert=ingress.crt --key=1ingress.
key

2. Access the YAML file from watches-app-tracing.yaml to deploy the application.
kubectl create -f watches-app-tracing.yaml
3. Define the specific parameters that you must import by specifying it in the ingress annotations
of the application’s YAML file, using the smart annotations in the ingress.
ingress.citrix.com/analyticsprofile: '{
"webinsight": {

"httpurl":"ENABLED", "httpuseragent":"ENABLED", "httpHost":"
ENABLED" ,"httpMethod" :"ENABLED","httpContentType":"ENABLED" }

}

Note: The parameters are predefined in the watches-app-tracing.yaml file.

For more information about annotations, see Ingress annotations documentation.

Deploy NetScaler CPX with the NetScaler Observability Exporter support

You can deploy NetScaler CPX enabled with the NetScaler Observability Exporter support.

While deploying NetScaler CPX, you can modify the deployment YAML file cpx-ingress-tracing
.yaml to include the configuration information that is required for the NetScaler Observability Ex-
porter support.

Perform the following steps to deploy a NetScaler CPX instance with the NetScaler Observability Ex-
porter support:

1. Download the cpx-ingress-tracing.yamland cic-configmap.yaml file.

2. Create a ConfigMap with the required key-value pairs and deploy the ConfigMap. You can use
the cic-configmap.yaml file thatis available, for the specific endpoint, in the directory.

3. Modify NetScaler CPX related parameters, as required. For example, add lines under args in
the cpx-ingress-tracing.yaml file as following:

args:
- —-configmap

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 9

https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.crt
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.key
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/tracing/watches-app-tracing.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/666d6267e5b09683740528c5e8dd46f16d7d16e0/docs/configure/annotations.md
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/tracing/cpx-ingress-tracing.yaml
https://github.com/citrix/citrix-observability-exporter/tree/master/examples

NetScaler Observability Exporter

default/cic-configmap

4. Edit the cic-configmap.yaml file to specify the following variables for NetScaler Observ-
ability Exporterin the NS_ANALYTICS_CONFIG endpoint configuration.

server: 'coe-zipkin.default.svc.cluster.local' # COE service
FQDN

5. Deploy NetScaler CPX with the NetScaler Observability Exporter support using the following
commands:

kubectl create -f cpx-ingress-tracing.yaml
kubectl create -f cic-configmap.yaml

Note:

If you have used a namespace other than default, change coe-zipkin.default.svc.
cluster.local to coe-zipkin.<desired-namespace>.svc.cluster.local. If
ADC is outside the Kubernetes cluster, then you must specify IP address and Nodport address of
NetScaler Observability Exporter.

Deploy Zipkin, Elasticsearch, and Kibana using YAML files

To deploy Zipkin, Elasticsearch, and Kibana using YAML, perform the following steps:
1. Download the following YAML files:
+ zipkin.yaml
+ Elasticsearch.yaml

« kibana.yaml

2. Edit the namespace definition, if you want to use a custom namespace other than the default.
3. Run the following commands to deploy Zipkin, Elasticsearch, and Kibana:
kubectl create -f zipkin.yaml

kubectl create -f elasticsearch.yaml
kubectl create -f kibana.yaml

Note:

Zipkin, Elasticsearch, and Kibana are deployed in the default namespace of the same Kubernetes
cluster.

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 10

https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/tracing/zipkin.yaml
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/elasticsearch.yaml
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/kibana.yaml

NetScaler Observability Exporter

Deploy NetScaler Observability Exporter using the YAML file

You can deploy NetScaler Observability Exporter using the YAML file. Download the coe-zipkin.yaml
file.
To deploy NetScaler Observability Exporter using the Kubernetes YAML, run the following command

in the Elasticsearch endpoint:

kubectl create -f coe-zipkin.yaml

Note:
Modify the YAML file for NetScaler Observability Exporter if you have a custom namespace other

than the default.

Verify the NetScaler Observability Exporter deployment

To verify the NetScaler Observability Exporter deployment, perform the following:

1. Verify the deployment by sending a request to the application using the following command.

kubectl run -i --tty busybox --image=busybox --restart=Never --
rm -- wget --no-check-certificate "https://cpx-ingress-zipkin
.default.svc.cluster.local/serial/view/watches"

2. Open the Zipkin user interface using the Kubernetes node IP address and nodeport.

http://*k8-node-1ip-address*:*node-portx/

In the following image, you can view the traces of the Watches application. The Watches ap-
plication has multiple microservices for each watches type, communicating with each other to
serve the application data. The trace data shows application FASTTRACK took more time to
serve when compare to other micro services. In this way, you can identify the slow performing

workloads and troubleshoot it.

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 11

https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/tracing/coe-zipkin.yaml

NetScaler Observability Exporter

K8S-10.36.0.4_443_SSL_8B5F8C91607C40EEA42A0F 18EAC39596: /serial/view/watches 2 |[racerc.

Duration: 2.424s Services: 7 Depth: 2 Total Spans: 10 Trace ID: e1981d4d0003e73f

il g » K8S-10.36.0.4_443_SSL_8B5F8C91607C40EEA42A0F 18EAC39596

13161220 505133 6556656657 4ys 299 855ms serialiview/watches

s 1 1065
=] Iserialiview/watches [1.108s]
e TS e Span ID:Teced430003¢731 Parent0:None
nttp defautt s {1465 Annctations
e EEN IR, (= e
nttp:/icp in.defaut svl (980.734ms]
Ifastirackiget [615.880ms] SHOW ALL ANNOTATIONS
nitan/get [53.850ms]
Ieasiolget [82.478nfS] Tags
Jsonataiget (104,286 8]
nitp ipkin defaut s cluster [133ps]

cpreingress-zipkin. default sve cluster local

GET

5068

200

hitp://cps kin default sve cluster.
8b518c91607c40eead2a0f18eac39596
10.44.0.5:38636

RSA

i

50331709

You can view raw data on your Kibana dashboard too. Open Kibana usingthe http: //<node
—ip>:<node-port>and commence with defining a zipkin index pattern.

Use the timestamp_millis field as the timestamp field. After creating the index pattern,
click the Discover tab and you can view the trace information collected by Zipkin.

30 hits
Oct 20, 2020 @ 10:33:24.820 - Oct 20, 2020 @

Cout

vvvvv

For information on troubleshooting related to NetScaler Observability Exporter, see NetScaler
CPX troubleshooting.

NetScaler Observability Exporter with Prometheus and Grafana

December 31, 2023

You can configure Prometheus as an endpoint to pull data from NetScaler Observability Exporter. You
can also configure Grafana to visualize the same data graphically.

NetScaler Observability Exporter has a push-gateway server that listens to port 5563 to serve metrics
based on pull requests from Prometheus. NetScaler Observability Exporter exports time series data
to Prometheus.

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 12

https://docs.citrix.com/en-us/citrix-adc-cpx/current-release/cpx-troubleshooting.html
https://docs.citrix.com/en-us/citrix-adc-cpx/current-release/cpx-troubleshooting.html

NetScaler Observability Exporter

Citrix ADC

Timeseries ——————»

Linux
Docker

NetScaler Observability
Exporter

NetScaler
Observability
Exporters

N /

A ﬁl Push Gateway [e)

Timeseries (Pull)

&

15 Grafana

Deploy NetScaler Observability Exporter

You can deploy NetScaler Observability Exporter using the YAML file. Based on your NetScaler deploy-
ment, deploy NetScaler Observability Exporter either outside or inside Kubernetes clusters. You can
deploy NetScaler Observability Exporter as a pod inside the Kubernetes cluster or on the NetScaler

MPX or VPX appliance outside the cluster.

Prerequisites

+ Ensure that you have a Kubernetes cluster with kube-dns or CoreDNS addon enabled.

Deploying NetScaler Observability Exporter with the Prometheus endpoint includes the following

tasks:

+ Deploy asample application

« Deploy NetScaler CPX with support enabled for NetScaler Observability Exporter

+ Deploy Prometheus and Grafana using YAML files

+ Deploy NetScaler Observability Exporter using the YAML file

+ Configure NetScaler to export metrics (optional)

+ Configure Prometheus (optional) to pull telemetry data

+ Configure Grafana

+ Create Grafana visualization

Deploy a sample application

The following is an example procedure for deploying a sample webserver application.

Note:

If you have a pre-deployed web application, skip the steps from step 1 to step 3.

1. Create a secretingress.crt and key ingress.key using your own certificate and key.

In this example, a secret, called ing in the default namespace, is created.

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

13

https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.crt
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.key

NetScaler Observability Exporter

kubectl create secret tls ing --cert=ingress.crt --key=ingress.
key

2. Access the YAML file from webserver-es.yaml to deploy the application.
kubectl create -f webserver-es.yaml
3. Define the specific parameters that you must import by specifying it in the ingress annotations
of the application’s YAML file, using the smart annotations in the ingress.
ingress.citrix.com/analyticsprofile: '{
"webinsight": {
"httpurl":"ENABLED", "httpuseragent":"ENABLED", "httpHost":"

ENABLED" ,"httpMethod":"ENABLED","httpContentType":"ENABLED" }
}

Note:

The parameters are predefined in the webserver-es.yaml file.

For more information about Annotations, see Ingress annotations documentation.

Deploy NetScaler CPX with support enabled for NetScaler Observability Exporter

You can deploy NetScaler CPX as a side car with the NetScaler Observability Exporter support enabled
along with NetScaler Ingress Controller. You can modify the NetScaler CPX YAML file cpx—ingress
—es.yaml to include the configuration information that is required for the NetScaler Observability
Exporter support.

The following is a sample application deployment procedure.

1. Download the cpx-ingress-prometheus.yaml and cic-configmap.yaml file.

2. Create a ConfigMap with the required key-value pairs and deploy the ConfigMap. You can use
the cic-configmap.yaml file that is available, for the specific endpoint, in the directory.

3. Modify NetScaler CPX related parameters, as required.

4. Editthe cic-configmap.yaml file and specify the following variables for NetScaler Observ-
ability Exporterin the NS_ANALYTICS_CONFIG endpoint configuration.

server: 'coe-prometheus.default.svc.cluster.local' # COE service
FQDN

Note:

If you have used a namespace other than default, change coe-prometheus.default

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 14

https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/webserver-es.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/666d6267e5b09683740528c5e8dd46f16d7d16e0/docs/configure/annotations.md
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/prometheus/cpx-ingress-prometheus.yaml
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/cic-configmap.yaml
https://github.com/citrix/citrix-observability-exporter/tree/master/examples

NetScaler Observability Exporter

.svc.cluster.local to to coe-prometheus.<desired-namespace>.svc
.cluster.local.

5. Deploy NetScaler CPX with the NetScaler Observability Exporter support using the following
commands:

kubectl create -f cpx-ingress-prometheus.yaml
kubectl create -f cic-configmap.yaml

Deploy Prometheus and Grafana using YAML files

To deploy Prometheus and Grafana using YAML files, perform the following steps:

1. Download the Prometheus-Grafana YAML file from prometheus-grafana.yaml.
2. Edit the namespace definition if you want to use a different namespace other than default.
3. Run the following commands to deploy Prometheus and Grafana:

kubectl create -f prometheus-grafana.yaml

Note:

Prometheus and Grafana are deployed in the default namespace of the same Kubernetes cluster.

Deploy NetScaler Observability Exporter using the YAML file

You can deploy NetScaler Observability Exporter using the YAML file. Download the YAML file from

coe-prometheus.yaml.

« For NetScaler Observability Exporter version 1.3.001 and previous versions, you can use the
ConfigMap configuration provided in the coe-prometheus.yaml YAML file.

+ For NetScaler Observability Exporter version 1.4.001, you need to modify the ConfigMap in the
coe-prometheus.yaml file as follows before deployment.

apiVersion: vl
kind: ConfigMap

metadata:
name: coe-config-prometheus
data:
lstreamd_default.conf: |
{

"Endpoints": {

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 15

https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/prometheus/prometheus-grafana.yaml
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/prometheus/coe-prometheus.yaml

NetScaler Observability Exporter

"ZIPKIN": {
"ServerUrl":"http://0.0.0.0:0",
"RecordType":{
+
I
"PrometheusMode" :"yes"
b
}

}

<!--NeedCopy-->
To deploy NetScaler Observability Exporter using the Kubernetes YAML, run the following com-
mand:

kubectl create -f coe-prometheus.yaml

Note:

Modify the YAML file for NetScaler Observability Exporter if you have a custom namespace.

Configure NetScaler to export metrics (optional)
Note:

If you do not use NetScaler Ingress Controller to configure NetScaler, then you can do the follow-
ing manual configuration on your NetScaler.

You can manually configure NetScalers to export metrics to the NetScaler Observability Exporter.
Specify the NetScaler Observability Exporter IP/FQDN address as an HTTP service and combine it
to the default ns_analytics_time_series_profile analytics profile. Enable the metrics
export and set the output mode to Prometheus.

The following is a sample configuration:

add server COE_instance 192.168.1.102

add service coe_metric_collector_svc_192.168.1.102 COE_instance HTTP
5563

set analytics profile ns_analytics_time_series_profile -collector
coe_metric_collector_svc_192.168.1.102 -Metrics ENABLED -OutputMode
Prometheus

Configure Prometheus (optional) to pull telemetry data

Prometheus services are available as Docker images on Quay container registry and Docker Hub.

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 16

https://quay.io/

NetScaler Observability Exporter

To launch Prometheus and expose it on port 9090, run the following command:
docker run -p 9090:9090 prom/prometheus
To manually add NetScaler Observability Exporter as scrape target, edit the prometheus. yamlfile.

Specify the NetScaler Observability Exporter IP/FQDN address and the port 5563 as the scrape target
in the YAML file.
scrape_configs:
- job_name: coe

static_configs:
- targets: ['192.168.1.102:5563']

Configure Grafana

In the current deployment, a Prometheus server has already been added as a data source. If you use
an existing Prometheus server for the deployment, ensure to add the same as a data source on your
Grafana. For more information, see Grafana support for Prometheus.

Create Grafana visualization

You can create a Grafana dashboard and select the key metrics and the visualization type that is suit-
able for the data.

The following procedure shows adding of the ADC CPU metric to a Grafana panel:

1. Specify the Panel Title as ADC CPU.
2. Inthe Query tab, for the query A, specify the metric as cpu_use.
3. Inthe Settings tab, select the Visualization type.

You can modify the data and its representation in Grafana. For more information, see Grafana
Documentation.

ADC CPU

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 17

https://prometheus.io/docs/visualization/grafana/
https://grafana.com/docs/grafana/latest/panels/panels-overview/
https://grafana.com/docs/grafana/latest/panels/panels-overview/

NetScaler Observability Exporter

Import pre-built dashboards for Grafana

You can also import pre-built dashboards to Grafana. See the available Dashboards.

For information on troubleshooting related to NetScaler Observability Exporter, see NetScaler CPX
troubleshooting,.

NetScaler Observability Exporter with Elasticsearch as endpoint

December 31, 2023

NetScaler Observability Exporter is a container that collects metrics and transactions from NetScaler.
It transforms the data into the supported format (such as JSON) and exports data to Elasticsearch as
an endpoint. Elasticsearch is a search engine based on the Lucene library. It provides a distributed,
multitenant-capable, and full-text search engine with an HTTP web interface and schema-free JSON
documents.

Deploy NetScaler Observability Exporter

You can deploy NetScaler Observability Exporter using the YAML file. Based on your NetScaler de-
ployment, you can deploy NetScaler Observability Exporter either outside or inside Kubernetes clus-
ters. You can deploy NetScaler Observability Exporter as a pod inside the Kubernetes cluster or on
NetScaler MPX or VPX appliance outside the cluster.

The following diagram illustrates a NetScaler as an Ingress Gateway with the NetScaler Ingress
Controller and NetScaler Observability Exporter as sidecars. NetScaler Observability Exporter sends
NetScaler application metrics and transaction data to Elasticsearch and the same data exports to
Kibana. Kibana provides a graphical representation of the data.

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 18

https://github.com/citrix/citrix-observability-exporter/tree/master/dashboards
https://docs.citrix.com/en-us/citrix-adc-cpx/current-release/cpx-troubleshooting.html
https://docs.citrix.com/en-us/citrix-adc-cpx/current-release/cpx-troubleshooting.html

NetScaler Observability Exporter

Client Traffic I

Ingress Traffic E-D
—
m CLIENT
NetScaler Ingress Controller
RSP | | DEDIRRIRI ' S e Tmmmmm e mmmmmmmm———- - - N
’ Kubemetes Cluster™ ’ A

1
- Coc I o -
: A CPX | 1 :

i 1 1
1 > 3344 COE |l——JsPN Structured Transaction logs——» !
: 1 ! ' m —— '
1 1 1 1
1 : | 1 !
1 3 1 1 . . !
: . @ | 1 elasticsearch kibana !
1

1 1
1 1 1 1
1 1 1 1
1 1 1 1
\\ ‘ \ 1
N .) !

N ===

Prerequisites

+ Ensure that you have a Kubernetes cluster with kube-dns or CoreDNS addon enabled.

In the following procedure, the YAML file is used to deploy NetScaler Observability Exporter in the
Kubernetes default namespace. If you want to deploy in a private namespace other than the default,
edit the YAML file to specify the namespace.

The following is a sample application deployment procedure.
Note:

If you have a pre-deployed web application, skip the steps 1 and 2.

1. Create a secretingress.crt and key ingress.key using your own certificate and key.
In this example, a secret, called ing in the default namespace, is created.

kubectl create secret tls ing —-cert=ingress.crt --key=ingress.
key

2. Access the YAML file from webserver-es.yaml to deploy the application.

kubectl create -f webserver-es.yaml

3. Define the specific parameters that you must import by specifying it in the ingress annotations
of the application’s YAML file, using the smart annotations in the ingress.

ingress.citrix.com/analyticsprofile: '{

"webinsight": {

"httpurl":"ENABLED", "httpuseragent'":"ENABLED", "httpHost":"
ENABLED" ,""httpMethod" :"ENABLED" ,"httpContentType'":"ENABLED" }

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 19

https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.crt
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.key
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/webserver-es.yaml

NetScaler Observability Exporter

Note:

The parameters are predefined in the webserver-es.yaml file.

For more information about Annotations, see Ingress annotations documentation.

Deploy NetScaler CPX with the NetScaler Observability Exporter support

You can deploy NetScaler CPX as a side car with the NetScaler Observability Exporter support enabled
along with NetScaler Ingress Controller. You can modify the NetScaler CPX YAML file cpx-ingress
—-es.yaml to include the configuration information that is required for the NetScaler Observability
Exporter support.

Perform the following steps to deploy a NetScaler CPX instance with the NetScaler Observability Ex-
porter support:

1. Download the cpx-ingress-es.yaml and cic-configmap.yaml file.

2. Create a ConfigMap with the required key-value pairs and deploy the ConfigMap. You can use
the cic-configmap.yaml file thatis available, for the specific endpoint, in the directory.

3. Modify NetScaler CPX related parameters, as required.

4, Editthe cic-configmap.yaml file and specify the following variables for NetScaler Observ-
ability Exporterin the NS_ANALYTICS_CONFIG endpoint configuration.

server: 'coe-es.default.svc.cluster.local' # COE service FQDN

Note:

If you have used a namespace other than default, change coe-es.default.svc
.cluster.local to to coe-es.<desired-namespace>.svc.cluster.
local. If ADC is outside the Kubernetes cluster, then you must specify IP address and
nodport address of NetScaler Observability Exporter.

5. Deploy NetScaler CPX with the NetScaler Observability Exporter support using the following
commands:

kubectl create -f cpx-ingress-es.yaml
kubectl create -f cic-configmap.yaml

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 20

https://github.com/citrix/citrix-k8s-ingress-controller/blob/666d6267e5b09683740528c5e8dd46f16d7d16e0/docs/configure/annotations.md
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/cpx-ingress-es.yaml
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/cic-configmap.yaml
https://github.com/citrix/citrix-observability-exporter/tree/master/examples

NetScaler Observability Exporter

Deploy Elasticsearch and Kibana using YAML files
1. Download the Elasticsearch YAML file from elasticsearch.yaml and the Kibana YAML file from
kibana.yaml.
2. Edit the namespace definition, if you want to use a different namespace other than default.
3. Run the following commands to deploy Elasticsearch and Kibana:

kubectl create -f elasticsearch.yaml
kubectl create -f kibana.yaml

Note: Elasticsearch and Kibana are deployed in the default namespace of the same Kubernetes clus-
ter.

Deploy NetScaler Observability Exporter using the YAML file
You can deploy NetScaler Observability Exporter using the YAML file. Download the YAML file from
coe-es.yaml.

To deploy NetScaler Observability Exporter using the Kubernetes YAML, run the following command
in the Elasticsearch endpoint:

kubectl create -f coe-es.yaml

Note:

Modify the YAML file for NetScaler Observability Exporter if you have a custom namespace.

Verify the NetScaler Observability Exporter deployment

To verify the NetScaler Observability Exporter deployment, perform the following:
1. Verify the deployment using the following command:

kubectl get deployment,pods,svc -o wide

root@kubernetes-master-41:/home/nagaraj/citri ervability-e; earcht kubectl get deployment,p
[NAME READY UP-TO-DATE AVAILABLE C

deployment .app

kennethreitz/httpbin

MINATED NODE

Running
Running 0 R <none>
Running >

1034/TCP

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 21

https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/elasticsearch.yaml
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/kibana.yaml
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/elasticsearch/coe-es.yaml

NetScaler Observability Exporter

2. Access the application with a browser using the URL: https://kubernetes—node-IP:
cpx—-ingress-es nodeport/.

For example, from Step 1, access http://10.102.40.41:30176/ in which, 10.102.40.41 isone
of the Kubernetes node IPs.

HTTP Methods Testing different HTTP verbs o

| m /delete The request's DELETE parameters. |
| ﬂ /get The request's query parameters. |

/patch The request's PATCH parameters.

/put The request's PUT parameters.

Auth Auth methods >
Status codes Generates responses with given status code >
Request inspection Inspect the request data >
Response inspection Inspect the response data like caching and headers >
Response formats Returns responses in different data formats >
Dynamic data Generates random and dynamic data >
Cookies Creates, reads and deletes Cookies >

3. Access Kibana with a browser using the URL: https://<kubernetes-node-IP>:<
kibana nodeport>/.

For example, from step 1, access http://10.102.40.41:32529/ in which, 10.102.40.41 isone
of the Kubernetes node IPs.

a) Click Explore on my own.

<« O © Notsecure | 10.10240.41:32529/app/kibana#/home ok @ M

%
0®

Welcome to Elastic

Let's get started

that you don't have any data in your cluster. You
iple data and dashboards or jump in with your

QUTERLEEEE Explore on my own

b) Click Connect to your Elasticsearch index.

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 22

http://10.102.40.41:30176/
http://10.102.40.41:32529/

NetScaler Observability Exporter

" Observability

APM Logs

APM automatically collects in-
depth performanee metrics and
errors from inside your
applications.

Add APM Add log data

Add sample data
Load a data set and a Kibana dashboard

Ingest logs from popular data
sources and easily visualize in
preconfigured dashboards.

Metrics

system and services running on
your servers.

Add metric data

Upload data from log file
Import a GSV, NDJSON, o log file

Collect metrics from the operating

.1 Security

SIEM

Centralize security events for
interactive investigation in ready-to-
go visualizations,

Add events

Use Elasticsearch data
Connect to your Elasticsearch index

Click Saved Objects.

Download and import the Kibana Dashboard from KibanaAppTrans.ndjson.

Stack Management | Saved objects

= Elasticsearch

Ingest Node Pipelines

Saved Objects

From

appli

Type Title

Advanced Settings [7.8.0]

Rows per page: 50

i Settings

& Export 1 object

of saved objects. Typically objects are only mod

Type v

<)
x

Import saved objects
Plase selecta il o mport

4]

ans.ngison

rie all saved objects?

Cancel Import

e) Click App Transaction dashboard.

Saved Objects

From here you can delete saved objects, such as s:
application, which is probably

at you should use instead of this screen
QU search.
Type Title

Advanced Settings (7.8.0]

Advanced Settings (7.4.0]

zal App Transaction dashboard
2 adc_coe*

[in] Total HTTP Requests

i HTTP request methods

i Response code Distribution
i HttpContentType distribution
i URLvs ResponseCode

o URL Vs Duration

Rows per page: 50 v

i Export 10 objects

Type

& Import G Refresh

ed searches. You can also edit the raw data of saved objects. Typically objects are only modified via their associated

Actions

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

23

https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/dashboards/KibanaAppTrans.ndjson

NetScaler Observability Exporter

The dashboard appears.

=%

z

App Transaction dashboard)
KoL @V Last1s minutes EETSS C Refresh

al HTTP Roquests. HTTP roquest methods.

27 22 3 1 1

#HTTP requests GET -Requests ~ DELETE - Requests PATCH - Requests POST - Requests

+ Add filter

ul
i3]
Tots

espons oo Dtton HepGontenTypedetsion
w0
“'“ - "
s ""

URL vs ResponseCode URL Vs Duration

green open Jkibana-event-log-7.8.0-000821 D-vgsLvURBSSWwSe9VHFOg 1 @ 1 @ 5.3kb 5.3kb
yellow open ns_coe_d22-28-m9_y2@28 hbW781VkTPqpSy81sRézKg 1 1 5953] 3mb 3mb
green open .apm-custom-link D21rH1OcTLESza3dHXHUUA 1 @ 2] =] 288b 2e8b
green open Jkibana_task_manager_1 Z9DWOFLI3TB07_TX3k(S6Hg 1 @ 3 @ 53.8kb 53.8kb
yellow open ns_coe_d23_m9_y2@20 Kb34XIxxQhol3_zCYFeozNw 1 1 333241 65472 196.9mb 196.9mb
yellow open ns_coe_hS_d23_m9_y2@28 kbDakbrPSEiféqh7rQlLlOw 1 1 33788 6812 22.2mb 22.2mb
green open .apm-agent-configuration XBQbtes-SC2qjH1VyySdd] 1 @ 2] <] 288b 2e8b
yellow open ns_coe_y2@2@ kZ-SyP0OSSeGGUvoyjOtmOw 1 1 3@7683 8@551 2@4.2mb 204.2mb
green open .kibana_1 NUBJzkSAQc-ILpSxFiadew 1 @ 4 & 31.4kb 31.4kb

Integrate NetScaler with multiple NetScaler Observability Exporter instances
manually

You can also configure NetScaler Observability Exporter manually. We recommend deploying
NetScaler Observability Exporter in an automated way with the YAML file as described in the pre-
ceding sections. You can also perform manual configuration for NetScaler in the MPX and VPX form
factors.

enable feature appflow

enable ns mode ULFD

add dns nameserver <KUBE-CoreDNS>

add server COEsvr <FQDN/IP>

add servicegroup COEsvcgrp LOGSTREAM -autoScale DNS

bind servicegroup COEsvcgrp COEsvr <PORT>

add 1b vserver COE LOGSTREAM 0.0.0.0 O

bind 1b vserver COE COEsvcgrp

add analytics profile web_profile -collectors COE -type
webinsight —-httpURL ENABLED -httpHost ENABLED -
httpMethod ENABLED -httpUserAgent ENABLED -
httpContentType ENABLED

add analytics profile tcp_profile -collectors COE -type
tcpinsight

bind 1b vserver <WEB-VSERVER> -analyticsProfile web_profile

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 24

NetScaler Observability Exporter

bind 1b vserver <WEB-VSERVER> -analyticsProfile tcp_profile

To enable metrics push to prometheus

add service metrichost_SVC <IP> HTTP <PORT>

set analyticsprofile ns_analytics_time_series_profile -
collectors metrichost_SVC -metrics ENABLED -outputMode
prometheus

Add NetScaler Observability Exporter using FQDN

enable feature appflow

enable ns mode ULFD

add dns nameserver <KUBE-CoreDNS>

add server COEsvr <FQDN>

add servicegroup COEsvcgrp LOGSTREAM -autoScale DNS

bind servicegroup COEsvcgrp COEsvr <PORT>

add 1b vserver COE LOGSTREAM 0.0.0.0 O

bind 1b vserver COE COEsvcgrp

add analytics profile web_profile -collectors COE -type
webinsight -httpURL ENABLED -httpHost ENABLED -
httpMethod ENABLED -httpUserAgent ENABLED -
httpContentType ENABLED

add analytics profile tcp_profile -collectors COE -type
tcpinsight

bind 1b vserver <WEB-VSERVER> -analyticsProfile web_profile

bind 1lb vserver <WEB-VSERVER> -analyticsProfile tcp_profile

To enable metrics push to prometheus

add service metrichost_SVC <IP> HTTP <PORT>

set analyticsprofile ns_analytics_time_series_profile -
collectors metrichost_SVC -metrics ENABLED -outputMode
prometheus

To verify if NetScaler sends application data logs to NetScaler Observability Exporter:

nsconmsg -g lstream_tot_trans_written -d current

The counter value indicates that the number of application transactions (for example, HTTP transac-
tions) which have been sent to NetScaler Observability Exporter.

root@ns# nsconmsg -g trans written -d current

Displaying performance information

NetScaler V20 Performance Data

reltime:mili second between two records Thu Oct 8 87:11:00 2020
cls

Index rtime totalcount-val delta|rate/se
0 63000 24142 632 90 lstream_tot trans written
1 7000 43635 19493 2784 lstream tot trans written

ymbol-name&device-no

If the application traffic rate (for example, HTTP req/sec) that is sent to NetScaler Observability Ex-
porterisnotequalto Lstream_tot_trans_written,youcan verify the sameusingthe following
command:

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 25

NetScaler Observability Exporter

nsconmsg -g nslstream_err_ulf_data_not_sendable -d current

The counter value indicates that NetScaler cannot send the data to NetScaler Observability Exporter
due to network congestion, unavailability of network bandwidth, and so on. The data is stored in the
available buffers.

Information about various transaction data and individual fields, and their datatype are available in
the following location on the NetScaler:

shell/netscaler/appflow/ns_ipfix.yaml

i AppFlow Information Elements exported by NetScaler

0:
1:
- uinte4
- octetTotalCount
- "The number of octets since the previous report (if any) in incoming packets for this flow at the Observation Point. The number of octets includes IP header(s) and IP payload."
2;
- uinte4
- packetTotalCount
- “The number of incoming packets since the previous report (if any) for this Flow at the Observation Point."

To verify thatif application transaction records are exported from NetScaler to NetScaler Observability
Exporter, use the following command:

nsconmsg -g appflow_tmpl -d current

root@ns# nsconmsg -g appflow tmpl -d current

Displaying performance information

NetScaler V20 Performance Data

NetScaler NS13.0: Build 67.37.nc, Date: Sep 30 2020, 09:53:44 (64-bit)

reltime:mili second between two records Thu Oct 07:24:25 2020
Index rtime totalcount-wval delta rate/sec symbol-name&device-no
7000 75597 1 appflow _tmpl v4 17 clt2ns complete
0 75597 : appflow_tmpl v4 17 srvr2n
(% 10 : appflow_tmpl v46_ulfd_burst_
% 75597 : appflow tmpl v46 ulfd server eot
0 75606 . appflow tmpl v46 ulfd client eot

(%]
1
p
3
4

Location of metrics data export logs to NetScaler for time series data:

/var/nslog/metrics_prom.log

To verify Elasticsearch related counters, run the following command:

kubectl exec -it <cpx-pod-name> [-c <cpx-container-name>] [-n <
namespace—-name>] —-- bash

tail -f /var/ulflog/counters/lstrmd_counters_codes.log | grep -
FE \"\(http_regs_done|elk)\"

Find the logs in the following location to verify that the NetScaler Observability Exporter configuration
is applied correctly:

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 26

NetScaler Observability Exporter

vi /var/logproxy/lstreamd/conf/lstreamd.conf

If NetScaler Observability Exporter fails, you can collect logs and files available at the following loca-
tion and contact NetScaler support.
/var/crash/ (Loation of the coredump files, 1if any.)

/var/ulflog/ (Location of the “1libulfd® logs and counter details
)

/var/log (Location of the console logs, lstreamd logs and so on

»)

For information on troubleshooting related to NetScaler Observability Exporter, see NetScaler CPX
troubleshooting.

NetScaler Observability Exporter with Kafka as endpoint

January 17,2024

NetScaler Observability Exporter is a container that collects metrics and transactions from NetScaler.
It also transforms the data into the formats (such as AVRO) that are supported in Kafka and exports
the data to the endpoint. Kafka is an open-source and distributed event streaming platform for high-
performance data pipelines and streaming analytics.

Deploy NetScaler Observability Exporter

You can deploy NetScaler Observability Exporter using the YAML file. Based on the NetScaler de-
ployment, you can use NetScaler Observability Exporter to export metrics and transaction data from
NetScaler. You can deploy NetScaler CPX either as a pod inside the Kubernetes cluster or on NetScaler
MPX or VPX form factor outside the cluster.

The following diagram illustrates a NetScaler as an Ingress Gateway with NetScaler Observability Ex-
porter as a sidecar. It sends NetScaler application transaction data to Kafka.

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 27

https://docs.citrix.com/en-us/citrix-adc-cpx/current-release/cpx-troubleshooting.html
https://docs.citrix.com/en-us/citrix-adc-cpx/current-release/cpx-troubleshooting.html

NetScaler Observability Exporter

E—
Client Traffic I

_______ R
-
Ingress Traffic [::][]

Citrix Ingress Contreller >‘

R

-’ Kubernetes Cluster™ N ¢ o~ N .
’ \
Y I
e N ‘wml) (Ny —_—_—
m f 1 Kakfa Consumer Group
A CPX 1 1
1 1 Kafka Cluster
N g00e COE |push Message—y—* Pull Message
= | =l " * Gt Partifion info, . Kafka Consumer 1
f 1 77 -| Kafka Broker 1
1 1 Kafka Consumer 2
1 1 Kafka Broker 2
! 1
| ! Kafka Consumer 3
¥ 1 1 |
f 1 Kafka Broker 3 -
1 ! Update Offset
1 ! A
\ AN Jo —
I
\\ ’ v 1l
. P Ve — / !
__________________________________ - ~o P
o
Prerequisites

Ensure that you have a Kubernetes cluster with kube-dns or CoreDNS addon enabled.

Ensure that the Kafka server is installed and configured.
You must have a Kafka broker IP or FQDN address.

You must have defined a Kafka topic HTTP.

Ensure that you have Kafka Consumer to verify the data.

Note:

In this example scenario, the YAML file is used to deploy NetScaler Observability Exporter in the
Kubernetes default namespace. If you want to deploy in a private Kubernetes namespace other
than default, edit the YAML file to specify the namespace.

The following is a sample application deployment procdure.
Note:

If you have a pre-deployed web application, skip the step 1 and 2.

1. Create a secretingress.crt and key ingress.key using your own certificate and key.
In this example, a secret, called ing in the default namespace, is created.

kubectl create secret tls ing —-cert=ingress.crt --key=ingress.
key

2. Access the YAML file from webserver-kafka.yaml to deploy a sample application.

kubectl create -f webserver-kafka.yaml

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 28

https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.crt
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.key
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/kafka/webserver-kafka.yaml

NetScaler Observability Exporter

3. Define the specific parameters that you must import by specifying it in the ingress annotations
of the application’s YAML file using the smart annotations in ingress.
ingress.citrix.com/analyticsprofile: '{
"webinsight": {
"httpurl":"ENABLED", "httpuseragent":"ENABLED", "httpHost":"

ENABLED" ,"httpMethod":"ENABLED","httpContentType":"ENABLED" }
}

Note:

The parameters are predefined in the webserver-kafka.yaml file.

For more information about Annotations, see Ingress annotations documentation.

Deploy NetScaler CPX with the NetScaler Observability Exporter support

You can deploy NetScaler CPX as a side car with the NetScaler Observability Exporter support. You
can edit the NetScaler CPX YAML file, cpx-ingress—-kafka.yaml, to include the configuration
information that is required for NetScaler Observability Exporter support.

Perform the following steps to deploy a NetScaler CPX instance with the NetScaler Observability Ex-
porter support:

1. Download the cpx-ingress-kafka.yaml and the cic-configmap.yaml files.

2. Create a ConfigMap with the required key-value pairs and deploy the ConfigMap. You can use
the cic-configmap.yaml file thatis available, for the specific endpoint, in the directory.

3. Modify NetScaler CPX related parameters, as required.

4. Editthe cic-configmap.yaml file and specify the following variables for NetScaler Observ-
ability Exporterin the NS_ANALYTICS_CONFIG endpoint configuration.

server: 'coe-kafka.default.svc.cluster.local' # COE service FQDN

5. Deploy NetScaler CPX with the NetScaler Observability Exporter support using the following
commands:

kubectl create -f cpx-ingress-kafka.yaml
kubectl create -f cic-configmap.yaml

Note:

If you have used a different namespace, other than default, then you must change from

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 29

https://github.com/citrix/citrix-k8s-ingress-controller/blob/666d6267e5b09683740528c5e8dd46f16d7d16e0/docs/configure/annotations.md
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/kafka/cpx-ingress-kafka.yaml
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/kafka/cic-configmap.yaml
https://github.com/citrix/citrix-observability-exporter/tree/master/examples

NetScaler Observability Exporter

coe-kafka.default.svc.cluster.local to coe-kafka.<desired-namespace

>.svc.cluster.local.

Deploy NetScaler Observability Exporter using YAML

You can deploy NetScaler Observability Exporter using the YAML file. Download the coe-kafka.yaml

file that you can use for the NetScaler Observability Exporter deployment.

To deploy NetScaler Observability Exporter using the Kubernetes YAML, run the following command

in the Kafka endpoint:

kubectl create -f coe-kafka.yaml

To edit the YAML file for the required changes, perform the following steps:

1. Edit the ConfigMap using the following YAML definition:

Note:

Ensure that you specify the Kafka broker IP and the Kafka desired topic.

apiVersion: vl
kind: ConfigMap
metadata:

name: coe-config-kafka
data:

lstreamd_default.conf:

{

"Endpoints": {

"KAFKA": {

"ServerUrl": "X.X.X.X:9092", #Specify the Kafka
broker IP

"KafkaTopic": "HTTP", #Specify the desired kafka
topic

"RecordType": {
"HTTP": "all",
llTCPII: lla'L'Lll,
IISWGII: Ha'L'LII,
IIVPN”: Ila'L'Lll,
IINGSU: Ila'l-'Lll,
IIICAII: Ilal'l'll,
"APPFW": "none",
"BOT": "none",
"VIDEOOPT": "none',
"BURST_CQA": "none",
"SLA": "none",

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

30

https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/kafka/coe-kafka.yaml

NetScaler Observability Exporter

"MONGO": "none"

3

)
"ProcessAlways": "yes",
"FileSizeMax": "40",

"ProcessYieldTimeOut": "500",
"FileStorageLimit": "1000",
"SkipAvro": '"no",
"AvroCompress": "yes"

}

Note: To export transactions in the JSON format, see [
exporting transaction in JSON format to Kafka] (#support-for-
exporting-transactions-in-the-json-format-from-pageadc-
observability-exporter-short-to-kafka).

2. Specify the host name and IP or FQDN address of the Kafka nodes. Use the following YAML
definition for a three node Kafka cluster:

apiVersion: apps/vl
kind: Deployment

metadata:
name: coe-kafka
labels:
app: coe-kafka
spec:
replicas: 1
selector:
matchlLabels:
app: coe-kafka
template:
metadata:
name: coe-kafka
labels:
app: coe-kafka
spec:

hostAliases:
- dp: "X.X.X.X" # Here we specify kafka nodel Ipaddress
hostnames:
- "kafka-nodel"
- dp: "Y.Y.Y.Y" # Here we specify kafka node2 Ipaddress
hostnames:
- "kafka-node2"
- dp: "Z.Z.Z.Z" # Here we specify kafka node3 Ipaddress
hostnames:
- "kafka-node3"
containers:
- name: coe-kafka
image: '"quay.io/citrix/citrix-observability-exporter
:1.3.001"

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 31

NetScaler Observability Exporter

imagePullPolicy: Always
ports:

containerPort: 5557
name: lstream

volumeMounts:

volumes:

name: lstreamd-config-kafka

mountPath: /var/logproxy/lstreamd/conf/
lstreamd_default.conf

subPath: lstreamd_default.conf

name: core-data

mountPath: /var/crash/

- name: lstreamd-config-kafka
configMap:
name: coe-config-kafka
- name: core-data
emptyDir: {

}

3. If necessary, edit the service configuration for exposing the NetScaler Observability Exporter

port to NetScaler using the following YAML definition:

Citrix-observability-exporter headless service:

apiVersion:

vl

kind: Service

metadata:
name: coe-kafka
labels:
app: coe-kafka
spec:
clusterIP: None
ports:
- port: 5557
protocol: TCP
selector:

app: coe-kafka

<!--NeedCopy-->

Citrix-observability-exporter NodePort service

apiVersion:

vl

kind: Service

metadata:

name: coe-

labels:

kafka-nodeport

app: coe-kafka

spec:

type: NodePort

ports:
- port:

5557

protocol: TCP

selector:

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

32

NetScaler Observability Exporter

app: coe-kafka
<!--NeedCopy—-->

Verify the NetScaler Observability Exporter deployment

To verify the NetScaler Observability Exporter deployment, perform the following:
1. Verify the deployment using the following command:

kubectl get deployment,pods,svc -o wide

AVAILABLE AGE CONTAINERS

READY STATUS RESTARTS

Running 0
Running 0
Running 0

2. Access the application with a browser using the URL: https:

For example, from step 1, access <http:

HTTP Methods Testing different HTTP verbs N

‘m /delete The request's DELETE parameters.

/get The request's query parameters,

/patch The request's PATCH parameters,

/post The request's POST parameters.

/put The request's PUT parameters.

Auth Auth methods >
Status codes Generates responses with given status code >
Request inspection inspect the request data S
Response inspection inspect the response data like caching and headers >
Response formats Returns responses in different data formats >
Dvnamic data Generates random and dynamic data >
Cookies Creates, reads and deletes Cookies >

3. Use Kafka Consumer to view the transaction data. Access kafka Consumer from PythonKafka-
Consumer.

The following image shows sample data from Kafka Consumer.

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 33

https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html
https://kafka-python.readthedocs.io/en/master/apidoc/KafkaConsumer.html

NetScaler Observability Exporter

httpReqAuthorizatic

Integrate NetScaler with multiple NetScaler Observability Exporter instances
manually

You can configure NetScaler Observability Exporter manually in NetScaler. Manual configuration is
suitable for NetScaler in MPX and VPX form factors. Citrix recommends deploying NetScaler Observ-
ability Exporter in the automated way using the YAML file as described in the preceding sections.

For information about deploying NetScaler Observability Exporter (coe-kafka.yaml) and web applica-
tion (webserver-kafka.yaml), see the preceding sections.

enable feature appflow

enable ns mode ULFD

add service COE_svcl <COE IP1> LOGSTREAM <COE PORT1>

add service COE_svc2 <COE IP2> LOGSTREAM <COE PORT2>

add service COE_svc3 <COE IP3> LOGSTREAM <COE PORT3>

add 1lb vserver COE LOGSTREAM 0.0.0.0 0

bind 1b vserver COE COE_svcl

bind 1b vserver COE COE_svc2

bind 1lb vserver COE COE_svc3

add analytics profile web_profile -collectors COE -type webinsight -
httpURL ENABLED -httpHost ENABLED -httpMethod ENABLED -httpUserAgent

ENABLED —-httpContentType ENABLED

add analytics profile tcp_profile -collectors COE -type tcpinsight

bind 1b/cs vserver <WEB-PROXY> -analyticsProfile web_profile

bind lb/cs vserver <WEB-PROXY> -analyticsProfile tcp_profile

To enable metrics push to prometheus

add service metrichost_SVC <IP> HTTP <PORT>

set analyticsprofile ns_analytics_time_series_profile -collectors
metrichost_SVC -metrics ENABLED -outputMode prometheus

<!--NeedCopy-->

Add NetScaler Observability Exporter using FQDN

enable feature appflow
enable ns mode ULFD
add dns nameserver <KUBE-CoreDNS>

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 34

NetScaler Observability Exporter

add server COEsvr <FQDN>

add servicegroup COEsvcgrp LOGSTREAM -autoScale DNS

bind servicegroup COEsvcgrp COEsvr <PORT>

add 1b vserver COE LOGSTREAM 0.0.0.0 0

bind 1b vserver COE COEsvcgrp

add analytics profile web_profile -collectors COE -type webinsight -
httpURL ENABLED -httpHost ENABLED -httpMethod ENABLED -httpUserAgent

ENABLED -httpContentType ENABLED

add analytics profile tcp_profile -collectors COE -type tcpinsight

bind 1b vserver <WEB-VSERVER> -analyticsProfile web_profile

bind 1b vserver <WEB-VSERVER> -analyticsProfile tcp_profile

To enable metrics push to prometheus

add service metrichost_SVC <IP> HTTP <PORT>

set analyticsprofile ns_analytics_time_series_profile -collectors
metrichost_SVC -metrics ENABLED -outputMode prometheus

<!--NeedCopy-->

For information on troubleshooting related to NetScaler Observability Exporter, see NetScaler CPX
troubleshooting.

Support for exporting transactions in the JSON format from NetScaler Observability
Exporter to Kafka

You can now export transactions from NetScaler Observability Exporter to Kafka in the JSON format
apart from the AVRO format.

A new parameter DataFormat is introduced in the Kafka deployment ConfigMap to support trans-
actions in the JSON format.

This parameter can accept AVRO and JSON values. For allowing JSON based transactions, set the
value of

DataFormat as JSON in the

coe-kafka.yaml file. The default value is AVRO.

The following example shows the YAML file with the data format configured as JSON.

apiVersion: vl
kind: ConfigMap

metadata:
name: coe-config-kafka
data:
lstreamd_default.conf: |
{

"Endpoints": {
"KAFKA": {

"DataFormat": '"JSON",

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 35

https://docs.citrix.com/en-us/citrix-adc-cpx/current-release/cpx-troubleshooting.html
https://docs.citrix.com/en-us/citrix-adc-cpx/current-release/cpx-troubleshooting.html
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/kafka/coe-kafka.yaml

NetScaler Observability Exporter

"ServerUrl": "X.X.X.X:9092", #Specify the Kafka broker
IP

"KafkaTopic": "HTTP", #Specify the desired kafka topic

"RecordType": {

"HTTP": "all",
llTCPll: lla'L'Lll’

IISWGII: Ila'L'Lll’
IIVPNII: lla'l-'l-ll,
IINGSII: lla'L'Lll,
llICAll: lla'L'Lll’
"APPFW": "none",
IIBOT”: llnonell’

"VIDEOOPT": "none",
"BURST_CQA": "none",
"SLA": "none",
""MONGO": "none"

}
"TimeSeries": {

"EVENTS": "yes",
"AUDITLOGS": "yes"

}

<!--NeedCopy-->

NetScaler Observability Exporter with Splunk Enterprise as endpoint

December 31, 2023

NetScaler Observability Exporter is a container that collects metrics and transactions from NetScaler
and sends the datato various endpoints. NetScaler Observability Exporter supports Splunk Enterprise
as an endpoint.

Splunk Enterprise is a data platform for searching, monitoring, and analyzing machine-generated big
data. Splunk Enterprise captures indexes and correlates real-time data in a repository from which it
can generate reports, graphs, dashboards, and visualizations.

You can add Splunk Enterprise as an endpoint to receive audit logs, events, and transactions from
NetScaler for analysis. Splunk Enterprise provides a graphical representation of these data. You can

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 36

NetScaler Observability Exporter

enable or disable the type of transactions, events, and audit logs which are to be sent to Splunk En-
terprise.

Deploy NetScaler Observability Exporter

You can deploy NetScaler Observability Exporter using the YAML file. Based on your NetScaler de-
ployment, you can deploy NetScaler Observability Exporter either outside or inside Kubernetes clus-
ters. You can deploy NetScaler Observability Exporter as a pod inside the Kubernetes cluster or on the
NetScaler MPX or VPX appliance outside the cluster.

The following diagram illustrates a NetScaler as an Ingress Gateway with the NetScaler Ingress
Controller and NetScaler Observability Exporter as sidecars. NetScaler Observability Exporter sends
NetScaler application metrics and transaction data to Splunk Enterprise. Splunk Enterprise provides
a graphical representation of the data.

Client Traffic I
Ingress Traffic E-D
C——

CLIENT

Citrix Ingress Controller
......................... .

Y

-,

(= _m ﬂﬂ o i! sp|unk >

APP

=
il
o
P

Prerequisites

+ Ensure that you have a Kubernetes cluster with kube-dns or CoreDNS addon enabled.

Note:

In the following procedure, the YAML file is used to deploy NetScaler Observability Exporter in
the Kubernetes default namespace. If you want to deploy in a private namespace other than the
default, edit the YAML file to specify the namespace.

Perform the following steps to deploy NetScaler Observability Exporter:

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 37

NetScaler Observability Exporter

Note:

If you have a pre-deployed web application, skip the steps 1 and 2.

1. Create a secret ingress.crt and key ingress.key using your own certificate and key.
In this example, a secret, called ing in the default namespace, is created.

kubectl create secret tls ing —-cert=ingress.crt --key=ingress.
key

2. Access the YAML file from webserver-splunk.yaml to deploy the application.
kubectl create -f webserver-splunk.yaml
3. Define the specific parameters that you must import by specifying it in the ingress annotations
of the application’s YAML file, using the smart annotations in the ingress.
ingress.citrix.com/analyticsprofile: '{
"webinsight": {

"httpurl":"ENABLED", "httpuseragent":"ENABLED", "httpHost":"
ENABLED" ,"httpMethod" :"ENABLED","httpContentType":"ENABLED" }

}

Note:

The parameters are predefined in the webserver-splunk.yaml file.

For more information about Annotations, see Ingress annotations documentation.

Deploy NetScaler CPX with the NetScaler Observability Exporter support

You can deploy NetScaler CPX as a side car with the NetScaler Observability Exporter support enabled
along with NetScaler Ingress Controller. You can modify the NetScaler CPX YAML file cpx—ingress
-splunk.yaml to include the configuration information that is required for the NetScaler Observ-

ability Exporter support.

The following is a sample application deployment procedure.

1. Download the cpx-ingress-splunk.yaml and cic-configmap.yaml file.

2. Create a ConfigMap with the required key-value pairs and deploy the ConfigMap. You can use
the cic-configmap.yaml file thatis available, for the specific endpoint, in the directory.

3. Modify NetScaler CPX related parameters, as required.

4. Editthe cic-configmap.yaml file and specify the following variables for NetScaler Observ-
ability Exporter in the NS_ANALYTICS_CONFIG endpoint configuration.

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 38

https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.crt
https://github.com/citrix/citrix-observability-exporter/blob/master/examples/ingress.key
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/splunk/webserver-splunk.yaml
https://github.com/citrix/citrix-k8s-ingress-controller/blob/666d6267e5b09683740528c5e8dd46f16d7d16e0/docs/configure/annotations.md
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/splunk/cpx-ingress-splunk.yaml
https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/splunk/cic-configmap.yaml
https://github.com/citrix/citrix-observability-exporter/tree/master/examples

NetScaler Observability Exporter

server: 'coe-splunk.default.svc.cluster.local' # COE service
FQDN

Note:

If you have used a namespace other than default, change coe-splunk.default.svc
.cluster.local to to coe-splunk.<desired-namespace>.svc.cluster
. Loca'l. If NetScaler is outside the Kubernetes cluster, then you must specify IP address
and nodport address of NetScaler Observability Exporter.

5. Deploy NetScaler CPX with the NetScaler Observability Exporter support using the following
commands:

kubectl create -f cpx-ingress-splunk.yaml
kubectl create -f cic-configmap.yaml

Deploy NetScaler Observability Exporter using the YAML file

You can deploy NetScaler Observability Exporter using the YAML file. Download the YAML file from
coe-splunk.yaml. Ensure to specify the Splunk server address for the right namespace by editing the
coe-splunk.yaml file.

Following is an example of how to specify the ServerUrlinthe lstreamd_default.conf sec-
tionin the coe-splunk.yaml file. Here, ServerUr 1 means the address of the Splunk server.

lstreamd_default.conf: |
{

"Endpoints": {
"SPLUNK": {

"ServerUrl": "http://10.102.34.155:8088",
"AuthToken": "",

UIndeXH: U”,

"RecordType": {

"HTTP": "all",
HTCPH: ”allﬂ,
HSWGH: ”allﬂ,
HVPNH: Uallﬂ,
HNGSH: ”allﬂ’
HICAH: ”allﬂ’
"APPFW'": "none'",
HBOTH: ”allﬂ’
"VIDEOOPT": "none",
"BURST_CQA": '"none",
"SLA": "none",

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 39

https://raw.githubusercontent.com/citrix/citrix-observability-exporter/master/examples/splunk/coe-splunk.yaml

NetScaler Observability Exporter

""MONGO": "none"
}

"TimeSeries": {

"EVENTS": "yes",
"AUDITLOGS": "yes"

b
)
"ProcessAlways": "no",
"ProcessYieldTimeOut": "500",
"MaxConnections": "512",
"JsonFileDump": "no"
}
}
}

Note:

While deploying NetScaler Observability Exporter using the YAML file, along with the Splunk
server address, you can provide the Index name to which the data to be sent in Splunk En-
terprise. By default, this IndexPrefix option is empty and the data is uploaded to the default
index, thatis main, in Splunk Enterprise.

To deploy NetScaler Observability Exporter using the Kubernetes YAML, run the following command
in the Splunk Enterprise endpoint:

kubectl create -f coe-splunk.yaml

Note:

Modify the YAML file for NetScaler Observability Exporter if you have a custom namespace.

Verify the NetScaler Observability Exporter deployment

You can verify the deployment after deploying NetScaler Observability Exporter, web application,
NetScaler CPX, and NetScaler Ingress Controller.

To verify the deployment, perform the following steps:
1. Verify the deployment using the following command:

kubectl get deployment,pods,svc -o wide

2. Access the application using a browser with the URL.
For example:

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 40

NetScaler Observability Exporter

https://kubernetes-node-IP:cpx-ingress—-splunk nodeport/

3. Access the Splunk server using a browser with the URL.
For example:

https://splunk-node-IP:splunk nodeport/

i Time Event
> 3921 -]
12:04:07.000 PM appName: k8s-10.32.0

appNameVserverLs: ks-wel
backendSvrDstIpvdAddress
backendSvrIpv4Address: 16

clientMss: 1330

clntFastRetxCount: @
clntTeplitter: @
clntTcpPacketsRetransmited: ©
clntTcpRtoCount: ©
clntTepZeroWindowCount: @
cltFlowFlagsRx:
c1tFlowFlagsTx:
c1tTepFlagsRx:
cltTepFlagsTx:

connEndTimestamp: @

connStartTimestanp: 694

connectionChainHopCount: 0

exportingProcessId
flowFlagsRx: 67
httpContentType
httpReqForwFB:
httpReqForwLB:
httpReghost: 10
httpRegMethod:
httpReqRevFB: 1
httpReqRcvLB: 1
httpReqUrl:

httpReqUserAger
httpResForwFB:
httpResForwLB:
httpResRcvFB: 1
httpResRcvLB: 1

httpRspLen:
httpRspStatus:

httpTransEndTime:
ingressInterfaceClient: 1
nsPartitionId: @
observationPointId: 10.32.0.2
originRsplen: @

recType: HTTI
reqTimestamp: 2

Import pre-built dashboards for Splunk

You can import pre-built Splunk dashboards provided by NetScaler. The JSON files for importing the
dashboards are available at the GitHub repository. These dashboards provide you the option to filter
the transactions based on parameters such as an instance IP address, application name, or client and
server IP address and so on.

Following is a sample HTTP dashboard. This dashboard shows data such as HTTP header-based
charts, transactional latency, response type distribution, and so on.

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 41

https://github.com/citrix/citrix-observability-exporter/tree/master/dashboards

NetScaler Observability Exporter

ADC HTTP Dashboard
Time Ind Instance. ApplcationVserver HTTP Content Type

Last7 days. < | [man ~Ix] [ar —Ix] [0 < [x] [

Edt | [Export +
HTTP RequestMethod HTTP Request User-Agent HTTP Req

< x| [ar “x] [< x| [ar <x] [an

EZED) Hceriters

App Response Time

HTTP Response Length Per App Application Load Distribution

i |
6 to display a maximum of 10000 results per vese results ma i isplay a maximu ul
ore 2 More

HTTP Content Type.

HTTP Request Method

HTTP Useragent HTTP Request Host
Client Latency Server Response Time
H H
H
Foe _ -

s

'

Following is a sample TCP dashboard for Splunk. This dashboard shows data such as bandwidth dis-
tribution for each application, TCP Jitter, client and server RTT, and so on.

ADC TCP Dashboard

Time meex stnce

Aopcation Ve Clent Cllor Disibutr lant Latancy Chart

apphame & walues(ransChipedAddress) &

0.8 I

et - cler e

i H

i I- i

| u 3 i o
Clent 710 Clier Jter Crentss
Server Loa Sorver

Server TCP Window Monior

NetScaler Observability Exporter troubleshooting

December 31, 2023

This document explains how to troubleshoot issues that you may encounter while using NetScaler
Observability Exporter.

+ How do | verify that NetScaler sends application data logs to NetScaler Observability Exporter?

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 42

NetScaler Observability Exporter

Run the following command to verify that NetScaler sends application data logs to NetScaler
Observability Exporter:

nsconmsg -g lstream_tot_trans_written -d current

The counter value indicates that the number of application transactions (for example, HTTP
transactions) which have been sent to NetScaler Observability Exporter.

If the application traffic rate (for example, HTTP req/sec) that is sent to NetScaler Observability
Exporteris notequalto Llstream_tot_trans_written,you can verify the same using the
following command:

nsconmsg -g nslstream_err_ulf_data_not_sendable -d current

The counter value indicates that NetScaler cannot send the data to NetScaler Observability Ex-
porter due to network congestion, unavailability of network bandwidth, and so on and the data
is stored in the available buffers.

Information about various transaction data and individual fields, and their datatype are avail-
able in the following location on the NetScaler:

shell
/netscaler/appflow/ns_ipfix.yaml

To verify the current record type exported from NetScaler to NetScaler Observability Exporter,
use the following command:

nsconmsg -g appflow_tmpl -d current

Location of metrics data export logs to NetScaler for time series data:

/var/nslog/metrics_prom.log

To verify kafka related counters, run the following command:

kubectl exec -it <cpx-pod-name> [-c <cpx-container-name>] [-n <
namespace-name>] -- bash

tail -f /var/ulflog/counters/lstrmd_counters_codes.log | grep -
iE \"\ (http_regs_done|kafka)\"

Find the logs in the following location to verify that the NetScaler Observability Exporter config-
uration is applied correctly:

vi /var/logproxy/lstreamd/conf/lstreamd.conf

If NetScaler Observability Exporter fails, you can collect logs available at the following location
and contact NetScaler support.

/var/crash/ (Loation of the coredump files, 1if any.)

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 43

NetScaler Observability Exporter

/var/ulflog/ (Location of "libulfd® logs and counter details.)
/var/log (Location of console logs, lstreamd logs and so on.)

For information on NetScaler CPX related troubleshooting, see NetScaler CPX Troubleshooting.

Description of configuration parameters

January 31,2024

This topic contains descriptions of the lstreamd_default.conf file parameters. The
lstreamd_default.conf parameters are used for endpoint specific configurations.

« ServerUrl: Specifies the address of the server.

The protocol can be Kafka for Apache Kafka, HTTP or HTTPs for Splunk and ElasticSearch, and
HTTP for Zipkin.

The following are examples of how to specify the server URL for different endpoints:
Kafka:

kafka-server:9992
1.2.3.4:10000 Splunk:

http://splunk-server:80
https://splunk-server:443
http://1.2.3.4:1000
https://5.6.7.8:2000

ElasticSearch:

http://elastic-server:80
https://elastic-server:443
http://9.8.7.1:80
https://1.2.3.5:3000 Zipkin:

http://zipkin-server:80
http://1.2.3.4:80

« KafkaTopic:

Specifies the topic on a Kafka cluster for sending the transaction records. The default value is
HTTP.

« DataFormat:

Specifies the format of the data sent over to Kafka. The values can be either JSON or AVRO.
The default data format is AVRO.

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 44

https://docs.citrix.com/en-us/citrix-adc-cpx/current-release/cpx-troubleshooting.html

NetScaler Observability Exporter

« MaxConnections:

Specifies the maximum parallel TCP connections to an endpoint.
The default value is 64.

« FileSizeMax:

For the Kafka endpoint, AVRO files are created and stored on the disk before they get pushed to
the endpoint.

This parameter specifies the size of each such file in Kibibyte (KiB). A file can contain multiple
transaction records. The default value is 48 KiB.

+ RecordType:

Specifies the types of records that you want to export:

- HTTP

- TCP

- SWG

- VPN

- ICA

- APPFW
- BOT

- VIDEOPT
- BURST_CQA
- SLA

- MONGO
- MQTT

NetScaler Observability Exporter allows filtering of transaction records of various insights.
By default, none of the records are exported.
You must set these fields appropriately to export the required records.
Examples:
IITCPII: llallll’

"SWG": "none",
"APPFW": "all"

« EVENTS:

NetScaler Observability Exporter allows exporting time series (events, and audit logs) to Splunk
and Kafka.

Set this field to yes to allow exporting events.

The default value is no.

+ AUDITLOGS:

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 45

NetScaler Observability Exporter

You can export audit logs to Splunk and Kafka.
Set this field to yes to allow exporting audit logs.
The default value is no.

« ConnectionPoolSize:

Altersthe size of connection pools for Splunk.ConnectionPoolSizeandMaxConnections
might be used to control the rate at which data is exported (to the endpoint).

« ElkMaxSendBuffersPerSec:

The maximum rate at which the data is exported to ElasticSearch.

An ELK JSON Buffer is 32 KiB in size.

This field configures the maximum number of ELK buffers exported every second.
The default value is 64.

« transRateLimitEnabled:

Sometimes, the incoming traffic may increase and Citrix Observability Exporter may not be
able to scale up toit.

In such cases, export to JSON endpoints like Splunk, ElasticSearch, and Zipkin over
HTTP/HTTPS might become a bottleneck.

The memory would keep growing uncontrollably until Citrix Observability Exporter terminates.
To avoid such scenarios, rate-limiting can be configured for JSON based endpoints including
Kafka. The impact on Kafka is low as Kafka is an efficient protocol.

Set this field to yes to enable rate-limiting for JSON based end points.

The default value is no.

+ transQueuelimit:

Specifies the number of JSON buffers that can be accumulated before Citrix Observability Ex-
porter starts discarding them.

For Zipkin, one JSON buffer is about 64 KiB and a limit of 1000 means approximately 64 MB of
JSON data.

For Splunk and ElasticSearch, one JSON buffer is about 32 KiB and a limit of 1000 means ap-
proximately 32 MB of data.

The default value is 1024.

« transRateLimitWindow:

Specifies the recalculation window in seconds and the value must be greater than zero.

The lower the window size, the more effective is the rate-limiting, but specifying low values may
cause slight CPU overhead.

The default value is five seconds.

« AuthToken:

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 46

NetScaler Observability Exporter

You can use the auth token to perform the token-based authentication for Splunk.
It can also be used for password-based authentication for ElasticSearch.

Examples:
SPLUNK
"AuthToken": "XXXXXXXX—XXXX—-XXxXXx—ad58-1ce9bdeee09a"
ELASTICSEARCH
"AuthToken": "XxxxXxxxxxxxxxeXBhc3MxMjM="
+ Index:

The Splunk index where the processed data is stored.
The default value is “”. That means the default index.

« IndexPrefix:

Specifies the index prefix used for ElasticSearch. ElasticSearch allows you to create indexes as
necessary through its APIs.

Kibana allows the creation of index patterns and to facilitate that, this field is used.

Allindex names follow this prefix followed by the time of creation of the index. The time or time
format is based on the IndexInterval.

« IndexInterval:

The interval at which the ElasticSearch indexes are rotated, following the index pattern.
You can configure the interval as one of the following values:

- hourly

- 12 hours
- daily

- weekly

- 2 weeks

- monthly
- 6 months
- yearly

The default value is “’. That means, the index never rotates.

Additional information

Following are the guidelines while configuring the Lstreamd_default.conf file parameters.

« Zipkinis supported in parallel to Splunk, ElasticSearch, or Kafka.

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 47

NetScaler Observability Exporter

+ You do not need to configure Prometheus as it is pull based. NetScaler Observability Exporter
exports NetScaler metrics and its own metrics to prometheus.

Port 5563 of the container can be scraped using insecure HTTP at the path ‘/metrics’.
For example:

http:

Prometheusis always ON and metrics can be exported to it in parallel to transactions, audit logs,
and events.

+ Currently, you can only export time series like audit logs and events to Splunk and Kafka, but in
parallel to transactions and metrics.

+ You must not configure multiple endpoints of the same type in the lstreamd_default.
conf file for one NetScaler Observability Exporter. For example, it is not possible to configure
two Splunkinstances, or two Kafka instances, or two ElasticSearch instances, or one Splunk and
one ElasticSearch, and so on.

For Zipkin, although you can configure it in parallel to Splunk and ElasticSearch, you may not
configure multiple instances of Zipkin. For example, it is not possible to have two Zipkin in-
stances in parallel.

+ You can ignore the fields that are marked as optional as some of them may have predefined
default values.

« The JSON parser used for Lstreamd_default.conf is case-sensitive and also ensure that
you do not have extra or missing commas, or anything that may make the JSON format invalid.

+ Some of the Istreamd_default.conf file parameters are not listed in this document.
Those parameters that are not listed are internal and are not meant to be altered. They have
predefined default values.

Support for container logging

January 31,2024

Now, you can enable logging on NetScaler Observability Exporter according to different severity levels.
These logs help in getting information about endpoint specific configuration.

The following logging severity levels are supported and the default value is INFO.
+ NONE : None of the messages are logged.

« FATAL : Only fatal messages are logged.
« ERROR: Only fatal messages and error messages are logged.

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 48

NetScaler Observability Exporter

« INFO: Only fatal, error, and informational messages are logged.

« DEBUG: Only fatal, error, informational, and debug messages are logged.

For Kubernetes YAML based deployments the default value is NONE. But, for Helm and OpenShift oper-
ator deployments of NetScaler Observability Exporter logging is enabled by default and set as INFO.

You can configure logging using the environment variable NSOE_LOG_LEVEL while deploying

NetScaler Observability Exporter for each endpoint.

The following example shows how to configure the log level in the NetScaler Observability Exporter

deployment YAML:

env:

- name: NSOE_LOG_LEVEL
value: "INFO"

Log descriptions

The following are the types of logs that you can get:

Error logs

Log

Endpoints Missing - Invalid
Config Format
Splunk Auth Token missing

Unknown Record Type - Invalid
Configuration

Record Type Option - Invalid
Configuration

Unknown Timeseries - Invalid
Configuration

Setting Rate Limit Enabled to
false - Invalid Rate Limit Option
- Invalid Configuration

Anamalous Config Missing

The configuration file does not
exist

Severity

Error

Error

Error

Error

Error

Error

Error

Error

Description

Field “Endpoints”is missing in
[streamd.conf.
AuthToken missing for Splunk

HEC.
Unrecognized record.

Unrecognized argument. Only
all/none/anomalous accepted.
Only AUDITLOGS/EVENTS
accepted.

Invalid configuration for rate
limiting.

Anomalous config not found.

OE tried to read
lstreamd.conf butdid not
find it.

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

49

NetScaler Observability Exporter

Log

Either the name of the
endpoint or the address of the
server is invalid (empty)

Invalid value- <val>
configured Timeseries/<
timeseries—type> export
to No for <endpoint-type>
Failed to allocate Packet Engine
context for a client

Failed to allocate memory to
hold the Logstream buffer-
perhaps we ran of memory

Failed to initialize the Processor
fortheclient <client-1id>

Info logs

Log

Istreamd Process Initiating

[streamd.conf not found -
creating new and switching to
agent/ adm on-prem mode
ELK Health Status DOWN

ELK Health Status UP
Splunk Health Status DOWN
Splunk Health Status UP

Deleting NetScaler IP: <nsip>
Core: <core-1id> Partition:
<partition-id>

Severity

Error

Error

Error

Error

Error

Severity

Info

Info

Info
Info
Info
Info

Info

Description

The endpoint kind such as
SPLUNK,KAFKA,ES,ZIPKIN is
empty or its address (ServerUrl)
is empty.

Invalid value for the given type
of timeseries (only “yes”/ “no”

ER)

are allowed)- defaulting to “no

ULFD consumer thread failed to
allocate the Packet Engine
context (Per NetScaler/ Packet
Engine context).

ULFD consumer thread ran
OOM and could not allocate ~ 8
KiB memory required to hold
the received Logstream Buffer.
Failed to initialize the
Processor for the client.

Description

NSOE started.

[streamd.conf was not found.

ElasticSearch is down.
ElasticSearch is up.
Splunk is down.
Splunkis up.

Disconnected from a NetScaler.

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

50

NetScaler Observability Exporter

Log

Adding new NetScaler IP:
<nsip> Core: <core-1id>
Partition: <partition-id>
New NetScaler Allocation

New NetScaler Initiating

JSON data format set for KAFKA
AVRO data format set for Kafka
Enabling Traces for Zipkin

Set the maximum number of
connections to the endpoint
<type>as <maxSockets>

Enabling Kafka Exporter

Configured Kafka broker list :
<brokers>

Configured Kafka topic:
<topic>

Configured
<endpoint-type> to export
<all / anomalous /
none> <rec-type> records

Configured Timeseries/<
timeseries—-type>to
<Yes/No> for
<endpoint-type>
Configured Processor Yield
Timeout to <val>

Prometheus Mode Enabled-
Prometheus can now scrape
metrics at the rest port

Severity

Info

Info
Info
Info
Info
Info

Info

Info

Info

Info

Info

Info

Info

Info

Description

Connected to a new NetScaler.

Connected to a new NetScaler.
Connected to a new NetScaler.
JSON will be exported to Kafka.
AVRO will be exported to Kafka.
Zipkin was configured.

MaxConnections was either
parsed or defaulted to the
printed value for the printed
endpoint.

Kafka was configured in
[streamd.conf and hence
enabled.

Applied the configured Kafka
Broker list (from the serverUrl).
KafkaTopic was either parsed
or defaulted to the printed

value.
Only the printed records of

type <rec-type: ex
HTTP_A/TCP_A/...> were
configured to be exported for
the printed endpoint.
Auditlogs/Events/Metrics were
enabled/disabled for the given
endpoint.

Yield time of the processor
threads was either configured

or defaulted.
Prometheus is authorized to

perform ‘GET /metrics’at the
rest port.

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

51

NetScaler Observability Exporter

Log

Received a new client
connection

Received a disconnect from a
client

Received a reset from a client

JSON transaction rate limiting
enabled

Set JSON transaction rate limit
to <num> Logstream buffers
per second

Set JSON transaction Export
Queue limit to <num> JSON
buffers

Set JSON transaction rate limit
window to <num> seconds

Warning logs

Log

Prometheus Mode Disabled-
Prometheus will not be
authorized to scrape metrics at
the rest port

Debug logs

Severity

Info

Info

Info

Info

Info

Info

Info

Severity

Warning

Description

Received a connection from a
NetScaler (Packet Engine.)
Received a disconnect from a
NetScaler (Packet Engine).
Received a disconnect (reset)
from a NetScaler (Packet
Engine).

Enabled rate-limiting for
transactions to JSON-based
endpoints viz. Splunk,
ElasticSearch, Zipkin, and
Kafka (JSON).

Per second rate-limit for
logstream buffers.

Limit on the JSON export
gueue - Beyond this threshold,
the Exporter will start dropping
JSON buffers.

Window of rate-limiting
transactions to JSON-based
endpoints. Lower values can
capture spikes.

Description

Prometheus is unauthorized to
perform ‘GET /metrics’at the
rest port.

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

52

NetScaler Observability Exporter

Log

Spawned Processor #1 with
Thread Index: 0, Thread ID:
<id>

Spawned ULFD Receiver with
Thread Index: 1, Thread ID:
<id>

Spawned Exporter with Thread
Index: 2, Thread ID: <id>
Spawned Processor #2 with
Thread Index: 3, Thread ID:
<id>

ULFD Receiver received the
signal number- <signo>

ULFD Receiver received
timeout event

ULFD Receiver received an
unhandleable event - ignoring
it

ULFD Receiver received a
Logstream Buffer

The received Logstream Buffer
is corrupted - unable to parse it

Parsed the received Logstream
Buffer: client-id=<>, core-id=<>,
partition-id=<>, namespace=<>
The rate-limiter decided to
drop the Logstream buffer

The rate-limiter decided to
accept the Logstream buffer

Severity

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Description

Created and started the first
processing thread.

Created and started the ULFD
consumer thread.

Created and started the export
thread.

Created and started the second
processing thread.

ULFD consumer thread
received a signal (usually from
NSULFD) - usually SIGUSR2 is
used to induce counter file

rotation.
ULFD consumer thread

received a timeout event
(received from NSULFD every
second) - used for cleaning up
CLM meta records every

minute.
ULFD consumer thread

received an unknown event,
thusignored it.

ULFD consumer thread
received a Data Buffer
(Logstream).

ULFD consumer thread
received a corrupted Data
Buffer (Logstream).

ULFD consumer thread parsed
the received Data Buffer.

Buffer drop because of JSON
transaction rate-limiting.
Buffer accepted by JSON
transaction rate-limiter.

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

53

NetScaler Observability Exporter

Log

Logstream buffer dropped
because the Processor for this
client is not emptying the
queue fast enough

Logstream buffer dropped
because the configuration does
not allow accepting
Non-Anomalous buffers
Relinquishing the Logstream
buffer because we are done
with it

ULFD Receiver dropped a
Logstream buffer- either it was
corrupt or we ran out of
memory

Initialized the <AVRO/ JSON>
Processor for the client
<client-id>

Pushed <num-pushed>
Logstream Buffer(s) toward the
Processor

Timer fired for the JSON
Processor with
thread-id=<thread-id>,
client-id=<client-id>
JSON Processor with
thread-id=<thread-1id>,
client-id=<client-id>
yielded the CPU

JSON Processing Started

Severity

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Description

Buffer drop because the
Processing thread associated
with this NetScaler (Packet
Engine) is not consuming the
buffers fast enough.

Buffer drop because
Lstreamd has been
configured to process
anomalous transactions only.
ULFD consumer thread is done
with the received Logstream
Buffer- thus relinquishing the
shared memory.

ULFD consumer thread
dropped the Logstream Buffer
because it was corrupt or it ran
OOM.

Initialized the printed
Processor for the client (done
the first time the NetScaler /
Packet Engine connects).
Pushed the printed number of
Logstream Buffers to the
associated Processing Thread’s
Queue.

JSON Processing Thread’s
Process Timer Timed Out.

JSON Processing Thread
yielded the CPU.

Started converting the
Logstream Buffers piled in the
queue to JSON.

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

54

NetScaler Observability Exporter

Log

Processing Logstream buffer
started

Dropping a transaction
because the JSON Endpoint is
not healthy (set
“ProcessAlways”: “yes”to skip
health checks)

Transaction dropped: Cannot
create JSON Object Queue for
the Unconfigured Record Type -
<rec-type>

Creating JSON Object Queue
for the Record Type -
<rec-type>

Transaction dropped: Cannot
create JSON Object Queue for
Unknown Protocol ID -
<protocol-id>

Created JSON Object Queue
(protocol-id=<protocol-1id
>)

Set Index to
<index-string> forthe
JSON Object Queue

Transaction dropped: Unable
to create JSON Object Queue-

perhaps ran out of memory

Transaction processing started

Severity

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Description

Started processing a logstream

buffer.
The transaction was dropped

because either the JSON
endpoint- Splunk/
ElasticSearch was unhealthy or
because Kafka (JSON) was not

enabled
The transaction was dropped

because it belonged to a
Record Type that was not
configured (or configured to
none).

Created JSON Object Queue for
the configured Record Type
(used to hold JSON Buffers
until they are pushed to the
Exporter).

The transaction was dropped
because it belonged to an
Unknown Record Type /
Protocol ID.

Created the JSON Object
Queue for the printed Record
Type / Protocol ID.

Set the Index for JSON Object
Queue (valid for ElasticSearch/
Splunk endpoints that use
indices).

The transaction was dropped
because the JSON Object
Queue could not be created
due to lack of memory.

Started the conversion of
transaction to JSON.

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

55

NetScaler Observability Exporter

Log

Anomaly: The field is indexed
but could not be found in the
table- code=<1d>

Generated record type-
<rec-type> for the
transaction

Transaction processing finished

Failed to process the
Logstream buffer because the
AppFlow codename bearing
meta records have not arrived
yet from this client

Finished processing the
Logstream buffer

JSON processing finished

Pushed the converted JSON
transactions to the Processed
Queue

Pushed all the piled up JSONs
in the Processed Queue to the
Exporter

Started exporting piled up
JSON buffers to Kafka Client

Finished exporting piled up
JSON buffers to Kafka Client

Severity

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Description

The field is indexed but could
not be found in the local meta
table.

Generated a JSON record of the
printed type for the transaction

Finished the conversion of
transaction to JSON.
Dropped the transaction
because the Code Maps have
not arrived from NetScaler
(Packet Engine).

Finished processing the
logstream bulffer.

Finished converting the
logstream buffers piled in the
queue to JSON

Pushed the converted JSON
transactions to the Processed
Queue (common queue where
the processed JSONSs of all
Record Types wait before being
handed over to the exporter).
Handed over all the JSON
transactions waiting in the
Processed Queue to the
Exporter.

Started the export of the piled
up JSON buffers in the export
queue to Kafka Client.
Finished the export of the piled
up JSON buffers in the export
queue to Kafka Client.

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

56

NetScaler Observability Exporter

Log

Pushing the JSON buffer back
to the Export Queue because of
failure in exporting it to the
Kafka Client

The Exporter dropped
<numDropped> JSON Buffers
because the Export Queue hit
its configured limit

Failed to export the JSON
Buffer to the Kafka Client
because the Kafka Topic
Manager has not been created
yet

Created Kafka Topic Manager

Kafka Topic Manager is creating
the topic- <topic>

Kafka Topic Manager failed to
create the topic- perhaps ran
out of memory

Kafka Topic Manager created
the the topic

Unable to validate the
configured topic- failed to
acquire a meta connection to
the Kafka client, perhaps ran
out of memory

Meta Request sent to the Kafka
client for topic validation

Failed to create meta
connection to the Kafka Client-
perhaps ran out of memory

Severity

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Description

Failed to export the JSON
buffer to the Kafka client,
hence adding it back to the
Export Queue.

Drop from the Export Queue
because of Rate Limiting.

Could not export JSON Buffer
to Kafka Client because the
Kafka Topic Manager is not
created yet.

Constructed the Kafka Topic
Manager (used to maintain
Kafka Client’s state).

Kafka Topic Manager is
attempting to create the
configured topic.

Kafka Topic Manager ran OOM
thus failed to create the
configured topic.

Kafka Topic Manager created
the configured topic

Kafka Topic Manager failed to
validate the topic- perhaps ran
OOM.

Kafka Topic Manager
successfully issued Meta
Request to the Kafka Client for
Topic Validation.

Failed to create meta
connection to the Kafka Client -
perhaps ran OOM.

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

57

NetScaler Observability Exporter

Log

Created meta connection to the
Kafka client-
connection-id=<id>

Reused existing meta
connection to the Kafka Client-
connection-id=<id>

Cleaned up the stale meta
connection to the Kafka Client-
connection-id=<id>

Cleaning up the stale Produce
Connection to the Kafka Client-
connection-id=<id>

Cleaned up the Produce
Connection to the Kafka client-
connection-id=<id>

Reused existing Produce
Connection to the Kafka Client-
connection-id=<id>

Cleaning up Produce
Connections for
partition=<1id>,
topic=<topic>

Forcefully cleaned active
Produce Connections

Cleaned inactive Produce
Connection

Failed to push Kafka Produce
Connection to the Stale
Connection Pool- unable to
find itin the Produce
Connection Pool!-
connection-id=<id>

Severity

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Description

Created meta connection to the
Kafka Client for the configured
topic.

Reused existing meta
connection to the Kafka Client.

Removed the erroneous meta
connection to the Kafka Client
from the Meta Connection Pool,
for the configured topic.
Removed the erroneous
produce connection to the
Kafka Client from the Produce
Connection Pool.

Removed a valid produce
connection to the Kafka Client
from the Produce Connection
Pool.

Reused existing produce
connection to the Kafka Client

Started the cleanup of produce
connections to the Kafka
Client.

Forcefully cleaned active
produce connections to the
Kafka Client during partition
cleanup.

Cleaned inactive produce
connection to the Kafka Client
during partition cleanup.
Could not find the Kafka
Produce Connection in the
Kafka Produce Connection
Pool.

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

58

NetScaler Observability Exporter

Log

Pushed Kafka Produce
Connection to the Stale
Connection Pool-
connection-id=<id>

Failed to push Kafka produce
connection to the Free
Connection Pool- unable to
find itin the Produce
Connection Pool!-
connection-id=<id>

Pushed Kafka Produce
Connection to the Free
Connection Pool-
connection-id=<id>
Cleaned up Produce
Connections for the partition
Begin cleaning up disabled
partitions for the topic
<topic>

Cleaned up disabled partition-
id=<id>

Finished cleaning up disabled
partitions

Failed to retry failed JSON files
to Kafka- the topic state is
invalid

Anomaly: Failed to retry the
Kafka JSON File

Retried a Kafka JSON File
Begin cleaning up the topics
Cleaned up the topic-

<topic>

Finished cleaning up the topics

Severity

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Description

Pushed the Kafka Produce
Connection to the Kafka
Erroneous Connection Queue.

Could not find the Kafka
Produce Connection in the
Kafka Produce Connection
Pool.

Pushed the Kafka Produce
Connection to the Kafka
Erroneous Connection Queue.

Cleaned up produce
connections for the partition.
Started cleaning up disabled
partitions.

Removed the disabled partition
from the Disabled Partition
Queue.

Finished cleaning up partitions
for the topic.

Failed to retry failes JSON files
to Kafka because the topic

state is not valid.
Failed to retry failes JSON files

to Kafka because of some
anomaly.

Pushed the Kafka JSON file to
the Kafka Client for retry.
Started cleaning up the topics
(done every 7 seconds).
Cleaned up the printed topic.

Finished cleanup up the topics.

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

59

NetScaler Observability Exporter

Log

Failed to export the JSON
Buffer to the Kafka Client
because the Kafka Topic has
not been created yet by the
Kafka Topic Manager

Pushed the Kafka JSON File to
the partition- <pid> because
the topicisin valid state
Failed to push the Kafka JSON
File to the Kafka Client because
the topicisin invalid state
Pushed the Kafka JSON Buffer
to the partition- <p-id>
because the topicisin valid
state

Failed to push the Kafka JSON
Buffer to the Kafka Client
because the topicisininvalid
state

Kafka JSON Buffer death
because of failure to send the
Produce Request to the Kafka
Client- perhaps ran out of
memory

Kafka JSON Buffer death
because of lack of Produce
Connections- perhaps ran out
of memory

Pushed Kafka JSON Buffer to

the Kafka Client
Kafka JSON File death because

of failure to send the Produce
Request to the Kafka Client-
perhaps ran out of memory
Kafka JSON File death because

of lack of Produce Connections-

perhaps ran out of memory

Severity

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Description

Could not export the JSON
Buffer to Kafka Client because
the Kafka Topic Manager has
not yet created the topic.

Exported the Kafka JSON file to
the Kafka Client.

Could not export the JSON file
to the Kafka Client because the
topicisininvalid state.
Exported the Kafka JSON Buffer
to the Kafka Client.

Could not export the JSON
Buffer to the Kafka Client
because the topicisininvalid

state.
Permanently lost Kafka JSON

buffer because of lack of
memory.

Permanently lost Kafka JSON
buffer because of lack of
memory.

Exported the Kafka JSON buffer
to the Kafka Client.
Permanently lost Kafka JSON
file because of lack of memory.

Permanently lost Kafka JSON
file because of lack of memory.

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

60

NetScaler Observability Exporter

Log

Pushed Kafka JSON File to the

Kafka Client
Kafka client rejected the

pushed JSON buffer because it
was empty

Kafka client failed to create a
produce request for the pushed
JSON buffer- perhaps ran out of
memory

Kafka client failed to create
Kafka File for the pushed JSON
buffer- perhaps ran out of
memory

Kafka Client dispatched JSON

Buffer to Kafka
Kafka client failed to create a

produce request for the pushed
JSON File- perhaps ran out of
memory

Kafka Client dispatched JSON
File to Kafka

Kafka JSON File death-
code=<errno>

Anomaly: The topic this Kafka
Connection belongs to does
not exist!

Anomaly: The partition this
Kafka Connection belongs to
does not exist!

Kafka JSON File death-
code=<errno>

Anomaly: The file was sent on
an inactive Produce
Connection

Severity

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Description

Exported the Kafka JSON file to

the Kafka Client.
Kafka Client rejected the

pushed JSON buffer because it
was empty.

Kafka Client ran OOM while
creating the produce request.

Kafka Client ran OOM while
creating the Kafka File.

Kafka Client dispatched JSON
buffer to Kafka.

Kafka Client ran OOM while
creating the produce request.

Kafka Client dispatched JSON
File to Kafka.

Permanently lost kafka file
because of the printed error
code.

Anomaly: This Kafka Produce
connection belonged to an
inexistant topic.

Anomaly: This Kafka Produce
connection belonged to an
inexistant topic.
Permanently lost kafka file
because of the printed error

code.
Anomaly: The file was sent on

an inactive produce
connection.

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

61

NetScaler Observability Exporter

Log

Unsuccessful Kafka Produce
Request (JSON) -
code=<errno>

Anomaly: Kafka Topic Died-
JSON File death

Successful Kafka Produce
Request- JSON File uploaded
Death of Kafka JSON File
during retry- the configured
retry rate is 0!

Death of old Kafka JSON File
during retry- Retry Queue limit
reached

Pushed new Kafka JSON File to
Retry Queue

Kafka Client failed to create
Topic Metadata Request-
perhaps ran out of memory
Kafka Client dispatched Topic
Metadata Request to Kafka
Failed to create Produce
Connection to the Kafka Client-
perhaps ran out of memory
Created Produce Connection to
the Kafka Client-
connection-id=<id>
Anomaly: The topic this Kafka
Meta Connection belongs to
does not exist!

Invalid Topic Metadata
response received from Kafka-
code=<errno>,
empty=<true/false>,
status=<sent/not sent>

The Topic Metadata response
received from Kafka bore no
topics

Severity

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Description

Unsuccessful Export of Kafka
(JSON) File.

Anomaly: Kafka Topic Died-
JSON File death.
Uploaded JSON File to Kafka.

Dropped the new JSON File
because KafkaRetryRate is 0.

Dropped the old JSON File
because the Retry Queue was
full (upto 32K files are stored).
Pushed new Kafka JSON File to
Retry Queue.

Kafka client ran OOM.

Kafka Client dispatched Topic
Metadata Request to Kafka.
Kafka client ran OOM.

Kafka client successfuly
created Produce Connection.

Anomaly: This Kafka Meta
connection belonged to an
inexistant topic.

Topic state invalidated.

Topic state invalidated.

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

62

NetScaler Observability Exporter

Log

Kafka Client failed to create the
partition- <id> for the topic-
<topic>, perhapsran out of
memory

Kafka Client created partition
with leader=<leader>,
partition-id=<id>,
topic=<topic> : topic state is
now validated

Kafka Client failed to find a
valid partition for the topic-
<topic> invalidating the
topic state

Rare condition: recreating a
partition with active Produce

Connections to the Kafka client-

disabling the older partition
and creating a new one-
partition-id=<id>,
topic=<topic>

Kafka Client recreated partition
with leader=<leader>,
partition-id=<id>,
topic=<topic> : topic state s
now validated

Kafka Client setting partition-
<id> as leaderless,
topic=<topic>

Kafka Client setting partition-
<id> as having leader,
topic=<topic>

No leader exists for any
partition of the topic-
<topic>,invalidating its state

Severity

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Debug

Description

Kafka client ran OOM

Kafka client created a partition.

Kafka client failed to find a
suitable partition for the topic-
thus invalidated its state.

The leader of a partition
changed while a produce
connection was actively
pushing a file to that partition
on Kafka- thus disabling the
partition and creating a new
one inits place.

Kafka client recreated a
partition.

Found no leader for the printed
topic partition.

Found leader for the printed
topic partition.

Found no leader for the
configured topic- invalidating
its state.

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

63

NetScaler Observability Exporter

Log

Kafka Client received a valid
Topic Metadata Response from
Kafka- topic <topic> has
been validated

Received a Non-POST request
for auditlogs—only POST is
supported, dropping it

x-appflow-id header not
present in the auditlog POST
request —dropping it

The requestor is not authorized
to POST auditlogs —dropping it

Received Auditlog request

Received a Non-Post request
for events —only POST is
supported, dropping it

x-appflow-id header not
present in the event POST
request —dropping it

The requestor is not authorized
to POST events —dropping it

Received Event Request

Death of empty auditlog/event
buffer

Death of event/ auditlog buffer
because of lack of memory
Processed an event/ auditlog

Death of an obese event/
auditlog

Death of event/auditlog buffer
due to JSON parsing error
Death of <num>
events/auditlogs during
processing

Severity

Debug

Debug

Debug

Debug

Debug
Debug

Debug

Debug

Debug
Debug

Debug

Debug
Debug

Debug

Debug

Description

Topic state validated.

Received a Non-POST request
for auditlogs —only POST is
supported for this URL,
dropping it.

x-appflow-id header not
present in the POST request for
auditlogs —dropping it.

The requestor is not authorized
to POST auditlogs —dropping it.
Received Auditlog request.

Received a Non-Post request
for events —only POST is
supported for this URL,
dropping it.

x-appflow-id header not
present in the POST request for
events —dropping it.

The requestor is not authorized
to POST events —dropping it.

Received Event Request.

Empty buffers are not exported.

Ran OOM.

Processed an Event/ Auditlog.

One single Auditlog/ Event was
too large (exceeded 32 KiB).
Death of event/auditlog buffer
due to JSON parsing error.
Some auditlogs/ events dies
during processing.

© 1999-2024 Cloud Software Group, Inc. All rights reserved.

64

Log Severity Description

Pushed <num> event/auditlog Debug Pushed some events/ auditlogs
JSON buffers to the Export to the Export Queue.
Queue

NetScaler Observability Exporter

net)Sca Ier © 2024 Cloud Software Group, Inc. All rights reserved. Cloud Software Group, the Cloud Software Group logo, and other

marks appearing herein are property of Cloud Software Group, Inc. and/or one or more of its subsidiaries, and may be
registered with the U.S. Patent and Trademark Office and in other countries. All other marks are the property of their

respective owner(s).

© 1999-2024 Cloud Software Group, Inc. All rights reserved. 66

	Release notes
	NetScaler Observability Exporter
	Deploy NetScaler Observability Exporter
	NetScaler Observability Exporter with Zipkin as endpoint
	NetScaler Observability Exporter with Prometheus and Grafana
	NetScaler Observability Exporter with Elasticsearch as endpoint
	NetScaler Observability Exporter with Kafka as endpoint
	NetScaler Observability Exporter with Splunk Enterprise as endpoint
	NetScaler Observability Exporter troubleshooting
	Description of configuration parameters
	Support for container logging

