-
Pattern Sets and Data Sets
-
-
Advanced Policy Expressions: Working with Dates, Times, and Numbers
-
Advanced Policy Expressions: Parsing HTTP, TCP, and UDP Data
-
Advanced Policy Expressions: IP and MAC Addresses, Throughput, VLAN IDs
-
-
This content has been machine translated dynamically.
Dieser Inhalt ist eine maschinelle Übersetzung, die dynamisch erstellt wurde. (Haftungsausschluss)
Cet article a été traduit automatiquement de manière dynamique. (Clause de non responsabilité)
Este artículo lo ha traducido una máquina de forma dinámica. (Aviso legal)
此内容已经过机器动态翻译。 放弃
このコンテンツは動的に機械翻訳されています。免責事項
이 콘텐츠는 동적으로 기계 번역되었습니다. 책임 부인
Este texto foi traduzido automaticamente. (Aviso legal)
Questo contenuto è stato tradotto dinamicamente con traduzione automatica.(Esclusione di responsabilità))
This article has been machine translated.
Dieser Artikel wurde maschinell übersetzt. (Haftungsausschluss)
Ce article a été traduit automatiquement. (Clause de non responsabilité)
Este artículo ha sido traducido automáticamente. (Aviso legal)
この記事は機械翻訳されています.免責事項
이 기사는 기계 번역되었습니다.책임 부인
Este artigo foi traduzido automaticamente.(Aviso legal)
这篇文章已经过机器翻译.放弃
Questo articolo è stato tradotto automaticamente.(Esclusione di responsabilità))
Translation failed!
Pattern sets and data sets
Policy expressions for string matching operations on a large set of string patterns tend to become long and complex. Resources consumed by the evaluation of such complex expressions are significant in terms of processing cycles, memory, and configuration size. You can create simpler, less resource-intensive expressions by using pattern matching.
Depending on the type of patterns that you want to match, you can use one of the following features to implement pattern matching:
- A pattern set is an array of indexed patterns used for string matching during default syntax policy evaluation. Example of a pattern set: image types {svg, bmp, PNG, GIF, tiff, jpg}.
- A data set is a specialized form of pattern set. It is an array of patterns of types number (integer), IPv4 address, or IPv6 address.
The difference between a patset
and a dataset
is that in a dataset
we compare the boundary condition. For example, if the input string is 1.1.1.11 and supposes that the 1.1.1.1 pattern is bound to a patset
and a dataset
of IPv4 type, then a patset
and dataset is configured to check whether the IP address is present in the request. After evaluation, patset
returns that the 1.1.1.1 is present in the input, but dataset
evaluation is false. This is because of a boundary check-in which the IP address is not been part of some other IP address. It means, after the bound pattern there must not be any integer.
Often, you can use either pattern sets or data sets. However, in cases where you want specific matches for numerical data or IPv4 and IPv6 addresses, you must use data sets.
Notes:
- Pattern sets and data sets can be used only in default syntax policies.
- From release 13.1 build 42.x and later, you can bind 50000 patterns to a pattern set. With the pattern set file, only 10000 patterns can be bound to a pattern set. Also, If the pattern set is used in streaming, then only 5000 patterns can be bound to that pattern set. A pattern set for streaming is used in the rewrite action search parameter, HTTP body, or TCP payload based expression.
Share
Share
In this article
This Preview product documentation is Cloud Software Group Confidential.
You agree to hold this documentation confidential pursuant to the terms of your Cloud Software Group Beta/Tech Preview Agreement.
The development, release and timing of any features or functionality described in the Preview documentation remains at our sole discretion and are subject to change without notice or consultation.
The documentation is for informational purposes only and is not a commitment, promise or legal obligation to deliver any material, code or functionality and should not be relied upon in making Cloud Software Group product purchase decisions.
If you do not agree, select I DO NOT AGREE to exit.