-
Getting Started with NetScaler
-
Deploy a NetScaler VPX instance
-
Optimize NetScaler VPX performance on VMware ESX, Linux KVM, and Citrix Hypervisors
-
Apply NetScaler VPX configurations at the first boot of the NetScaler appliance in cloud
-
Configure simultaneous multithreading for NetScaler VPX on public clouds
-
Install a NetScaler VPX instance on Microsoft Hyper-V servers
-
Install a NetScaler VPX instance on Linux-KVM platform
-
Prerequisites for installing NetScaler VPX virtual appliances on Linux-KVM platform
-
Provisioning the NetScaler virtual appliance by using OpenStack
-
Provisioning the NetScaler virtual appliance by using the Virtual Machine Manager
-
Configuring NetScaler virtual appliances to use SR-IOV network interface
-
Configure a NetScaler VPX on KVM hypervisor to use Intel QAT for SSL acceleration in SR-IOV mode
-
Configuring NetScaler virtual appliances to use PCI Passthrough network interface
-
Provisioning the NetScaler virtual appliance by using the virsh Program
-
Provisioning the NetScaler virtual appliance with SR-IOV on OpenStack
-
Configuring a NetScaler VPX instance on KVM to use OVS DPDK-Based host interfaces
-
-
Deploy a NetScaler VPX instance on AWS
-
Deploy a VPX high-availability pair with elastic IP addresses across different AWS zones
-
Deploy a VPX high-availability pair with private IP addresses across different AWS zones
-
Protect AWS API Gateway using the NetScaler Web Application Firewall
-
Configure a NetScaler VPX instance to use SR-IOV network interface
-
Configure a NetScaler VPX instance to use Enhanced Networking with AWS ENA
-
Deploy a NetScaler VPX instance on Microsoft Azure
-
Network architecture for NetScaler VPX instances on Microsoft Azure
-
Configure multiple IP addresses for a NetScaler VPX standalone instance
-
Configure a high-availability setup with multiple IP addresses and NICs
-
Configure a high-availability setup with multiple IP addresses and NICs by using PowerShell commands
-
Deploy a NetScaler high-availability pair on Azure with ALB in the floating IP-disabled mode
-
Configure a NetScaler VPX instance to use Azure accelerated networking
-
Configure HA-INC nodes by using the NetScaler high availability template with Azure ILB
-
Configure a high-availability setup with Azure external and internal load balancers simultaneously
-
Configure a NetScaler VPX standalone instance on Azure VMware solution
-
Configure a NetScaler VPX high availability setup on Azure VMware solution
-
Configure address pools (IIP) for a NetScaler Gateway appliance
-
Deploy a NetScaler VPX instance on Google Cloud Platform
-
Deploy a VPX high-availability pair on Google Cloud Platform
-
Deploy a VPX high-availability pair with external static IP address on Google Cloud Platform
-
Deploy a single NIC VPX high-availability pair with private IP address on Google Cloud Platform
-
Deploy a VPX high-availability pair with private IP addresses on Google Cloud Platform
-
Install a NetScaler VPX instance on Google Cloud VMware Engine
-
-
Solutions for Telecom Service Providers
-
Load Balance Control-Plane Traffic that is based on Diameter, SIP, and SMPP Protocols
-
Provide Subscriber Load Distribution Using GSLB Across Core-Networks of a Telecom Service Provider
-
Authentication, authorization, and auditing application traffic
-
Basic components of authentication, authorization, and auditing configuration
-
Web Application Firewall protection for VPN virtual servers and authentication virtual servers
-
On-premises NetScaler Gateway as an identity provider to Citrix Cloud
-
Authentication, authorization, and auditing configuration for commonly used protocols
-
Troubleshoot authentication and authorization related issues
-
-
-
-
-
-
Configure DNS resource records
-
Configure NetScaler as a non-validating security aware stub-resolver
-
Jumbo frames support for DNS to handle responses of large sizes
-
Caching of EDNS0 client subnet data when the NetScaler appliance is in proxy mode
-
Use case - configure the automatic DNSSEC key management feature
-
Use Case - configure the automatic DNSSEC key management on GSLB deployment
-
-
-
Persistence and persistent connections
-
Advanced load balancing settings
-
Gradually stepping up the load on a new service with virtual server–level slow start
-
Protect applications on protected servers against traffic surges
-
Retrieve location details from user IP address using geolocation database
-
Use source IP address of the client when connecting to the server
-
Use client source IP address for backend communication in a v4-v6 load balancing configuration
-
Set a limit on number of requests per connection to the server
-
Configure automatic state transition based on percentage health of bound services
-
-
Use case 2: Configure rule based persistence based on a name-value pair in a TCP byte stream
-
Use case 3: Configure load balancing in direct server return mode
-
Use case 6: Configure load balancing in DSR mode for IPv6 networks by using the TOS field
-
Use case 7: Configure load balancing in DSR mode by using IP Over IP
-
Use case 10: Load balancing of intrusion detection system servers
-
Use case 11: Isolating network traffic using listen policies
-
Use case 12: Configure Citrix Virtual Desktops for load balancing
-
Use case 13: Configure Citrix Virtual Apps and Desktops for load balancing
-
Use case 14: ShareFile wizard for load balancing Citrix ShareFile
-
Use case 15: Configure layer 4 load balancing on the NetScaler appliance
-
-
-
-
-
Integration with IPS or NGFW as inline devices
-
-
Authentication and authorization for System Users
-
-
-
Configuring a CloudBridge Connector Tunnel between two Datacenters
-
Configuring CloudBridge Connector between Datacenter and AWS Cloud
-
Configuring a CloudBridge Connector Tunnel Between a Datacenter and Azure Cloud
-
Configuring CloudBridge Connector Tunnel between Datacenter and SoftLayer Enterprise Cloud
-
Configuring a CloudBridge Connector Tunnel Between a NetScaler Appliance and Cisco IOS Device
-
CloudBridge Connector Tunnel Diagnostics and Troubleshooting
This content has been machine translated dynamically.
Dieser Inhalt ist eine maschinelle Übersetzung, die dynamisch erstellt wurde. (Haftungsausschluss)
Cet article a été traduit automatiquement de manière dynamique. (Clause de non responsabilité)
Este artículo lo ha traducido una máquina de forma dinámica. (Aviso legal)
此内容已经过机器动态翻译。 放弃
このコンテンツは動的に機械翻訳されています。免責事項
이 콘텐츠는 동적으로 기계 번역되었습니다. 책임 부인
Este texto foi traduzido automaticamente. (Aviso legal)
Questo contenuto è stato tradotto dinamicamente con traduzione automatica.(Esclusione di responsabilità))
This article has been machine translated.
Dieser Artikel wurde maschinell übersetzt. (Haftungsausschluss)
Ce article a été traduit automatiquement. (Clause de non responsabilité)
Este artículo ha sido traducido automáticamente. (Aviso legal)
この記事は機械翻訳されています.免責事項
이 기사는 기계 번역되었습니다.책임 부인
Este artigo foi traduzido automaticamente.(Aviso legal)
这篇文章已经过机器翻译.放弃
Questo articolo è stato tradotto automaticamente.(Esclusione di responsabilità))
Translation failed!
Integration with IPS or NGFW as inline devices using SSL forward proxy
Security devices such as Intrusion Prevention System (IPS) and Next Generation Firewall (NGFW) protect servers from network attacks. These devices can inspect live traffic and are typically deployed in layer 2 inline mode. The SSL forward proxy appliance provides security of users and the enterprise network when accessing resources on the internet.
An SSL forward proxy appliance can be integrated with one or more inline devices to prevent threats and provide advanced security protection. The inline devices can be any security device, such as IPS and NGFW.
Some use cases where you can benefit by using the SSL forward proxy appliance and inline device integration are:
-
Inspecting encrypted traffic: Most IPS and NGFW appliances bypass encrypted traffic, which can leave servers vulnerable to attacks. An SSL forward proxy appliance can decrypt traffic and send it to the inline devices for inspection. This integration enhances the customer’s network security.
-
Offloading inline devices from TLS/SSL processing: TLS/SSL processing is expensive, which can result in high CPU utilization in IPS or NGFW appliances if they also decrypt the traffic. An SSL forward proxy appliance helps in offloading TLS/SSL processing from inline devices. As a result, inline devices can inspect a higher volume of traffic.
-
Loading balancing inline devices: If you have configured multiple inline devices to manage heavy traffic, an SSL forward proxy appliance can load balance and distribute traffic evenly to these devices.
-
Smart selection of traffic: Instead of sending all the traffic to the inline device for inspection, the appliance does a smart selection of traffic. For example, it skips sending text files for inspection to the inline devices.
SSL forward proxy integration with inline devices
The following diagram shows how an SSL forward proxy is integrated with inline security devices.
When you integrate inline devices with the SSL forward proxy appliance, the components interact as follows:
-
A client sends a request to an SSL forward proxy appliance.
-
The appliance sends the data to the inline device for content inspection based on the policy evaluation. For HTTPS traffic, the appliance decrypts the data and sends it in plain text to the inline device for content inspection.
Note
If there are two or more inline devices, the appliance load balances the devices and sends the traffic.
- Add a content switching or an HTTP/HTTPS load balancing virtual server.
- The inline device inspects the data for threats and decides whether to drop, reset, or send the data back to the appliance.
- If there are security threats, the device modifies the data and sends it to the appliance.
- For HTTPS traffic, the appliance re-encrypts the data and forwards the request to the back-end server.
- The back-end server sends the response to the appliance.
- The appliance again decrypts the data and sends it to the inline device for inspection.
- The inline device inspects the data. If there are security threats, the device modifies the data and sends it to the appliance.
- The appliance re-encrypts the data and sends the response to the client.
Configuring inline device integration
You can configure an SSL forward proxy appliance with an inline device in three different ways as follows:
Scenario 1: Using a single inline device
To integrate a security device (IPS or NGFW) in inline mode, you must enable content inspection and MAC-based forwarding (MBF) in global mode on the SSL forward proxy appliance. Then, add a content inspection profile, a TCP service, a content inspection action for inline devices to reset, block, or drop the traffic based on inspection. Also add a content inspection policy that the appliance uses to decide the subset of traffic to send to the inline devices. Finally, configure the proxy virtual server with layer 2 connection enabled on the server and bind the content inspection policy to this proxy virtual server.
Perform the following steps:
- Enable MAC-based forwarding (MPF) mode.
- Enable the content inspection feature.
- Add a content inspection profile for the service. The content inspection profile contains the inline device settings that integrate the SSL forward proxy appliance with an inline device.
-
(Optional) Add a TCP monitor.
Note:
Transparent devices do not have an IP address. Therefore, to perform health checks, you must explicitly bind a monitor.
- Add a service. A service represents an inline device.
- (Optional) Bind the service to the TCP monitor.
- Add a content inspection action for the service.
- Add a content inspection policy and specify the action.
- Add an HTTP or HTTPS proxy (content switching) virtual server.
- Bind the content inspection policy to the virtual server.
Configure using the CLI
Type the following commands at the command prompt. Examples are given after most commands.
- Enable MBF.
enable ns mode mbf
- Enable the feature.
enable ns feature contentInspection
- Add a content inspection profile.
add contentInspection profile <name> -type InlineInspection -egressInterface <interface_name> -ingressInterface <interface_name>[-egressVlan <positive_integer>] [-ingressVlan <positive_integer>]
Example:
add contentInspection profile ipsprof -type InlineInspection -ingressinterface “1/2” -egressInterface “1/3”
- Add a service. Specify a dummy IP address that is not owned by any of the devices, including the inline devices. Set
use source IP address
(USIP) to YES. Setuseproxyport
to NO. By default, health monitoring is ON, bind the service to a health monitor, and also set the TRANSPARENT option in the monitor ON.
add service <service_name> <IP> TCP * - contentinspectionProfileName <Name> -healthMonitor YES -usip YES –useproxyport NO
Example:
add service ips_service 198.51.100.2 TCP * -healthMonitor YES -usip YES -useproxyport NO -contentInspectionProfileName ipsprof
-
Add a health monitor. By default the health monitor is turned on and you also have the option to disable it, if necessary. At the command prompt, type:
add lb monitor <name> TCP -destIP <ip address> -destPort 80 -transparent <YES, NO>
Example:
add lb monitor ips_tcp TCP -destIP 192.168.10.2 -destPort 80 -transparent YES
- Bind the service to the health monitor
After configuring the health monitor, you must bind the service to the health monitor. At the command prompt, type:
bind service <name> -monitorName <name>
Example:
bind service ips_svc -monitorName ips_tcp
- Add a content inspection action.
add contentInspection action <name> -type INLINEINSPECTION -serverName <string>
Example:
add contentInspection action ips_action -type INLINEINSPECTION -serverName ips_service
- Add a content inspection policy.
add contentInspection policy <name> -rule <expression> -action <string>
Example:
add contentInspection policy ips_pol -rule "HTTP.REQ.METHOD.NE(\"CONNECT\")" -action ips_action
- Add a proxy virtual server.
add cs vserver <name> PROXY <IPAddress> <port> -cltTimeout <secs> -l2Conn ON
Note:
Load balancing virtual servers of type HTTP/SSL are also supported.
Example:
add cs vserver transparentcs PROXY * * -cltTimeout 180 -l2Conn ON
- Bind the policy to the virtual server.
bind cs vserver <name> -policyName <string> -priority <positive_integer> -gotoPriorityExpression <expression> -type REQUEST
Example:
bind cs vserver explicitcs -policyName ips_pol -priority 1 -gotoPriorityExpression END -type REQUEST
Configure using the GUI
-
Navigate to System > Settings. In Modes and Features, click Configure Modes.
-
In the Configure Modes page, select the MAC based forwarding option.
-
Navigate to System > Settings. In Modes and Features, click Configure Advanced Features.
-
In the Configure Advanced Features page, select the Content Inspection option.
-
Navigate to Security > Content Inspection > Content Inspection Profiles. Click Add.
-
Navigate to Load Balancing > Services > Add and add a service.
-
In Advanced Settings, click Profiles. In the CI Profile Name list, select the content inspection profile created earlier.
-
In Service Settings, set Use Source IP Address to YES and Use Proxy Port to No. In Basic Settings, set Health Monitoring to NO.
-
Turn on health monitoring only if you bind this service to a TCP monitor. If you bind a monitor to a service, then set the TRANSPARENT option in the monitor to ON.
-
-
Navigate to Security > Proxy Virtual Servers> Add. Specify a name, IP address, and port. In Advanced Settings, select Policies. Click the “+” sign.
-
In Choose Policy select Content Inspection. Click Continue.
-
Click Add. Specify a name. In Action, click Add.
-
Specify a name. In Type, select INLINEINSPECTION. In Server Name, select the TCP service created earlier.
-
Click Create. Specify the rule and click Create.
-
Click Bind.
-
Click Done.
Scenario 2: Load balance multiple inline devices with dedicated interfaces
If you are using two or more inline devices, you can load balance the devices using different content inspection services with dedicated interfaces. In this case, the SSL forward proxy appliance load balances the subset of traffic sent to each device through a dedicated interface. The subset is decided based on the policies configured. For example, TXT or image files might not be sent for inspection to the inline devices.
The basic configuration remains the same as in scenario 1. However, you must create a content inspection profile for each inline device and specify the ingress and egress interface in each profile. Add a service for each inline device. Add a load balancing virtual server and specify it in the content inspection action. Perform the following extra steps:
- Add content inspection profiles for each service.
- Add a service for each device.
- Add a load balancing virtual server.
- Specify the load balancing virtual server in the content inspection action.
Configure using the CLI
Type the following commands at the command prompt. Examples are given after each command.
- Enable MBF.
enable ns mode mbf
- Enable the feature.
enable ns feature contentInspection
- Add profile 1 for service 1.
add contentInspection profile <name> -type InlineInspection -egressInterface <interface_name> -ingressInterface <interface_name>[-egressVlan <positive_integer>] [-ingressVlan <positive_integer>]
Example:
add contentInspection profile ipsprof1 -type InlineInspection -ingressInterface "1/2" -egressInterface "1/3"
- Add profile 2 for service 2.
add contentInspection profile <name> -type InlineInspection -egressInterface <interface_name> -ingressInterface <interface_name>[-egressVlan <positive_integer>] [-ingressVlan <positive_integer>]
Example:
add contentInspection profile ipsprof2 -type InlineInspection -ingressInterface "1/4" -egressInterface "1/5"
- Add service 1. Specify a dummy IP address that is not owned by any of the devices, including the inline devices. Set
use source IP address
(USIP) to YES. Setuseproxyport
to NO. Turn on health monitoring with TCP monitor with TRANSPARENT option set ON.
add service <service_name> <IP> TCP * - contentinspectionProfileName <Name> -healthMonitor NO -usip YES –useproxyport NO
Example:
add service ips_service1 192.168.10.2 TCP * -healthMonitor NO -usip YES -useproxyport NO -contentInspectionProfileName ipsprof1
- Add service 2. Specify a dummy IP address that is not owned by any of the devices, including the inline devices. Set
use source IP address
(USIP) to YES. Setuseproxyport
to NO. Turn on health monitoring with TRANSPARENT option set ON.
add service <service_name> <IP> TCP * - contentinspectionProfileName <Name> -healthMonitor NO -usip YES –useproxyport NO
Example:
add service ips_service2 192.168.10.3 TCP * -healthMonitor NO -usip YES -useproxyport NO -contentInspectionProfileName ipsprof2
- Add a load balancing virtual server.
add lb vserver <LB_VSERVER_NAME> TCP <IP> <port>
Example:
add lb vserver lb_inline_vserver TCP 192.0.2.100 *
- Bind the services to the load balancing virtual server.
bind lb vserver <LB_VSERVER_NAME> <service_name>
bind lb vserver <LB_VSERVER_NAME> <service_name>
Example:
bind lb vserver lb_inline_vserver ips_service1
bind lb vserver lb_inline_vserver ips_service2
- Specify the load balancing virtual server in the content inspection action.
add contentInspection action <name> -type INLINEINSPECTION -serverName <string>
Example:
add contentInspection action ips_action -type INLINEINSPECTION -serverName lb_inline_vserver
- Add a content inspection policy. Specify the content inspection action in the policy.
add contentInspection policy <name> -rule <expression> -action <string>
Example:
add contentInspection policy ips_pol -rule "HTTP.REQ.METHOD.NE(\"CONNECT\")" -action ips_action
- Add a proxy virtual server.
add cs vserver <name> PROXY <IPAddress> <port> -l2Conn ON
Example:
add cs vserver transparentcs PROXY * * -l2Conn ON
- Bind the content inspection policy to the virtual server.
bind cs vserver <name> -policyName <string> -priority <positive_integer> -gotoPriorityExpression <expression> -type REQUEST
Example:
bind cs vserver explicitcs -policyName ips_pol -priority 1 -gotoPriorityExpression END -type REQUEST
Configuration using the GUI
- Navigate to System > Settings. In Modes and Features, click Configure Modes.
-
In the Configure Modes page, select the MAC based forwarding option.
-
Navigate to System > Settings. In Modes and Features, click Configure Advanced Features.
-
In the Configure Advanced Features page, select the Content Inspection option.
-
Navigate to Security > Content Inspection > Content Inspection Profiles. Click Add.
-
Specify the ingress and egress interfaces.
-
Create two profiles. Specify a different ingress and egress interface in the second profile.
-
Navigate to Load Balancing > Services > Add and add a service.
-
In Advanced Settings, click Profiles. In the CI Profile Name list, select the content inspection profile created earlier.
-
In Service Settings, set Use Source IP Address to YES and Use Proxy Port to No. In Basic Settings, set Health Monitoring to NO.
-
Turn on health monitoring only if you bind this service to a TCP monitor. If you bind a monitor to a service, then set the TRANSPARENT option in the monitor to ON.
Create two services. Specify dummy IP addresses that are not owned by any of the devices, including the inline devices.
-
-
Navigate to Load Balancing > Virtual Servers > Add. Create a TCP load balancing virtual server and Click OK.
-
Click the Load Balancing Virtual Server Service Binding section. In Service Binding, click the arrow in Select Service. Select the two services created earlier, and click Select. Click Bind.
-
Navigate to Security > Proxy Virtual Servers> Add. Specify a name, IP address, and port. In Advanced Settings, select Policies. Click the “+” sign.
-
In Choose Policy select Content Inspection. Click Continue.
-
Click Add. Specify a name. In Action, click Add.
-
Specify a name. In Type, select INLINEINSPECTION. In Server Name, select the load balancing virtual server created earlier.
-
Click Create. Specify the rule and click Create.
-
Click Bind.
- Click Done.
Scenario 3: Load balance multiple inline devices with shared interfaces
If you are using two or more inline devices, you can load balance the devices using different content inspection services with shared interfaces. In this case, the SSL forward proxy appliance load balances the subset of traffic sent to each device through a shared interface. The subset is decided based on the policies configured. For example, TXT or image files might not be sent for inspection to the inline devices.
The basic configuration remains the same as in scenario 2. For this scenario, bind the interfaces to different VLANs to segregate the traffic for each inline device. Specify the VLANs in the content inspection profiles. Perform the following extra steps:
-
Bind the shared interfaces to different VLANs.
-
Specify the ingress and egress VLANs in the content inspection profiles.
Configuration using the CLI
Type the following commands at the command prompt. Examples are given after each command.
- Enable MBF.
enable ns mode mbf
- Enable the feature.
enable ns feature contentInspection
-
Bind the shared interfaces to different VLANs.
bind vlan <id> -ifnum <interface> -tagged
Example:
bind vlan 100 –ifnum 1/2 tagged
bind vlan 200 –ifnum 1/3 tagged
bind vlan 300 –ifnum 1/2 tagged
bind vlan 400 –ifnum 1/3 tagged
<!--NeedCopy-->
- Add profile 1 for service 1. Specify the ingress and egress VLANs in the profile.
add contentInspection profile <name> -type InlineInspection -egressInterface <interface_name> -ingressInterface <interface_name>[-egressVlan <positive_integer>] [-ingressVlan <positive_integer>]
Example:
add contentInspection profile ipsprof1 -type InlineInspection -egressInterface “1/3” -ingressinterface “1/2” –egressVlan 100 -ingressVlan 300
- Add profile 2 for service 2. Specify the ingress and egress VLANs in the profile.
add contentInspection profile <name> -type InlineInspection -egressInterface <interface_name> -ingressInterface <interface_name>[-egressVlan <positive_integer>] [-ingressVlan <positive_integer>]
Example:
add contentInspection profile ipsprof2 -type InlineInspection -egressInterface “1/3” -ingressinterface “1/2” –egressVlan 200 -ingressVlan 400
- Add service 1.
add service <service_name> <IP> TCP * - contentinspectionProfileName <Name> -healthMonitor NO -usip YES –useproxyport NO
Example:
add service ips_service1 192.168.10.2 TCP * -healthMonitor NO -usip YES -useproxyport NO -contentInspectionProfileName ipsprof1
- Add service 2.
add service <service_name> <IP> TCP * - contentinspectionProfileName <Name> -healthMonitor NO -usip YES –useproxyport NO
Example:
add service ips_service2 192.168.10.3 TCP * -healthMonitor NO -usip YES -useproxyport NO -contentInspectionProfileName ipsprof2
- Add a load balancing virtual server.
add lb vserver <LB_VSERVER_NAME> TCP <IP> <port>
Example:
add lb vserver lb_inline_vserver TCP 192.0.2.100 *
- Bind the services to the load balancing virtual server.
bind lb vserver <LB_VSERVER_NAME> <service_name>
bind lb vserver <LB_VSERVER_NAME> <service_name>
Example:
bind lb vserver lb_inline_vserver ips_service1
bind lb vserver lb_inline_vserver ips_service2
- Specify the load balancing virtual server in the content inspection action.
add contentInspection action <name> -type INLINEINSPECTION -serverName <string>
Example:
add contentInspection action ips_action -type INLINEINSPECTION -serverName lb_inline_vserver
- Add a content inspection policy. Specify the content inspection action in the policy.
add contentInspection policy <name> -rule <expression> -action <string>
Example:
add contentInspection policy ips_pol -rule "HTTP.REQ.METHOD.NE(\"CONNECT\")" -action ips_action
- Add a proxy virtual server.
add cs vserver <name> PROXY <IPAddress> <port> -l2Conn ON
Example:
add cs vserver transparentcs PROXY * * -l2Conn ON
- Bind the content inspection policy to the virtual server.
bind cs vserver <name> -policyName <string> -priority <positive_integer> -gotoPriorityExpression <expression> -type REQUEST
Example:
bind cs vserver explicitcs -policyName ips_pol -priority 1 -gotoPriorityExpression END -type REQUEST
Configuration using the GUI
-
Navigate to System > Settings. In Modes and Features, click Configure Modes.
-
In the Configure Modes page, select the MAC based forwarding option.
-
Navigate to System > Settings. In Modes and Features, click Configure Advanced Features.
-
In the Configure Advanced Features page, select the Content Inspection option.
-
Navigate to System > Network > VLANs > Add. Add four VLANs and tag them to the interfaces.
-
Navigate to Security > Content Inspection > Content Inspection Profiles. Click Add.
-
Specify the ingress and egress VLANs.
-
Create another profiles. Specify a different ingress and egress VLAN in the second profile.
-
Navigate to Load Balancing > Services > Add and add a service.
-
In Advanced Settings, click Profiles. In the CI Profile Name list, select the content inspection profile created earlier.
-
In Service Settings, set Use Source IP Address to YES and Use Proxy Port to No. In Basic Settings, set Health Monitoring to NO.
-
Turn on health monitoring only if you bind this service to a TCP monitor. If you bind a monitor to a service, then set the TRANSPARENT option in the monitor to ON.
Create two services. Specify dummy IP addresses that are not owned by any of the devices, including the inline devices. Specify profile 1 in service 1, and profile 2 in service 2.
-
-
Navigate to Load Balancing > Virtual Servers > Add. Create a TCP load balancing virtual server and Click OK.
-
Click the Load Balancing Virtual Server Service Binding section. In Service Binding, click the arrow in Select Service. Select the two services created earlier, and click Select. Click Bind.
-
Navigate to Security > Proxy Virtual Servers> Add. Specify a name, IP address, and port. In Advanced Settings, select Policies. Click the “+” sign.
-
In Choose Policy select Content Inspection. Click Continue.
-
Click Add. Specify a name. In Action, click Add.
-
Specify a name. In Type, select INLINEINSPECTION. In Server Name, select the load balancing virtual server created earlier.
- Click Create. Specify the rule and click Create.
- Click Bind.
- Click Done.
Share
Share
This Preview product documentation is Cloud Software Group Confidential.
You agree to hold this documentation confidential pursuant to the terms of your Cloud Software Group Beta/Tech Preview Agreement.
The development, release and timing of any features or functionality described in the Preview documentation remains at our sole discretion and are subject to change without notice or consultation.
The documentation is for informational purposes only and is not a commitment, promise or legal obligation to deliver any material, code or functionality and should not be relied upon in making Cloud Software Group product purchase decisions.
If you do not agree, select I DO NOT AGREE to exit.