-
Getting Started with NetScaler
-
Deploy a NetScaler VPX instance
-
Optimize NetScaler VPX performance on VMware ESX, Linux KVM, and Citrix Hypervisors
-
Apply NetScaler VPX configurations at the first boot of the NetScaler appliance in cloud
-
Configure simultaneous multithreading for NetScaler VPX on public clouds
-
Install a NetScaler VPX instance on Microsoft Hyper-V servers
-
Install a NetScaler VPX instance on Linux-KVM platform
-
Prerequisites for installing NetScaler VPX virtual appliances on Linux-KVM platform
-
Provisioning the NetScaler virtual appliance by using OpenStack
-
Provisioning the NetScaler virtual appliance by using the Virtual Machine Manager
-
Configuring NetScaler virtual appliances to use SR-IOV network interface
-
Configure a NetScaler VPX on KVM hypervisor to use Intel QAT for SSL acceleration in SR-IOV mode
-
Configuring NetScaler virtual appliances to use PCI Passthrough network interface
-
Provisioning the NetScaler virtual appliance by using the virsh Program
-
Provisioning the NetScaler virtual appliance with SR-IOV on OpenStack
-
Configuring a NetScaler VPX instance on KVM to use OVS DPDK-Based host interfaces
-
-
Deploy a NetScaler VPX instance on AWS
-
Deploy a VPX high-availability pair with elastic IP addresses across different AWS zones
-
Deploy a VPX high-availability pair with private IP addresses across different AWS zones
-
Protect AWS API Gateway using the NetScaler Web Application Firewall
-
Configure a NetScaler VPX instance to use SR-IOV network interface
-
Configure a NetScaler VPX instance to use Enhanced Networking with AWS ENA
-
Deploy a NetScaler VPX instance on Microsoft Azure
-
Network architecture for NetScaler VPX instances on Microsoft Azure
-
Configure multiple IP addresses for a NetScaler VPX standalone instance
-
Configure a high-availability setup with multiple IP addresses and NICs
-
Configure a high-availability setup with multiple IP addresses and NICs by using PowerShell commands
-
Deploy a NetScaler high-availability pair on Azure with ALB in the floating IP-disabled mode
-
Configure a NetScaler VPX instance to use Azure accelerated networking
-
Configure HA-INC nodes by using the NetScaler high availability template with Azure ILB
-
Configure a high-availability setup with Azure external and internal load balancers simultaneously
-
Configure a NetScaler VPX standalone instance on Azure VMware solution
-
Configure a NetScaler VPX high availability setup on Azure VMware solution
-
Configure address pools (IIP) for a NetScaler Gateway appliance
-
Deploy a NetScaler VPX instance on Google Cloud Platform
-
Deploy a VPX high-availability pair on Google Cloud Platform
-
Deploy a VPX high-availability pair with external static IP address on Google Cloud Platform
-
Deploy a single NIC VPX high-availability pair with private IP address on Google Cloud Platform
-
Deploy a VPX high-availability pair with private IP addresses on Google Cloud Platform
-
Install a NetScaler VPX instance on Google Cloud VMware Engine
-
-
Solutions for Telecom Service Providers
-
Load Balance Control-Plane Traffic that is based on Diameter, SIP, and SMPP Protocols
-
Provide Subscriber Load Distribution Using GSLB Across Core-Networks of a Telecom Service Provider
-
Authentication, authorization, and auditing application traffic
-
Basic components of authentication, authorization, and auditing configuration
-
Web Application Firewall protection for VPN virtual servers and authentication virtual servers
-
On-premises NetScaler Gateway as an identity provider to Citrix Cloud
-
Authentication, authorization, and auditing configuration for commonly used protocols
-
Troubleshoot authentication and authorization related issues
-
-
-
-
-
-
Configure DNS resource records
-
Configure NetScaler as a non-validating security aware stub-resolver
-
Jumbo frames support for DNS to handle responses of large sizes
-
Caching of EDNS0 client subnet data when the NetScaler appliance is in proxy mode
-
Use case - configure the automatic DNSSEC key management feature
-
Use Case - configure the automatic DNSSEC key management on GSLB deployment
-
-
-
Persistence and persistent connections
-
Advanced load balancing settings
-
Gradually stepping up the load on a new service with virtual server–level slow start
-
The no-monitor option for services
-
Protect applications on protected servers against traffic surges
-
Retrieve location details from user IP address using geolocation database
-
Use source IP address of the client when connecting to the server
-
Use client source IP address for backend communication in a v4-v6 load balancing configuration
-
Set a limit on number of requests per connection to the server
-
Configure automatic state transition based on percentage health of bound services
-
-
Use case 2: Configure rule based persistence based on a name-value pair in a TCP byte stream
-
Use case 3: Configure load balancing in direct server return mode
-
Use case 6: Configure load balancing in DSR mode for IPv6 networks by using the TOS field
-
Use case 7: Configure load balancing in DSR mode by using IP Over IP
-
Use case 10: Load balancing of intrusion detection system servers
-
Use case 11: Isolating network traffic using listen policies
-
Use case 12: Configure Citrix Virtual Desktops for load balancing
-
Use case 13: Configure Citrix Virtual Apps and Desktops for load balancing
-
Use case 14: ShareFile wizard for load balancing Citrix ShareFile
-
Use case 15: Configure layer 4 load balancing on the NetScaler appliance
-
-
-
-
-
Authentication and authorization for System Users
-
-
-
Configuring a CloudBridge Connector Tunnel between two Datacenters
-
Configuring CloudBridge Connector between Datacenter and AWS Cloud
-
Configuring a CloudBridge Connector Tunnel Between a Datacenter and Azure Cloud
-
Configuring CloudBridge Connector Tunnel between Datacenter and SoftLayer Enterprise Cloud
-
Configuring a CloudBridge Connector Tunnel Between a NetScaler Appliance and Cisco IOS Device
-
CloudBridge Connector Tunnel Diagnostics and Troubleshooting
This content has been machine translated dynamically.
Dieser Inhalt ist eine maschinelle Übersetzung, die dynamisch erstellt wurde. (Haftungsausschluss)
Cet article a été traduit automatiquement de manière dynamique. (Clause de non responsabilité)
Este artículo lo ha traducido una máquina de forma dinámica. (Aviso legal)
此内容已经过机器动态翻译。 放弃
このコンテンツは動的に機械翻訳されています。免責事項
이 콘텐츠는 동적으로 기계 번역되었습니다. 책임 부인
Este texto foi traduzido automaticamente. (Aviso legal)
Questo contenuto è stato tradotto dinamicamente con traduzione automatica.(Esclusione di responsabilità))
This article has been machine translated.
Dieser Artikel wurde maschinell übersetzt. (Haftungsausschluss)
Ce article a été traduit automatiquement. (Clause de non responsabilité)
Este artículo ha sido traducido automáticamente. (Aviso legal)
この記事は機械翻訳されています.免責事項
이 기사는 기계 번역되었습니다.책임 부인
Este artigo foi traduzido automaticamente.(Aviso legal)
这篇文章已经过机器翻译.放弃
Questo articolo è stato tradotto automaticamente.(Esclusione di responsabilità))
Translation failed!
The no-monitor option for services
If you use an external system to perform health checks on the services and do not want the NetScaler appliance to monitor the health of a service, you can set the no-monitor option for the service. If you do so, the appliance does not send probes to check the health of the service but shows the service as UP. Even if the service goes DOWN, the appliance continues to send traffic from the client to the service as specified by the load balancing method.
The monitor can be in the ENABLED or DISABLED state when you set the no-monitor option, and when you remove the no-monitor option, the earlier state of the monitor is resumed.
You can set the no-monitor option for a service when creating the service. You can also set the no-monitor option on an existing service.
The following are the consequences of setting the no-monitor option:
- If a service for which you enabled the no-monitor option goes down, the appliance continues to show the service as UP and continues to forward traffic to the service. A persistent connection to the service can worsen the situation. In that case, or if many services shown as UP are actually DOWN, the system may fail. To avoid such a situation, when the external mechanism that monitors the services reports a service as DOWN, remove the service from the NetScaler configuration.
- If you configure the no-monitor option on a service, you cannot configure load balancing in the Direct Server Return (DSR) mode. For an existing service, if you set the no-monitor option, you cannot configure the DSR mode for the service.
To set the no-monitor option for a new service by using the CLI
At the command prompt, type the following commands to create a service with the health monitor option, and verify the configuration:
add service <serviceName> <IP | serverName> <serviceType> <port> -healthMonitor (YES|NO)
<!--NeedCopy-->
Example:
add service nomonsrvc 10.102.21.21 http 80 -healthMonitor no
Done
show service nomonsrvc
nomonsrvc (10.102.21.21:80) - HTTP
State: UP
Last state change was at Mon Nov 15 22:41:29 2010
Time since last state change: 0 days, 00:00:00.970
Server Name: 10.102.21.21
Server ID : 0 Monitor Threshold : 0
...
Access Down Service: NO
...
Down state flush: ENABLED
Health monitoring: OFF
1 bound monitor:
1) Monitor Name: tcp-default
State: UNKNOWN Weight: 1
Probes: 3 Failed [Total: 3 Current: 3]
Last response: Probe skipped - Health monitoring is turned off.
Response Time: N/A
Done
<!--NeedCopy-->
To set the no-monitor option for an existing service by using the CLI
At the command prompt, type the following command to set the health monitor option:
set service <name> -healthMonitor (YES|NO)
<!--NeedCopy-->
Example:
By default, the state of a service and the state of the corresponding monitor are UP.
>show service LB-SVC1
LB-SVC1 (10.102.29.5:80) - HTTP
State: UP
1) Monitor Name: http-ecv
State: UP Weight: 1
Probes: 99992 Failed [Total: 0 Current: 0]
Last response: Success - Pattern found in response.
Response Time: 3.76 millisec
Done
When the no-monitor option is set on a service, the state of the monitor changes to UNKNOWN.
set service LB-SVC1 -healthMonitor NO
Done
show service LB-SVC1
LB-SVC1 (10.102.29.5:80) - HTTP
State: UP
Last state change was at Fri Dec 10 10:17:37 2010.
Time since last state change: 5 days, 18:55:48.710
Health monitoring: OFF
1) Monitor Name: http-ecv
State: UNKNOWN Weight: 1
Probes: 100028 Failed [Total: 0 Current: 0]
Last response: Probe skipped - Health monitoring is turned off.
Response Time: 0.0 millisec
Done
When the no-monitor option is removed, the earlier state of the monitor is resumed.
> set service LB-SVC1 -healthMonitor YES
Done
>show service LB-SVC1
LB-SVC1 (10.102.29.5:80) - HTTP
State: UP
Last state change was at Fri Dec 10 10:17:37 2010
Time since last state change: 5 days, 18:57:47.880
1) Monitor Name: http-ecv
State: UP Weight: 1
Probes: 100029 Failed [Total: 0 Current: 0]
Last response: Success - Pattern found in response.
Response Time: 5.690 millisec
Done
<!--NeedCopy-->
To set the no-monitor option for a service by using the GUI
- Navigate to Traffic Management > Load Balancing > Services.
- Open the service, and clear Health Monitoring.
Share
Share
This Preview product documentation is Cloud Software Group Confidential.
You agree to hold this documentation confidential pursuant to the terms of your Cloud Software Group Beta/Tech Preview Agreement.
The development, release and timing of any features or functionality described in the Preview documentation remains at our sole discretion and are subject to change without notice or consultation.
The documentation is for informational purposes only and is not a commitment, promise or legal obligation to deliver any material, code or functionality and should not be relied upon in making Cloud Software Group product purchase decisions.
If you do not agree, select I DO NOT AGREE to exit.